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Women overtook men in college enrollment

College enrollment by gender

Source: IPUMS decadal census data for 1950-2000; American Community Survey yearly data for 2001-2010. 18-30 year olds.
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• Open question: Why do women exceed men in college-going?
• When men earn and work more than women

• Marriage market premium (Chiappori, Iyigun, Weiss, 2009; Chiappori, Salanie, Weiss,
2017; Low, 2019; Zhang, 2021; Ge, Isaac, Miller, 2022)

• Most of the literature focuses on gender differences in the ability to prepare for college
(supply side)

• Academic performance (Goldin, Katz, and Kuziemko, 2006; Becker, Hubbard, and
Murphy, 2010); non-cognitive abilities (Bertrand and Pan, 2013)

• In contrast, this paper explores gender differences in non-college job prospects
(demand side)

• Among high school graduates, women face worse job options than men

2/17
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“Missing quadrant” of high-paying female
non-college occs

Non-College Occupations, 2000
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• Traditionally “male” occupations can pay highly
• Occupations which employed women have significantly lower median earnings

College Occupations, 2000 Non-College Occupations, 1970 College Occupations, 1970 “College premium” from sorting
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Decline in women’s non-college occupations over
time
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Source: IPUMS decadal census microdata (1970) and ACS data (2010). 18-30 year olds.

• In 1970, 70% of non-college working women held “routine” occupations
• secretary, stenographer, clerical worker, telephone operator, typist

• 66% decline in share of secretarial jobs, 95% decline in share of typist jobs from 1970 to 2000

College Occupations Occupations by Education, Model
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Decline in women’s non-college occupations –
driven by routine occs

(a) Routine Occupations
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• 1970: among high routine occupations, most were female-dominated

• By 2000: no more high routine female-dominated occupations

• Non-routine occupations: little change over time

College occupations
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Decline in women’s non-college occupations –
driven by routine occs

(a) Routine Occupations
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• Routinization: displacement of routine occupations by automation

X

College occupations
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Research Question

• Did non-college jobs contribute to college gender gap?

• Two stylized facts for non-college female workers

1 Cross-sectionally: Missing quadrant of high-paying occupations
2 Over time: non-college job prospects deteriorated

• Challenge: occupation prospects are endogenous

• This paper uses automation as a shifter of non-college job opportunities
• Premise: automation disproportionately displaced female non-college occupations
• Approach: shift-share instruments to isolate labor demand for routine work
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Overview

1 Instrument: Administrative share based on job posting data (1950-2000)

• Labor markets with administratively-intense industries should undergo more
routinization

• Capture shifts in labor demand due to routinization

• Routinization ↑ female enrollment, but not nec. male enrollment

2 Structural approach complements IV approach:

• Explicitly model mechanisms for individual decisions

• Quantify the changes in college enrollment due to routinization:

• 4 pp (44%) growth in female enrollment, 1.6 pp growth in male enrollment
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Data and Measurement

• Census (1950-2000)
• Sample size permits examining occupation/industry-level changes by commuting

zone-year

• Autor and Dorn (2013) measures of automation susceptibility
• Task content of occupations: routine, manual, abstract
• Measure of automation susceptibility: Routine Task Intensity (RTI)

RTI = ln(routine)− ln(manual)− ln(abstract)

• Instrumental variation: newspaper job posting data from Atalay et al. (2020)
• Administrative activities listed in job postings for each year from 1940 to 2000

• Structural Model: National Longitudinal Survey of Youth (1979)

8/17
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Descriptive Evidence on Routinization
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Decline in labor share of high-RTI occupations for
women

Employment changes over time, by high and low RTI

Women, high RTI

Women, low RTI
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Source: IPUMS decadal census data for 1950-2000. 18-30 year olds.
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Decline in labor share of high-RTI occupations for
women

Employment changes over time, by high and low RTI
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Men, low RTI
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Source: IPUMS decadal census data for 1950-2000. 18-30 year olds.
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Decline in RTI share affects college-going for
women

Employment changes over time, by high and low RTI

Non-College women, high RTI

Non-College women, low RTI
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Source: IPUMS decadal census data for 1950-2000. 18-30 year olds.
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Decline in RTI share affects college-going for
women

Employment changes over time, by high and low RTI
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Two Stage Least Squares Approach
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Job Posting IV

Newspaper job postings from Atalay et al. (2020):

admin sharect =
I∑

i=1

Ei,c,1950

∑
k Likt1(adminkt > adminP66

1950)∑
k Likt

(1)

