Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Leas Squares Approac

Conclusion

Non-College Occupations, Workplace Automation, and the College Gender Gap

Amanda Chuan¹ Weilong Zhang²

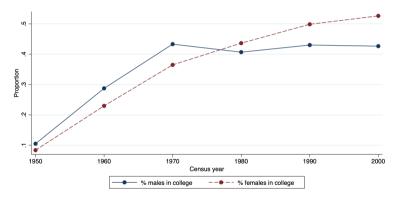
¹Michigan State University

²University of Cambridge

EEA-ESEM, Aug 29, 2023

Chuan, Zhang

Introduction


Data

Descriptive Evidence on Routinization

Two Stage Leas Squares Approad Structural Mode

Women overtook men in college enrollment

College enrollment by gender

Source: IPUMS decadal census data for 1950-2000; American Community Survey yearly data for 2001-2010. 18-30 year olds.

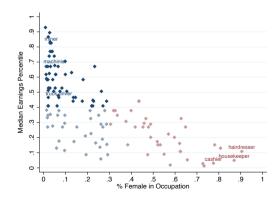
Chuan, Zhang

- Introduction
- Data
- Descriptive Evidence on Routinization
- Two Stage Least Squares Approach Structural Model Conclusion

- Open question: Why do women exceed men in college-going?
 - When men earn and work more than women
- Marriage market premium (Chiappori, lyigun, Weiss, 2009; Chiappori, Salanie, Weiss, 2017; Low, 2019; Zhang, 2021; Ge, Isaac, Miller, 2022)
- Most of the literature focuses on gender differences in the ability to prepare for college (supply side)
 - Academic performance (Goldin, Katz, and Kuziemko, 2006; Becker, Hubbard, and Murphy, 2010); non-cognitive abilities (Bertrand and Pan, 2013)
- In contrast, this paper explores gender differences in non-college job prospects (demand side)
 - Among high school graduates, women face worse job options than men

Chuan, Zhang

Introduction


Data

Descriptive Evidence on Routinization

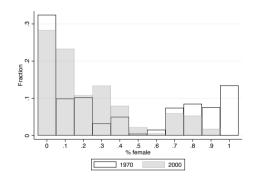
Two Stage Leas Squares Approad Structural Mode

"Missing quadrant" of high-paying female non-college occs

Non-College Occupations, 2000

- Traditionally "male" occupations can pay highly
- Occupations which employed women have significantly lower median earnings and all starts of the starts of the start of t

Chuan, Zhang


Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approac Structural Mode

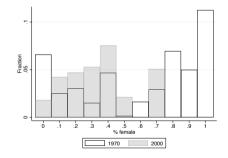
Decline in women's non-college occupations over time

Source: IPUMS decadal census microdata (1970) and ACS data (2010). 18-30 year olds.

- In 1970, 70% of non-college working women held "routine" occupations
 - secretary, stenographer, clerical worker, telephone operator, typist
- 66% decline in share of secretarial jobs, 95% decline in share of typist jobs from 1970 to 2000

Chuan, Zhang

Introduction


Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approac Structural Mode

Decline in women's non-college occupations – driven by routine occs

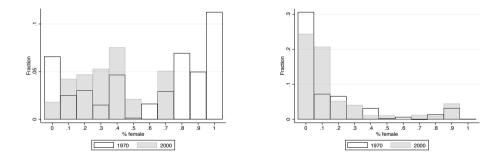
(a) Routine Occupations

- 1970: among high routine occupations, most were female-dominated
- By 2000: no more high routine female-dominated occupations

Chuan, Zhang

Introduction

Data


Descriptive Evidence on Routinization

Two Stage Least Squares Approac Structural Mode Conclusion

Decline in women's non-college occupations – driven by routine occs

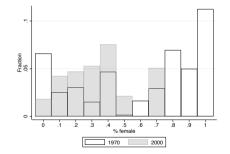
(a) Routine Occupations

(b) Non-routine Occupations

- 1970: among high routine occupations, most were female-dominated
- By 2000: no more high routine female-dominated occupations
- Non-routine occupations: little change over time

Chuan, Zhang

Introduction


Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approac Structural Mode

Decline in women's non-college occupations – driven by routine occs

(a) Routine Occupations

• Routinization: displacement of routine occupations by automation

College occupations

Chuan, Zhang

Introduction

- Data
- Descriptive Evidence on Routinization
- Two Stage Least Squares Approac
- Conclusion

Research Question

• Did non-college jobs contribute to college gender gap?

Research Question

Introduction

Automation & College Gender Gan

Chuan, Zhang

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approach Structural Model Conclusion

- Did non-college jobs contribute to college gender gap?
- Two stylized facts for non-college female workers
 - 1 Cross-sectionally: Missing quadrant of high-paying occupations
 - 2 Over time: non-college job prospects deteriorated

Research Question

Introduction

Automation & College Gender Gan

Chuan, Zhang

Data

- Descriptive Evidence on Routinization
- Two Stage Least Squares Approach Structural Model Conclusion

- Did non-college jobs contribute to college gender gap?
- Two stylized facts for non-college female workers
 - 1 Cross-sectionally: Missing quadrant of high-paying occupations
 - 2 Over time: non-college job prospects deteriorated
- Challenge: occupation prospects are endogenous

Research Question

Chuan, Zhang

Automation & College Gender Gan

Data

- Descriptive Evidence on Routinization
- Two Stage Least Squares Approach Structural Model Conclusion

- Did non-college jobs contribute to college gender gap?
- Two stylized facts for non-college female workers
 - 1 Cross-sectionally: Missing quadrant of high-paying occupations
 - 2 Over time: non-college job prospects deteriorated
- Challenge: occupation prospects are endogenous
- This paper uses automation as a shifter of non-college job opportunities
 - Premise: automation disproportionately displaced female non-college occupations
 - Approach: shift-share instruments to isolate labor demand for routine work

Overview

Automation & College Gender Gap

Chuan, Zhang

Introduction

- Data
- Descriptive Evidence on Routinization
- Two Stage Least Squares Approac Structural Model
- Conclusion

• Instrument: Administrative share based on job posting data (1950-2000)

- Labor markets with administratively-intense industries should undergo more routinization
- Capture shifts in labor demand due to routinization

Overview

Automation & College Gender Gap

Chuan, Zhang

Introduction

- Data
- Descriptive Evidence on Routinization
- Two Stage Least Squares Approact Structural Model
- Conclusion

- **1** Instrument: Administrative share based on job posting data (1950-2000)
 - Labor markets with administratively-intense industries should undergo more routinization
 - Capture shifts in labor demand due to routinization
 - Routinization \uparrow female enrollment, but not nec. male enrollment

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approach Structural Model **1** Instrument: Administrative share based on job posting data (1950-2000)

2 Structural approach complements IV approach:

Overview

Chuan, Zhang

Introduction

Data

- Descriptive Evidence on Routinization
- Two Stage Least Squares Approach Structural Model Conclusion

1 Instrument: Administrative share based on job posting data (1950-2000)

2 Structural approach complements IV approach:

- Explicitly model mechanisms for individual decisions
- Quantify the changes in college enrollment due to routinization:

▲ □ ▶ ▲ @ ▶ ▲ E ▶ ▲ E ▶ E = のへの 7/2

Overview

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approach Structural Model Conclusion

1 Instrument: Administrative share based on job posting data (1950-2000)

2 Structural approach complements IV approach:

- Explicitly model mechanisms for individual decisions
- Quantify the changes in college enrollment due to routinization:
 - 4 pp (44%) growth in female enrollment, 1.6 pp growth in male enrollment

< □ ▷ < @ ▷ < Ξ ▷ < Ξ ▷ Ξ □ 7

Overview

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Leas Squares Approac

Structural Mod

Conclusion

Data

◆□▶ < @ ▶ < E ▶ < E ▶ E = の Q ↔ 7/17</p>

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approac

Structural Mod

Conclusion

Data and Measurement

- Census (1950-2000)
 - Sample size permits examining occupation/industry-level changes by commuting zone-year

Chuan, Zhang

Introduction

Data

- Descriptive Evidence on Routinization
- Two Stage Lease Squares Approace
- Conclusion

Data and Measurement

- Census (1950-2000)
 - Sample size permits examining occupation/industry-level changes by commuting zone-year
- Autor and Dorn (2013) measures of automation susceptibility
 - Task content of occupations: routine, manual, abstract
 - Measure of automation susceptibility: Routine Task Intensity (RTI)

RTI = ln(routine) - ln(manual) - ln(abstract)

Chuan, Zhang

Introduction

Data

- Descriptive Evidence on Routinization
- Two Stage Least Squares Approac Structural Model
- Conclusion

Data and Measurement

- Census (1950-2000)
 - Sample size permits examining occupation/industry-level changes by commuting zone-year
- Autor and Dorn (2013) measures of automation susceptibility
 - Task content of occupations: routine, manual, abstract
 - Measure of automation susceptibility: Routine Task Intensity (RTI)

RTI = ln(routine) - ln(manual) - ln(abstract)

- Instrumental variation: newspaper job posting data from Atalay et al. (2020)
 - Administrative activities listed in job postings for each year from 1940 to 2000

Chuan, Zhang

Introduction

Data

- Descriptive Evidence on Routinization
- Two Stage Least Squares Approac Structural Model
- Conclusion

Data and Measurement

- Census (1950-2000)
 - Sample size permits examining occupation/industry-level changes by commuting zone-year
- Autor and Dorn (2013) measures of automation susceptibility
 - Task content of occupations: routine, manual, abstract
 - Measure of automation susceptibility: Routine Task Intensity (RTI)

RTI = ln(routine) - ln(manual) - ln(abstract)

- Instrumental variation: newspaper job posting data from Atalay et al. (2020)
 - Administrative activities listed in job postings for each year from 1940 to 2000
- Structural Model: National Longitudinal Survey of Youth (1979)

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

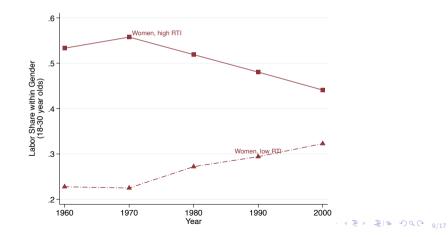
Two Stage Least Squares Approac

Structural Mod

Conclusion

Descriptive Evidence on Routinization

Chuan, Zhang


Introduction

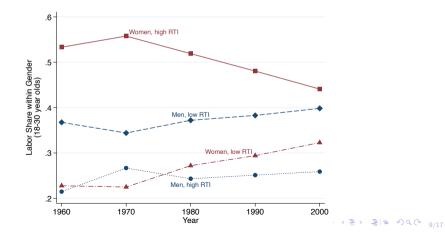
Data

Descriptive Evidence on Routinization

Two Stage Leas Squares Approad Structural Mode Conclusion

Decline in labor share of high-RTI occupations for women

Chuan, Zhang


Introduction

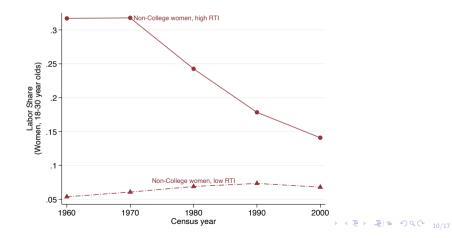
Data

Descriptive Evidence on Routinization

Two Stage Leas Squares Approad Structural Mode Conclusion

Decline in labor share of high-RTI occupations for women

Chuan, Zhang


Introduction

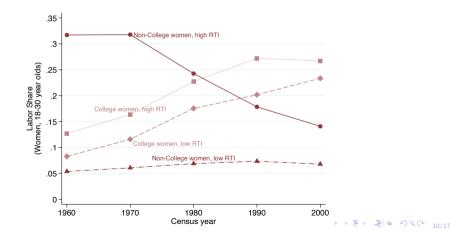
Data

Descriptive Evidence on Routinization

Two Stage Leas Squares Approad Structural Mode Conclusion

Decline in RTI share affects college-going for women

Chuan, Zhang


Introduction

Data

Descriptive Evidence on Routinization

Two Stage Leas Squares Approad Structural Mode Conclusion

Decline in RTI share affects college-going for women

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approach

Structural Mod

Conclusio

Two Stage Least Squares Approach

・ロト・4日ト・4日ト・4日・9000

10/17

Introduction

Automation & College Gender Gap

Chuan, Zhang

Data

Evidence on Routinization

Two Stage Least Squares Approach

Structural Mod

Newspaper job postings from Atalay et al. (2020):

admin share_{ct} =
$$\sum_{i=1}^{l} E_{i,c,1950} \frac{\sum_{k} L_{ikt} \mathbf{1}(\operatorname{admin}_{kt} > \operatorname{admin}_{1950})}{\sum_{k} L_{ikt}}$$

- admin share_{ct}: predicted administrative share in commuting zone c
- $E_{i,c,1950}$: share of industry *i* in commuting zone *c*
- $admin_{kt}$: administrative activity in occupation k