• admin sharect : predicted administrative share in commuting zone c

• Ei,c,1950: share of industry i in commuting zone c

• adminkt : administrative activity in occupation k
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Job Posting IV

Newspaper job postings from Atalay et al. (2020):

admin sharect =
I∑

i=1

Ei,c,1950

∑
k Likt1(adminkt > adminP66

1950)∑
k Likt

(1)

• admin sharect : predicted administrative share in commuting zone c

• Ei,c,1950: share of industry i in commuting zone c

• adminkt : administrative activity in occupation k

• Intuition: commuting zones with high initial administrative shares experience more
routinization over time

• Wilmington, DE (legal industry)
• Detroit, MI (manufacturing industry)
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Job Posting IV

Newspaper job postings from Atalay et al. (2020):

admin sharect =
I∑

i=1

Ei,c,1950

∑
k Likt1(adminkt > adminP66

1950)∑
k Likt

(1)

• admin sharect : predicted administrative share in commuting zone c

• Ei,c,1950: share of industry i in commuting zone c

• adminkt : administrative activity in occupation k

• Identifying assumption: administrative share in national industry level can only affect
college-going in commuting zone through routinization

• Shift-share IV framework: industry-level shocks as good as random (Adao et al. 2019; Borusyak et al.,

2018)

• Standard error correction to account for correlated shocks across industries (Adao et al., 2019)
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Job Posting IV
Newspaper job postings from Atalay et al. (2020):

admin sharect =
I∑

i=1

Ei,c,1950

∑
k Likt1(adminkt > adminP66

1950)∑
k Likt

(1)

• admin sharect : predicted administrative share in commuting zone c

• Ei,c,1950: share of industry i in commuting zone c

• adminkt : administrative activity in occupation k

• Controls:
• male and female labor force participation (25-65 year olds)
• predicted share of manual-intensive occupations
• 10-year lagged services, manufacturing, retail, mining
• race, gender, age, commuting zone, year, census controls
• some specifications: median cognitive earnings, lagged routine share

Regression Equation

11/17
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First Stage Regression of Routinization on Instruments

Routinization
(1) (2) (3) (4)

Routinizability IV 0.387 0.383 0.388 0.383
(0.026)∗∗∗ (0.027)∗∗∗ (0.027)∗∗∗ (0.027)∗∗∗

F-statistic 214.572 204.993 204.654 201.452
Observations 3610 3610 3610 3610

Commuting zone FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Median cognitive earnings Yes Yes
Lagged RTI share Yes Yes

Notes: First stage regression of routinization on instruments. Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure
of AKM (2019). Olea-Pflueger F-statistics reported using AKM (2019) standard errors. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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IV Regression: Routinization ⇒ growth in female enrollment

Second Stage Regressions

College Enrollment
(1) (2) (3) (4)

A: Second Stage Regression, Women
Routinization 0.578 0.606 0.578 0.606

(0.163)∗∗∗ (0.166)∗∗∗ (0.160)∗∗∗ (0.161)∗∗∗

[0.258,0.898] [0.281,0.931] [0.265,0.891] [0.291,0.922]
F-statistic 214.572 204.993 204.654 201.452
Observations 3610 3610 3610 3610

B: Second Stage Regression, Men
Routinization 0.436 0.444 0.436 0.444

(0.236)∗ (0.238)∗ (0.232)∗ (0.234)∗

[-0.026,0.898] [-0.022,0.910] [-0.019,0.891] [-0.015,0.904]
F-statistic 214.572 204.993 204.654 201.452
Observations 3610 3610 3610 3610

Commuting zone FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Median cognitive earnings Yes Yes
Lagged RTI share Yes Yes

Notes: Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of AKM (2019). Montiel Olea-Pflueger first stage
F-statistics reported using AKM (2019) standard errors. The second stage estimates include Anderson-Rubin (1949) weak instrument robust confidence intervals
using the AKM (2019) correction. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Robustness

13/17
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Second Stage Regressions

College Enrollment
(1) (2) (3) (4)

A: Second Stage Regression, Women
Routinization 0.578 0.606 0.578 0.606

(0.163)∗∗∗ (0.166)∗∗∗ (0.160)∗∗∗ (0.161)∗∗∗

[0.258,0.898] [0.281,0.931] [0.265,0.891] [0.291,0.922]
F-statistic 214.572 204.993 204.654 201.452
Observations 3610 3610 3610 3610