(1)

(1)

Newspaper job postings from Atalay et al. (2020):

$$\text{admin share}_{ct} = \sum_{i=1}^{l} E_{i,c,1950} \frac{\sum_{k} L_{ikt} \mathbf{1} (\text{admin}_{kt} > \text{admin}_{1950}^{P66})}{\sum_{k} L_{ikt}}$$

- admin share_{ct}: predicted administrative share in commuting zone c
- $E_{i,c,1950}$: share of industry *i* in commuting zone *c*
- $admin_{kt}$: administrative activity in occupation k
- Intuition: commuting zones with high initial administrative shares experience more routinization over time
 - Wilmington, DE (legal industry)
 - Detroit, MI (manufacturing industry)

11/17

Automation & College Gender Gap

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization Two Stage Least

Squares Approach

Newspaper job postings from Atalay et al. (2020):

admin share_{ct} =
$$\sum_{i=1}^{l} E_{i,c,1950} \frac{\sum_{k} L_{ikt} \mathbf{1}(\operatorname{admin}_{kt} > \operatorname{admin}_{1950}^{P66})}{\sum_{k} L_{ikt}}$$

- admin share_{ct}: predicted administrative share in commuting zone c
- $E_{i,c,1950}$: share of industry *i* in commuting zone *c*
- $admin_{kt}$: administrative activity in occupation k
- Identifying assumption: administrative share in national industry level can only affect college-going in commuting zone through routinization
 - Shift-share IV framework: industry-level shocks as good as random (Adao et al. 2019; Borusyak et al., 2018)
 - Standard error correction to account for correlated shocks across industries (Adao et al., 2019)

(1)

Automation & College Gender Gap

Chuan, Zhang

Introductio

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approach

- Structural Mode
- Conclusion

Newspaper job postings from Atalay et al. (2020):

admin share_{ct} =
$$\sum_{i=1}^{l} E_{i,c,1950} \frac{\sum_{k} L_{ikt} \mathbf{1} (\operatorname{admin}_{kt} > \operatorname{admin}_{1950}^{P66})}{\sum_{k} L_{ikt}}$$

- admin share_{ct}: predicted administrative share in commuting zone c
- $E_{i,c,1950}$: share of industry *i* in commuting zone *c*
- $admin_{kt}$: administrative activity in occupation k

• Controls:

- male and female labor force participation (25-65 year olds)
- predicted share of manual-intensive occupations
- 10-year lagged services, manufacturing, retail, mining
- race, gender, age, commuting zone, year, census controls
- some specifications: median cognitive earnings, lagged routine share

Regression Equation

Gap Chuan, Zhang

Introduction

Automation & College Gender

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approach

Structural Mode

Conclusion

(1)

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approach

Structural Model

Conclusion

First Stage Regression of Routinization on Instruments

	Routinization			
	(1)	(2)	(3)	(4)
Routinizability IV	0.387	0.383	0.388	0.383
	(0.026)***	(0.027)***	(0.027)***	$(0.027)^{***}$
F-statistic	214.572	204.993	204.654	201.452
Observations	3610	3610	3610	3610
Commuting zone FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Median cognitive earnings		Yes		Yes
Lagged RTI share			Yes	Yes

Notes: First stage regression of routinization on instruments. Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of AKM (2019). Olea-Pflueger F-statistics reported using AKM (2019) standard errors. * p < 0.10, ** p < 0.05, *** p < 0.01.

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approach

Structural Mode

Conclusion

IV Regression: Routinization \Rightarrow growth in female enrollment

Second Stage Regressions

	College Enrollment			
	(1)	(2)	(3)	(4)
	A: Second Stage Regression, Women			
Routinization	0.578	0.606	0.578	0.606
	(0.163)***	(0.166)***	(0.160)***	$(0.161)^{***}$
	[0.258,0.898]	[0.281,0.931]	[0.265,0.891]	[0.291,0.922]
F-statistic	214.572	204.993	204.654	201.452
Observations	3610	3610	3610	3610
	B: Second Stage Regression, Men			
Routinization	0.436	0.444	0.436	0.444
	(0.236)*	(0.238)*	(0.232)*	(0.234)*
	[-0.026,0.898]	[-0.022,0.910]	[-0.019,0.891]	[-0.015,0.904]
F-statistic	214.572	204.993	204.654	201.452
Observations	3610	3610	3610	3610
Commuting zone FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Median cognitive earnings		Yes		Yes
Lagged RTI share			Yes	Yes

Notes: Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of AKM (2019). Montiel Olea-Pflueger first stage F-statistics reported using AKM (2019) standard errors. The second stage estimates include Anderson-Rubin (1949) weak instrument robust confidence intervals using the AKM (2019) correction. * p < 0.10, *** p < 0.05. *** p < 0.01.

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approach

Structural Mode

Conclusion

IV Regression: Routinization \Rightarrow growth in female enrollment

Second Stage Regressions

	College Enrollment			
	(1)	(2)	(3)	(4)
	A: Second Stage Regression, Women			
Routinization	0.578	0.606	0.578	0.606
	(0.163)***	(0.166)***	(0.160)***	$(0.161)^{***}$
	[0.258,0.898]	[0.281,0.931]	[0.265,0.891]	[0.291,0.922]
F-statistic	214.572	204.993	204.654	201.452
Observations	3610	3610	3610	3610
	B: Second Stage Regression, Men			
Routinization	0.436	0.444	0.436	0.444
	(0.236)*	(0.238)*	(0.232)*	(0.234)*
	[-0.026,0.898]	[-0.022,0.910]	[-0.019,0.891]	[-0.015,0.904]
F-statistic	214.572	204.993	204.654	201.452
Observations	3610	3610	3610	3610
Commuting zone FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Median cognitive earnings		Yes		Yes
Lagged RTI share			Yes	Yes

Notes: Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of AKM (2019). Montiel Olea-Pflueger first stage F-statistics reported using AKM (2019) standard errors. The second stage estimates include Anderson-Rubin (1949) weak instrument robust confidence intervalsusing the AKM (2019) correction. * p < 0.10, ** p < 0.05, ** * p < 0.01.

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approach

Structural Mode

Conclusion

IV Regression: Routinization \Rightarrow growth in female enrollment

Second Stage Regressions

	College Enrollment			
	(1)	(2)	(3)	(4)
	A: Second Stage Regression, Women			
Routinization	0.578	0.606	0.578	0.606
	(0.163)***	(0.166)***	(0.160)***	(0.161)***
	[0.258,0.898]	[0.281,0.931]	[0.265,0.891]	[0.291,0.922]
F-statistic	214.572	204.993	204.654	201.452
Observations	3610	3610	3610	3610
	B: Second Stage Regression, Men			
Routinization	0.436	0.444	0.436	0.444
	(0.236)*	(0.238)*	(0.232)*	(0.234)*
	[-0.026,0.898]	[-0.022,0.910]	[-0.019,0.891]	[-0.015,0.904]
F-statistic	214.572	204.993	204.654	201.452
Observations	3610	3610	3610	3610
Commuting zone FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
Median cognitive earnings		Yes		Yes
Lagged RTI share			Yes	Yes

Notes: Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of AKM (2019). Montiel Olea-Pflueger first stage F-statistics reported using AKM (2019) standard errors. The second stage estimates include Anderson-Rubin (1949) weak instrument robust confidence intervalsusing the AKM (2019) correction. * p < 0.10, *** p < 0.05, *** p < 0.01.

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approach

Structural Mode

Conclusion

IV Regression: Routinization \Rightarrow growth in female enrollment

Second Stage Regressions

	College Enrollment						
	(1)	(2)	(3)	(4)			
	A	: Second Stage F	Regression, Wom	en			
Routinization	0.578	0.606	0.578	0.606			
	(0.163)***	(0.166)***	(0.160)***	$(0.161)^{***}$			
	[0.258,0.898]	[0.281,0.931]	[0.265,0.891]	[0.291,0.922]			
F-statistic	214.572	204.993	204.654	201.452			
Observations	3610	3610	3610	3610			
		B: Second Stage	Regression, Mer	1			
Routinization	0.436	0.444	0.436	0.444			
	(0.236)*	(0.238)*	(0.232)*	(0.234)*			
	[-0.026,0.898]	[-0.022,0.910]	[-0.019,0.891]	[-0.015,0.904]			
F-statistic	214.572	204.993	204.654	201.452			
Observations	3610	3610	3610	3610			
Commuting zone FE	Yes	Yes	Yes	Yes			
Year FE	Yes	Yes	Yes	Yes			
Median cognitive earnings		Yes		Yes			
Lagged RTI share			Yes	Yes			

Notes: Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of AKM (2019). Montiel Olea-Pflueger first stage F-statistics reported using AKM (2019) standard errors. The second stage estimates include Anderson-Rubin (1949) weak instrument robust confidence intervalsusing the AKM (2019) correction. * p < 0.10, ** p < 0.05, ** * p < 0.01.

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Leas Squares Approad

Structural Model

Conclusion

Structural Model

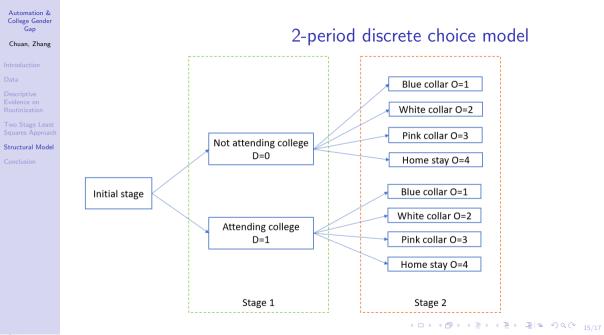
13/17

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization


Two Stage Least Squares Approac


Structural Model

Conclusion

Structural approach: mechanisms

- Develop an explicit mechanism for how routinization affects individual decisions
 - Automation affects returns to occupations by influencing skill prices
 - Through impacting occupational returns, automation affects college enrollment decision
- Quantify the impact of routinization on college enrollment decisions
- Rationalize the polarization of non-college occupations
- Data: National Longitudinal Survey of Youth (1979)
 - · Longitudinally link individual's education, occupation, and earnings over time
 - Skills: cognitive, mechanical, and administrative
 - Armed Services Vocational Aptitude Battery (ASVAB): cognitive, mechanical, administrative test scores (see Prada and Urzua, 2017)

Model Assumptions

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approac

Structural Model

Conclusion

Model Simulations: Quantifying impact of routinization

		Women		Men			
	Baseline:	Routinization	Change	Baseline:	Routinization	Change	
	1980	in 2000		1980	in 2000		
	(1)	(2)	(3)	(4)	(5)	(6)	
Occupation	choices						
White collar	0.404	0.610	0.206	0.392	0.434	0.042	
Blue collar	0.038	0.049	0.011	0.485	0.452	-0.032	
Pink collar	0.348	0.153	-0.195	0.048	0.050	0.002	
Not working	0.209	0.188	-0.021	0.075	0.064	-0.012	
Education ch	noices						
High school	0.389	0.350	-0.040	0.481	0.465	-0.016	
College	0.611	0.650	0.040	0.519	0.535	0.016	

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approac

Structural Model

Conclusion

Model Simulations: Quantifying impact of routinization

		Women		Men			
	Baseline:	Routinization	Change	Baseline:	Routinization	Change	
	1980	in 2000		1980	in 2000		
	(1)	(2)	(3)	(4)	(5)	(6)	
Occupation	choices						
White collar	0.404	0.610	0.206	0.392	0.434	0.042	
Blue collar	0.038	0.049	0.011	0.485	0.452	-0.032	
Pink collar	0.348	0.153	-0.195	0.048	0.050	0.002	
Not working	0.209	0.188	-0.021	0.075	0.064	-0.012	
Education cl	noices						
High school	0.389	0.350	-0.040	0.481	0.465	-0.016	
College	0.611	0.650	0.040	0.519	0.535	0.016	

- Female enrollment rises by 4 pp
 - Census data: 9 pp rise

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Least Squares Approac

Structural Model

Conclusion

Model Simulations: Quantifying impact of routinization

		Women		Men				
	Baseline:	Routinization	Change	Baseline:	Routinization	Change		
	1980	in 2000		1980	in 2000			
	(1)	(2)	(3)	(4)	(5)	(6)		
Occupation (choices							
White collar	0.404	0.610	0.206	0.392	0.434	0.042		
Blue collar	0.038	0.049	0.011	0.485	0.452	-0.032		
Pink collar	0.348	0.153	-0.195	0.048	0.050	0.002		
Not working	0.209	0.188	-0.021	0.075	0.064	-0.012		
Education cl	noices							
High school	0.389	0.350	-0.040	0.481	0.465	-0.016		
College	0.611	0.650	0.040	0.519	0.535	0.016		

- Female enrollment rises by 4 pp
 - Census data: 9 pp rise
- Male enrollment rises by 1.6 pp
 - Census data: 2 pp rise