B: Second Stage Regression, Men
Routinization 0.436 0.444 0.436 0.444

(0.236)∗ (0.238)∗ (0.232)∗ (0.234)∗

[-0.026,0.898] [-0.022,0.910] [-0.019,0.891] [-0.015,0.904]
F-statistic 214.572 204.993 204.654 201.452
Observations 3610 3610 3610 3610

Commuting zone FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Median cognitive earnings Yes Yes
Lagged RTI share Yes Yes

Notes: Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of AKM (2019). Montiel Olea-Pflueger first stage
F-statistics reported using AKM (2019) standard errors. The second stage estimates include Anderson-Rubin (1949) weak instrument robust confidence intervals
using the AKM (2019) correction. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Structural approach: mechanisms

• Develop an explicit mechanism for how routinization affects individual decisions
• Automation affects returns to occupations by influencing skill prices
• Through impacting occupational returns, automation affects college enrollment decision

• Quantify the impact of routinization on college enrollment decisions

• Rationalize the polarization of non-college occupations

• Data: National Longitudinal Survey of Youth (1979)
• Longitudinally link individual’s education, occupation, and earnings over time
• Skills: cognitive, mechanical, and administrative

• Armed Services Vocational Aptitude Battery (ASVAB): cognitive, mechanical,
administrative test scores (see Prada and Urzua, 2017)
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2-period discrete choice model
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2-period discrete choice model

Model Assumptions
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Model Simulations: Quantifying impact of
routinization

Women Men
Baseline: Routinization Change Baseline: Routinization Change
1980 in 2000 1980 in 2000
(1) (2) (3) (4) (5) (6)

Occupation choices

White collar 0.404 0.610 0.206 0.392 0.434 0.042
Blue collar 0.038 0.049 0.011 0.485 0.452 -0.032
Pink collar 0.348 0.153 -0.195 0.048 0.050 0.002
Not working 0.209 0.188 -0.021 0.075 0.064 -0.012

Education choices

High school 0.389 0.350 -0.040 0.481 0.465 -0.016
College 0.611 0.650 0.040 0.519 0.535 0.016

• Female enrollment rises by 4 pp
• Census data: 9 pp rise

• Male enrollment rises by 1.6 pp
• Census data: 2 pp rise
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Conclusion

• Gender polarization among non-college occupations ⇒ gaps in outside options to
attending college

Overview of Results
1 IV approach:

• greater routinization ⇒ displacement of women’s non-college jobs

• decline in outside options ⇒ ↑ female enrollment

• no systematic effects for men

2 Structural approach: Routinization ↓ women’s non-college occupational returns

• Job polarization due to gender difference in skills & skill returns

• Decline in pink-collar returns ⇒ women shift from pink-collar to white-collar ⇒ greater
female college-going
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Thank you!

For questions or comments, please contact us at
achuan@msu.edu or wz301@cam.ac.uk
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Opposite missing quadrant in college occs

College Occupations, 2000
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2000 Census. 18-30 year olds. College occupations are occupations with 50% of
more workers who have ever enrolled in college.

Non-College Occupations, 2000

• Missing “quadrant” of low-paying male college occupations
• Consistent with sorting based on outside options
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Non-College Occupations, 1970
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Source: Census microdata, 1970. 18-30 year olds. Non-College occupations are
occupations with 50% of more workers who have never enrolled in college.

Non-College Occupations, 2010
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College Occupations, 1970
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Source: Census microdata, 1970. 18-30 year olds. College occupations are
occupations with 50% of more workers who have ever enrolled in college.

Non-College Occupations, 2010
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Wage gap due to occupational sortingCollege-High School Median Wage Difference
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Source: Census and American Community Survey. 18-30 year olds. Difference in predicted median earnings for college and non-college workers, where

predicted median earnings =
O∑
o

median earningso × proportion in occupation o by gender

.

Occupation Tables

21/17



Automation &
College Gender

Gap

Chuan, Zhang

Appendix

22/17

Predicted median earnings due to occupational
sortingPredicted Median Earnings
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Source: Census and American Community Survey. 18-30 year olds. Predicted median earnings for college and non-college workers computed as

predicted median earnings =
O∑
o

median earningso × proportion in occupation o by gender

.
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Increase in gender-equal college occupations over
time
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Source: IPUMS decadal census microdata (1970) and ACS data (2010). 18-30 year olds.