Automation & College Gender Gap

Chuan, Zhang

Introduction

Data

- Descriptive Evidence on Routinization
- Two Stage Leas Squares Approa
- Structural Mode

Conclusion

- Gender polarization among non-college occupations \Rightarrow gaps in outside options to attending college
- Overview of Results
 - IV approach:
 - greater routinization \Rightarrow displacement of women's non-college jobs
 - decline in outside options $\Rightarrow \uparrow$ female enrollment
 - no systematic effects for men

Automation & College Gender Gap

Chuan, Zhang

Introduction

Data

- Descriptive Evidence on Routinization
- Two Stage Leas Squares Approa
- Structural Mode

Conclusion

- Gender polarization among non-college occupations \Rightarrow gaps in outside options to attending college
- Overview of Results
 - IV approach:
 - greater routinization \Rightarrow displacement of women's non-college jobs
 - decline in outside options $\Rightarrow \uparrow$ female enrollment
 - no systematic effects for men

- Gap Chuan, Zhang
- Introduction

Automation & College Gender

- Data
- Descriptive Evidence on Routinization
- Two Stage Leas Squares Approa
- Structural Mod
- Conclusion

- Gender polarization among non-college occupations \Rightarrow gaps in outside options to attending college
- Overview of Results
- IV approach:

- **2** Structural approach: Routinization \downarrow women's non-college occupational returns
 - Job polarization due to gender difference in skills & skill returns
 - Decline in pink-collar returns \Rightarrow women shift from pink-collar to white-collar \Rightarrow greater female college-going

- Gap Chuan, Zhang
- Introduction

Automation & College Gender

- Data
- Descriptive Evidence on Routinization
- Two Stage Leas Squares Approa
- Structural Mod
- Conclusion

- Gender polarization among non-college occupations \Rightarrow gaps in outside options to attending college
- Overview of Results
- IV approach:

- **2** Structural approach: Routinization \downarrow women's non-college occupational returns
 - Job polarization due to gender difference in skills & skill returns
 - Decline in pink-collar returns \Rightarrow women shift from pink-collar to white-collar \Rightarrow greater female college-going

Chuan, Zhang

Introduction

Data

Descriptive Evidence on Routinization

Two Stage Leas Squares Approa

Structural Mode

Conclusion

Thank you!

For questions or comments, please contact us at achuan@msu.edu or wz301@cam.ac.uk

Chuan, Zhang

Introduction

- Data
- Descriptive Evidence on Routinization
- Two Stage Least Squares Approac
- Structural Model
- Conclusion

Acemoglu, D., Autor, D., 2011. Skills, Tasks, and Technologies: Implications for Employment and Earnings. Handbook of Labor Economics Vol. 4b.

References

- Acemoglu, D., Autor, D., Hazell, J., Restrepo, P., 2020. AI and Jobs: Evidence from Online Vacancies. NBER Working Paper 28257.
- Acemoglu, D., Restrepo, P., 2019. Automation and New Tasks: How Technology Displaces and Reinstates Labor. NBER Working Paper 25684.
- Acemoglu, D., Restrepo, P., 2020. Robots and Jobs: Evidence from US Labor Markets. Journal of Political Economy 128(6), 2188-2242.
- Adao, R., Kolesar, M., Morales, E., 2019. Shift-Share Designs: Theory and Inference. Quarterly Journal of Economics 1949-2010.
- Atalay, E., Phongthiengtham, P., Sotelo, S., Tannenbaum, D., 2020. The Evolution of Work in the United States. American Economic Journal: Applied Economics 12(2), 1-34.
- Atkin, D., 2016. Endogenous Skill Acquisition and Export Manufacturing in Mexico. American Economic Review 106(8), 2046-2085.
- Autor, D., 2015. Why Are There Still So Many Jobs? The History and Future of Workplace Automation. Journal of Economic Perspectives 29(3), 3-30.
- Autor, D., Dorn, D., 2013. The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market. American Economic Review 103(5): 1553-1597.
- Autor, D., Levy, F., Murnane, R., 2003. The Skill Content of Recent Technological Change: An Empirical Exploration. Quarterly Journal of Economics 118(4), 1279-1333.
- Autor, D., Wasserman, M., 2013. Wayward Sons: The Emerging Gender Gap in Labor Markets and Education. Third Way, March 2013.
- Becker, G., Hubbard, W., Murphy, K., 2010. Explaining the Worldwide Boom in the Higher Education of Women. Journal of Human Capital 4(3): 203-241
- Bertrand, M., Pan, J., 2013. The Trouble with Boys: Social Influences and the Gender Gap in Disruptive Behavior. American Economic Journal: Applied Economics 2013 5(1), 32-64.
- Black, S., Spitz-Oener, 2010. Explaining Women's Success: Technological Change and the Skill Content of Women's Work. The Review of Economics and Statistics 92(1), 187-194.
- Borusyak, K., Hull, P., Jaravel, X., 2019. Quasi-Experimental Shift-Share Research Designs.
- Bresnahan, T., Brynjolfsson, E., Hitt, L., 2002. Information Technology, Workplace Organization, and the Demand for Skilled Labor: Firm-Level Evidence. Quarterly Journal of Economics 117(1), 339-376.
- Bronson, M. Degrees Are Forever: Marriage, Educational Investment, and Lifecycle Labor Decisions of Men and Women.
- Brynjolfsson, E., Hitt, L., 2000. Beyond Computation: Information Technology, Organizational Transformation and Business Performance. Journal of Economic Perspectives 14(4), 23-48.
- Bronson, M., 2015. Degrees are Forever: Marriage, Educational Investment, and Lifecycle Labor Decisions of Men and Women.
- Buchmann, C., DiPrete, T., 2006. The Growing Female Advantage in College Completion: The Role of Family Background and Academic Achievement. American Sociological Review 71(4), 515-541.

Chuan, Zhang

Introduction

- Data
- Descriptive Evidence on Routinization
- Two Stage Least Squares Approac
- Structural Mode
- Conclusion

References

- Carrell, S., Sacerdote, B., 2017. Why Do College Going Interventions Work? American Economic Journal: Applied Economics 9(3), 124-151.
- Cascio, E., Narayan, A., 2015. Who Needs a Fracking Education? The Educational Response to Low-Skill Biased Technological Change. NBER Working Paper 21359.
- Charles, K., Hurst, E., Notowidigdo, M., 2016. Housing Booms and Busts, Labor Market Opportunities, and College Attendance. American Economic Review 108(10): 2947-94.
- Charles, K., Luoh, M., 2003. Gender Differences in Completed Schooling. The Review of Economics and Statistics 85(3), 559-577.
- Cortes, G., Jaimovich, N., Nekarda, C., Siu, H., 2014. The Micro and Macro of Disappearing Routine Jobs: A Flows Approach. NBER Working Paper 20307.
- Cortes, G., Jaimovich, N., Siu, H., 2016. Disappearing Routine Jobs: Who, How, and Why? NBER Working Paper 22918.
- Chiappori, P., Iyigun, M., Weiss, Y., 2009. Investment in Schooling and the Marriage Market. The American Economic Review 99(5), 1689-1713.
- Chiappori, P., Salanie, B., Weiss, Y., 2015. Partner Choice and the Marital College Premium: Analyzing Marital Patterns over Several Decades.
- Dougherty, C., 2005. Why Are the Returns to Schooling Higher for Women than for Men? Journal of Human Resources 40(4), 969-988.
- Dillender, M., Forsythe, E., 2019. Computerization of White Collar Jobs.
- Doms, M., Lewis, E., 2006. Labor Supply and Personal Computer Adoption.
- Manhood (2015, July 6). The Economist. Retrieved from https://www.economist.com/
- The Weaker Sex (2016, May 29). The Economist. Retrieved from https://www.economist.com/
- Feigenbaum, J., Gross, D., 2020. Automation and the Fate of Young Workers: Evidence from Telephone Operation in the Early 20th Century. NBER Working Paper 28061.
- Frey, C., Osborne, M., 2013. The Future of Employment: How Susceptible are Jobs to Computerisation?
- Goldin, C., Katz, L., 2008. The Race Between Education and Technology. Cambridge, MA: Harvard University Press.
- Goldin, C., Katz, L., 2009. The Race Between Education and Technology: The Evolution of U.S. Wage Differentials, 1890-2004. NBER Working Paper 12984.
- Goldin, C., Katz, L., Kuziemko, I., 2006. The Homecoming of American College Women: The Reversal of the College Gender Gap. Journal of Economic Perspectives 20(4): 133-156.
- Goos, M., Manning, A., Salomons, A., 2009. Job Polarization in Europe. American Economic Review 99(2), 58-62.
- Goos, M., Manning, A., Salomons, A., 2014. Explaining Job Polarization: Routine-Biased Technological Change and Offshoring. American Economic Review 104(8), 2509-2526.
- Greenwood, J., Seshadri, A., Yorukoglu, M., 2005. Engines of Liberation. The Review of Economic Studies 72(1), 199-133, E + (E) (E) (C) -

Chuan, Zhang

- Introduction
- Data
- Descriptive Evidence on Routinization
- Two Stage Least Squares Approac
- Structural Model
- Conclusion

 Hershbein, B., Kahn, L., 2018. Do Recessions Accelerate Routine-Biased Technological Change? Evidence from Vacancy Postings. The American Economic Review 108(7), 1737-1772.

References

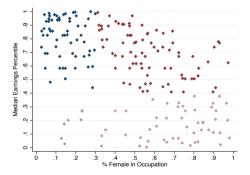
- Huang, L., 2013. A Revolution in Education: Determinants of the Gender Gap Reversal.
- Jacob, B., 2002. Where the boys aren't: non-cognitive skills, returns to school and the gender gap in higher education. Economics of Education Review 21, 589-598.
- Katz, L., Autor, D., 1999. Changes in the Wage Structure and Earnings Inequality. In Handbook of Labor Economics Vol. 3A, edited by Orley Ashenfelter and David E. Card, 1465-1555. Amsterdam: Elsevier B.V.
- Kovalenko, A., 2020. Natural Resource Booms, Human Capital and Earnings: Evidence from Linked Education and Employment Records.
- Lee, D., Wolpin, K., 2010. Accounting for wage and employment changes in the US from 1968-2000: A dynamic model of labor market equilibrium.
- Lindenlaub, I., 2016. Sorting Multidimensional Types: Theory and Application. Review of Economic Studies 84, 718-789.
- Lise, J., Postel-Vinay, F., 2016. Multidimensional Skills, Sorting, and Human Capital Accumulation.
- Low, C., 2019. A "Reproductive Capital" Model of Marriage Market Matching.
- Mosquera, R., 2019. A Blessing or a Curse? The Long-Term Effect of Resource Booms on Human Capital.
- Neilson, E., 2019. The Fracking Boom, Local Labor Market Opportunities, and College Attainment.
- Rendall, M., 2018. Brain versus Brawn: The Realization of Women's Comparative Advantage.
- Rosin, H., (2016, Dec. 29). The End of Men. The Atlantic. Retrieved from https://www.theatlantic.com
- Prada, M., Urzua, S., 2017. One Size Does Not Fit All: Multiple Dimensions of Ability, College Attendance and Earnings. Journal of Labor Economics 35(4): 953-990.
- Shah, M., Steinberg, B., 2015. Workfare and Human Capital Investment: Evidence from India. NBER Working Paper 21543.
- Shah, M., Steinberg, B., 2017. Drought of Opportunities: Contemporaneous and Long-Term Impacts of Rainfall Shocks on Human Capital. Journal of Political Economy 125(2), 527-561.
- Spitz-Oener, A., 2006. Technical Change, Job Tasks, and Rising Educational Demands: Looking outside the Wage Structure. Journal of Labor Economics 24(2), 235-270.
- Spitz-Oener, A., 2008. The Returns to Pencil Use Revisited. Industrial and Labor Relations Review 61(4), 502-517.
- Olivieri, E., 2014. Occupational Choice and the College Gender Gap.
- Welch, F., 2000. Growth in Women's Relative Wages and in Inequality among Men: One Phenomenon or Two? American Economic Review Papers & Proceedings 90(2), 444-449.
- Zhang, H., 2021. An Investment-and-Marriage Model with Differential Fecundity: On the College Gender Gap. Journal of Political Economy 129(5).

Chuan, Zhang

Appendix

Appendix

◆□▶ < @ ▶ < E ▶ < E ▶ E = のQ @ 17/17</p>


17/17

Chuan, Zhang

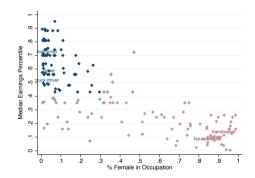
Appendix

Opposite missing quadrant in college occs

College Occupations, 2000

2000 Census. 18-30 year olds. College occupations are occupations with 50% of more workers who have ever enrolled in college.