Non-College Occupations Occupations by Education, Model
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College Occupations, by RTI
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Women’s RTI over time

Routine Task Intensity (RTI) in Labor Market
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Data from census and American Community Survey microdata. Women aged 18-30.

Task Characteristics (Women)

Source: IPUMS decadal census data for 1950-2000; American Community Survey yearly data for 2001-2005. 18-30 year olds.

RTI = ln(routine)− ln(manual)− ln(abstract)

RTI, main
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Men’s RTI over time

Routine Task Intensity (RTI) in Labor Market
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Data from census and American Community Survey microdata. Men aged 18-30.

Task Characteristics (Men)

Source: IPUMS decadal census data for 1950-2000; American Community Survey yearly data for 2001-2005. 18-30 year olds.

RTI = ln(routine)− ln(manual)− ln(abstract)

RTI, main
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Regression equations

First stage regression:

routinizationct = α0 + α1admin sharect + α2Xct + ϕt + θc + ect (2)

• routinizationct = RTI sharec,1950 − RTI sharect
• RTI sharec,1950: share of high RTI occs

Second stage regression:

Yct = β0 + β1
˜routinizationct + β2Xct + ϕt + θc + ϵct (3)

• Yct - female & male enrollment

• Xct - commuting zone-year level controls

IV equation
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Robustness

Second Stage Regressions, Additional Specifications

(1) (2) (3) (4) (5) (6) (7) (8)
A: Female Enrollment

Routinization 0.495 0.607 0.628 0.736 0.504 0.365 0.548 0.784
(0.167)∗∗∗ (0.158)∗∗∗ (0.161)∗∗∗ (0.242)∗∗∗ (0.126)∗∗∗ (0.145)∗∗ (0.145)∗∗∗ (0.145)∗∗∗

[0.167,0.822] [0.297,0.917] [0.312,0.944] [0.263,1.210] [0.256,0.752] [0.080,0.650] [0.213,0.884] [0.350,1.219]
F-statistic 137.280 205.558 182.001 51.040 103.421 203.540 161.233 111.715
Observations 3610 3600 3610 3610 3610 3610 3610 3610

B: Male Enrollment
Routinization 0.315 0.503 0.441 0.540 0.218 0.254 0.432 0.616

(0.266) (0.234)∗∗ (0.238)∗ (0.315)∗ (0.174) (0.196) (0.196) (0.196)∗

[-0.207,0.838] [0.044,0.961] [-0.025,0.907] [-0.077,1.157] [-0.123,0.558] [-0.129,0.638] [-0.101,0.964] [-0.048,1.280]
F-statistic 137.280 205.558 182.001 51.040 103.421 203.540 161.233 111.715
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Control for abstract occupation share
RTI share: non-college workers
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using AKM (2019) standard errors. Anderson-Rubin (1949) confidence intervals reported using AKM (2019) correction. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
p < 0.01.
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Robustness

Second Stage Regressions, Additional Specifications
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Parametric assumptions (1/2)
Period 2: Occupation

U(Oi |Di ) = Y (Oi |Di )︸ ︷︷ ︸
earnings

+ P(Oi |Di )︸ ︷︷ ︸
nonpecuniary returns

where

Y (Oi |Di ) = XY
i αg

O + Diα
g
OD + ϵYO,D,i+

θi (α
g,0
Oθ + αg,1

Oθ
˜routinizationc(i),t) + θiDi (α

g,0
ODθ + αg,1

ODθ
˜routinizationc(i),t)

P(Oi |Di ) = XY
i βg

O + Diβ
g
OD + ϵPO,D,i+

θi (β
g,0
Oθ + βg,1

Oθ
˜routinizationc(i),t) + θiDi (β

g,0
ODθ + βg,1

ODθ
˜routinizationc(i),t)

• θi = {θci , θsi , θmi} is a vector of skills

• Di : whether have college degree

• Oi : occupations (white, blue, pink, home)

• Xi : background characteristics
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Parametric assumptions (2/2)

Period 1: Education

Di = 1[V 1
i + ξDi > V 0

i ]

V 0
i = E max

Oi

U(Oi |Di = 0)

V 1
i = XD

i λg
X + θiλ

g
θ + ρE max

Oi

U(Oi |Di = 1)

Model Diagram
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Exploratory Factor Loadings

(a) Male (b) Female

Skill Distributions
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Occupational Returns
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Skill quintiles
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Occupational Sorting
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