Non-College Occupations, 2000

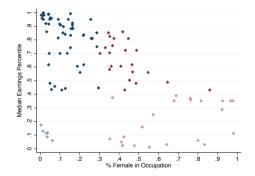

<□> <0>< <0>< <0>< <0>< <0<</p>

- Missing "quadrant" of low-paying male college occupations
- Consistent with sorting based on outside options

Chuan, Zhang

Appendix

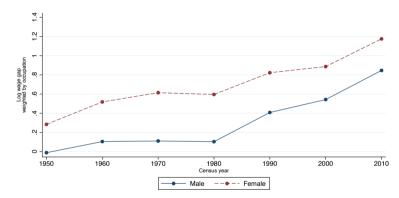
Non-College Occupations, 1970


Source: Census microdata, 1970. 18-30 year olds. Non-College occupations are occupations with 50% of more workers who have never enrolled in college.

▲ Non-College Occupations, 2010

Chuan, Zhang

Appendix


College Occupations, 1970

Source: Census microdata, 1970. 18-30 year olds. College occupations are occupations with 50% of more workers who have ever enrolled in college.

▲ Non-College Occupations, 2010

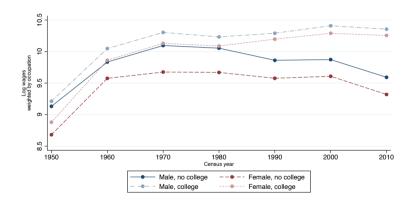
Magnerigan dual to the state of the second sorting

Source: Census and American Community Survey. 18-30 year olds. Difference in predicted median earnings for college and non-college workers, where

predicted median earnings = \sum_{o}^{O} median earnings $_{o}$ × proportion in occupation o by gender

◆□ ▶ < @ ▶ < E ▶ < E ▶ 된 = 9 Q @ 21/17</p>

College Gender Gap Chuan, Zhang


Automation &

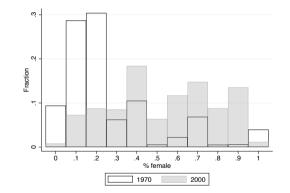
Appendix

Chuan, Zhang

Appendix

Predicted median earnings due to occupational Predicted Median Earnings sorting

Source: Census and American Community Survey. 18-30 year olds. Predicted median earnings for college and non-college workers computed as

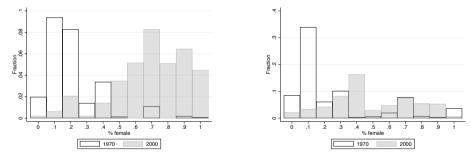

predicted median earnings =
$$\sum\limits_{\sigma}^{O}$$
 median earnings $_{\sigma}$ $imes$ proportion in occupation o by gender

Chuan, Zhang

Appendix

Increase in gender-equal college occupations over time

Source: IPUMS decadal census microdata (1970) and ACS data (2010). 18-30 year olds.

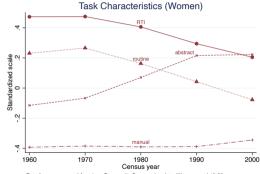

◆□ → ◆□ → ◆ ■ → ◆ ■ → ● ● ○ 23/17

Non-College Occupations 🔪 🖣 Occupations by Education, Model

Chuan, Zhang

Appendix

College Occupations, by RTI



Source: IPUMS decadal census microdata (1970) and ACS data (2010). 18-30 year olds.

Non-college occupations

Women's RTI over time

Routine Task Intensity (RTI) in Labor Market

Data from census and American Community Survey microdata. Women aged 18-30.

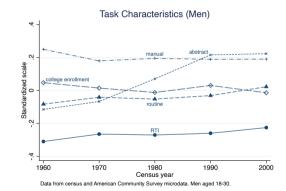
Source: IPUMS decadal census data for 1950-2000; American Community Survey yearly data for 2001-2005. 18-30 year olds.

RTI = ln(routine) - ln(manual) - ln(abstract)

Automation & College Gender Gap

Chuan, Zhang

Appendix


Chuan, Zhang

Appendix

Men's RTI over time

◆□▶ < @▶ < @▶ < @▶ El= 9000 26/17</p>

Routine Task Intensity (RTI) in Labor Market

Source: IPUMS decadal census data for 1950-2000; American Community Survey yearly data for 2001-2005. 18-30 year olds.

RTI = ln(routine) - ln(manual) - ln(abstract)

RTI, main

Chuan, Zhang

Appendix

Regression equations

First stage regression:

$$routinization_{ct} = \alpha_0 + \alpha_1 admin \ share_{ct} + \alpha_2 X_{ct} + \phi_t + \theta_c + e_{ct}$$
(2)

- routinization_{ct} = RTI share_{c,1950} RTI share_{ct}
- RTI share_{c,1950}: share of high RTI occs

Chuan, Zhang

Appendix

Regression equations

First stage regression:

routinization_{ct} = $\alpha_0 + \alpha_1$ admin share_{ct} + $\alpha_2 X_{ct} + \phi_t + \theta_c + e_{ct}$ (2)

- routinization_{ct} = RTI share_{c,1950} RTI share_{ct}
- RTI share_{c,1950}: share of high RTI occs

Second stage regression:

$$Y_{ct} = \beta_0 + \beta_1 \text{routinization}_{ct} + \beta_2 X_{ct} + \phi_t + \theta_c + \epsilon_{ct}$$
(3)

- Y_{ct} female & male enrollment
- X_{ct} commuting zone-year level controls

◄ IV equation

Chuan, Zhang

Appendix

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	(-)	(-)	(*)		Enrollment	(*)	(.)	(*)
Routinization	0.495	0.607	0.628	0.736	0.504	0.365	0.548	0.784
	(0.167)***	(0.158)***	(0.161)***	(0.242)***	(0.126)***	(0.145)**	(0.145)***	(0.145)***
	[0.167,0.822]	[0.297,0.917]	[0.312,0.944]	[0.263,1.210]	[0.256,0.752]	[0.080,0.650]	[0.213,0.884]	[0.350,1.219]
F-statistic	137.280	205.558	182.001	51.040	103.421	203,540	161.233	111.715
Observations	3610	3600	3610	3610	3610	3610	3610	3610
				B: Male	Enrollment			
Routinization	0.315	0.503	0.441	0.540	0.218	0.254	0.432	0.616
	(0.266)	(0.234)**	(0.238)*	(0.315)*	(0.174)	(0.196)	(0.196)	(0.196)*
	[-0.207,0.838]	[0.044,0.961]	[-0.025,0.907]	[-0.077,1.157]	[-0.123,0.558]	[-0.129,0.638]	[-0.101,0.964]	[-0.048,1.280]
F-statistic	137.280	205.558	182.001	51.040	103.421	203.540	161.233	111.715
Observations	3610	3600	3610	3610	3610	3610	3610	3610
Minimum controls	~							
Excluding Boston and NYC		\checkmark						
Control for abstract occupation share			\checkmark					
RTI share: non-college workers	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
RTI share: college and non-college workers				\checkmark				
IV: Administrative Share (top third)	\checkmark	\checkmark	\checkmark	\checkmark				
IV: Routine Share					\checkmark			
IV: Administrative Share (top half)						\checkmark		
IV: Administrative Activities							\checkmark	
IV: Clerical Requirements								\checkmark

Second Stage Regressions, Additional Specifications

Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of AKM (2019). Montiel Olea-Pflueger F-statistics reported using AKM (2019) standard errors. Anderson-Rubin (1949) confidence intervals reported using AKM (2019) correction. * p < 0.01, ** * p < 0.01.

Robustness

Chuan, Zhang

Appendix

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
				A: Female	Enrollment			
Routinization	0.495	0.607	0.628	0.736	0.504	0.365	0.548	0.784
	$(0.167)^{***}$	(0.158)***	$(0.161)^{***}$	(0.242)***	$(0.126)^{***}$	(0.145)**	(0.145)***	(0.145)***
	[0.167,0.822]	[0.297,0.917]	[0.312,0.944]	[0.263,1.210]	[0.256,0.752]	[0.080,0.650]	[0.213,0.884]	[0.350,1.219]
F-statistic	137.280	205.558	182.001	51.040	103.421	203.540	161.233	111.715
Observations	3610	3600	3610	3610	3610	3610	3610	3610
				B: Male	Enrollment			
Routinization	0.315	0.503	0.441	0.540	0.218	0.254	0.432	0.616
	(0.266)	(0.234)**	$(0.238)^{*}$	$(0.315)^*$	(0.174)	(0.196)	(0.196)	(0.196)*
	[-0.207,0.838]	[0.044,0.961]	[-0.025,0.907]	[-0.077, 1.157]	[-0.123,0.558]	[-0.129,0.638]	[-0.101,0.964]	[-0.048,1.280]
F-statistic	137.280	205.558	182.001	51.040	103.421	203.540	161.233	111.715
Observations	3610	3600	3610	3610	3610	3610	3610	3610
Minimum controls	~							
Excluding Boston and NYC		\checkmark						
Control for abstract occupation share			\checkmark					
RTI share: non-college workers	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
RTI share: college and non-college workers				\checkmark				
V: Administrative Share (top third)	\checkmark	\checkmark	\checkmark	\checkmark				
V: Routine Share					\checkmark			
V: Administrative Share (top half)						\checkmark		
V: Administrative Activities							\checkmark	
IV: Clerical Requirements								\checkmark

Second Stage Regressions, Additional Specifications

Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of AKM (2019). Montiel Olea-Pflueger F-statistics reported using AKM (2019) standard errors. Anderson-Rubin (1949) confidence intervals reported using AKM (2019) correction. * p < 0.01, ** * p < 0.01.

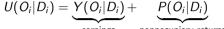
Robustness

Chuan, Zhang

Appendix

Parametric assumptions (1/2)Period 2: Occupation

 $P(O_i|D_i)$ $U(O_i|D_i) = \underbrace{Y(O_i|D_i)}_{i \in I} +$


earnings

nonpecuniary returns

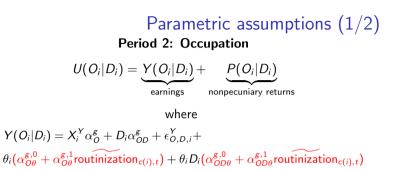
Chuan, Zhang

Appendix

Parametric assumptions (1/2)Period 2: Occupation

earnings

nonpecuniary returns

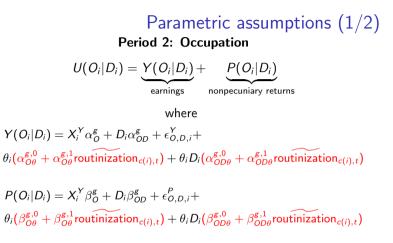

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ ■ ● 9 Q @ 29/17

where

- $\theta_i = \{\theta_{ci}, \theta_{si}, \theta_{mi}\}$ is a vector of skills
- D_i: whether have college degree
- O_i: occupations (white, blue, pink, home)
- X_i: background characteristics

Chuan, Zhang

Appendix



◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ ■ ● 9 Q @ 29/17

- $\theta_i = \{\theta_{ci}, \theta_{si}, \theta_{mi}\}$ is a vector of skills
- D_i: whether have college degree
- O_i: occupations (white, blue, pink, home)
- X_i: background characteristics

Chuan, Zhang

Appendix

(中) (母) (臣) (臣) 王田 の(で 29/17)

- $\theta_i = \{\theta_{ci}, \theta_{si}, \theta_{mi}\}$ is a vector of skills
- D_i: whether have college degree
- O_i: occupations (white, blue, pink, home)
- X_i: background characteristics

Chuan, Zhang

Appendix

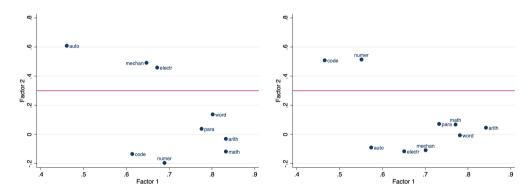
Parametric assumptions (2/2)

Period 1: Education

$$D_i = \mathbf{1}[V_i^1 + \xi_i^D > V_i^0]$$
$$V_i^0 = E \max_{O_i} U(O_i | D_i = 0)$$
$$V_i^1 = X_i^D \lambda_X^g + \theta_i \lambda_\theta^g + \rho E \max_{O_i} U(O_i | D_i = 1)$$

▲ Model Diagram

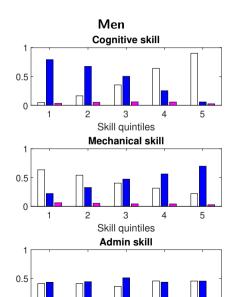
Chuan, Zhang

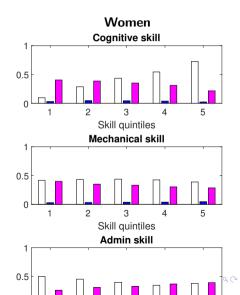

Appendix

Exploratory Factor Loadings

(a) Male

<□ ▶ < @ ▶ < E ▶ < E ▶ E = のQ @ 31/17


Skill Distributions


31/17

Chuan, Zhang

Appendix

Occupational Returns

32/17