Algorithmic Trading, Price Efficiency and Welfare: An Experimental Approach

Brice Corgnet (Emlyon Business School), Mark DeSantis (Chapman), **Christoph Siemroth** (Essex)

EEA-ESEM 2023 Barcelona

- Trading algos account for more than 50% of trades in stock markets
- We want to answer some questions in debate:
 - Do trading algos increase or decrease welfare in market?
 - How are profits distributed between algos and humans?
 - Do trading algos improve liquidity? Pricing? Volatility?

New experimental paradigm

• Analysis largely pre-registered

- Traders start round with cash and shares of asset
- Asset value is sum of private value (θ_i ∈ {0, 10}) and common value (π ∈ {20, 80})
- Common val realization publicly announced during trading
 - "News" is good or bad
 - Prior to news release, expected asset value is 50 or 60
- Private value realization is constant throughout experiment
 - Why private values? **Welfare analysis**! Asset allocation changes welfare, trade can increase surplus
 - Pareto-optimality: all low type traders sell all assets to high type traders

Round starts

- Traders get endowments in cash and shares of asset
- Double auction trading for 100 seconds
 - Can offer to sell or buy shares of asset for cash (limit order)
 - Can accept offers to sell or buy (market order)
 - Budget constraints and shortselling constraints
- After 40-60 seconds of trading, news about asset value
- After trading, payoff is cash+value from held assets

20 rounds overall, +1 practice round

8 traders per market

- 5 traders have high type ($\theta_i = 10$). Low asset/cash endowment
- 2 traders have low type ($\theta_i = 0$). Low asset/cash endowment
- 1 large trader has low type ($\theta_i = 0$). 3x asset/cash endowment
 - Depending on treatment, this is the algo trader

- Market-order algo: accept any offer that implies an expected profit
 - When offer arrives or when news changes values
- Limit-order algo: Offer trades (buy and sell) at prices that imply an expected profit
 - Undercut (sell) / overcut (buy) competition as long as profitable
- Algos act instantaneously; react faster than humans to news
- Max 1 algo active in market!

- Baseline: The large trader is a human
- Ø MarketAlgo: The large trader is the market-order algo
- S LimitAlgo: The large trader is the limit-order algo
 - Also vary within-subject whether news release time is precisely known in advance, or not

	(1)	(2)
Dependent var.	Welfare	Small Trader Welfare
MarketAlgo	16.950	-85.690***
	(19.322)	(32.687)
LimitAlgo	51.850***	1.895
	(16.266)	(29.785)
KnownNewsTime	0.200	8.773
	(9.513)	(13.856)
Constant	6308.900***	4466.725***
	(17.601)	(35.990)
Control order	Yes	Yes
Observations	600	600
Clusters	30	30

- Welfare under LimitAlgo > Welfare under MarketAlgo
- LimitAlgo realizes about 60% of possible welfare gains, compared to 43% and 35% for MarketAlgo and baseline

Christoph Siemroth (Essex)

.

Results: Other market quality measures

Dependent var.	Bid-Ask Spread	Trading Volume	Number of News Trades	Price Efficiency	Price Volatility
MarketAlgo	1.991	-2.200	2.545***	0.140**	-74.390***
	(2.640)	(2.377)	(0.384)	(0.070)	(28.610)
LimitAlgo	-23.878***	2.485	-0.145	0.246***	-100.007***
•	(2.271)	(2.199)	(0.165)	(0.055)	(27.124)
KnownNewsTime	0.638	1.207	-0.177	-0.031	12.137
	(1.029)	(1.127)	(0.132)	(0.033)	(12.762)
Constant	21.404***	25.062***	0.772***	0.506***	156.557***
	(2.568)	(2.265)	(0.189)	(0.057)	(25.038)

- LimitAlgo weakly improves all market quality measures
- Surprisingly, MarketAlgo also weakly improves them, even though it hurts humans. Classical market quality measures not good proxy for welfare/human welfare
- Trade volume under LimitAlgo > volume under MarketAlgo
- Higher number of news trades under MarketAlgo: human exploitation (stale limit orders)

Results: How do limit-order algos improve welfare?

Dependent var.	Welfare	Welfare
Trading Volume	2.939***	2.944***
	(0.456)	(0.456)
Price Efficiency	151.751***	154.013***
	(22.322)	(21.932)
Bid-Ask Spread	0.306	0.210
	(0.231)	(0.239)
Price Volatility	<0.001	-0.002
	(0.023)	(0.023)
LimitAlgo	14.541	
	(15.379)	
KnownNewsTime	3.636	3.723
	(4.352)	(4.318)
Constant	4710.257***	4716.893***
	(25.819)	(26.197)
Control order and π -realization	Yes	Yes
Observations	400	400
Clusters	20	20

Results: How do limit-order algos improve welfare?

- 74% of the impact of limit-order algos is mediated by the two mediators
- Price efficiency accounts for 88% of the mediation and trading volume accounts for 12%
- "Better" prices allow the right parties (low and high type) to transact; trade volume smaller role

Results: Effect of cognitive reflection (individual)

Dependent var.	Payoffs	Trading Volume	Mistakes Index	Trade ratio with Algo
MarketAlgo	54.096	-5.740**	-0.119	0.266
	(36.884)	(2.598)	(0.132)	(0.258)
MarketAlgo imes CRT	-18.392***	2.545***	0.052**	-0.006
	(6.346)	(0.396)	(0.026)	(0.043)
CRT	26.065***	-0.642**	-0.094***	0.045**
	(5.563)	(0.297)	(0.018)	(0.021)
LimitAlgo	81.794**	-6.051**	-0.419**	
	(31.765)	(2.292)	(0.172)	
LimitAlgo $ imes$ CRT	-14.205**	1.039***	0.020	
-	(6.438)	(0.382)	(0.037)	
MarketAlgo $ imes$ NARS	-15.573	1.176*	0.042**	-0.093
	(10.301)	(0.659)	(0.036)	(0.068)
NARS	15.061	-1.583***	-0.067**	0.009
	(6.659)	(0.569)	(0.031)	(0.037)
LimitAlgo $ imes$ NARS	-20.516**	1.519*	0.128**	
-	(9.634)	(0.829)	(0.061)	

High CRT traders earn more in baseline, but not in algo treatments

Results: Effect of cognitive reflection (market)

Dependent var.	Welfare	Price Efficiency
MarketAlgo	82.632	0.242
	(60.596)	(0.174)
MarketAlgo \times Market CRT	-80.509*	-0.168
	(47.211)	(0.157)
Market CRT	110.893***	0.355***
	(34.713)	(0.122)
LimitAlgo	170.603***	0.597***
	(45.153)	(0.131)
LimitAlgo $ imes$ Market CRT	-129.766***	-0.381***
	(42.820)	(0.133)
KnownNewsTime	0.200	-0.031
	(9.537)	(0.033)
Constant	6,207.921***	0.176
	(40.384)	(0.111)

High CRT markets do better in baseline, but not in algo markets

Algos neutralize effect of trader CRT

- First lab experiment to measure causal effect of different kinds of trading algos on welfare
- Welfare effect depends on type of algo and whose welfare (entire market vs human traders)
 - Limit-order algos: increase welfare, earn more than humans, average human as well off
 - Market-order algos: don't change welfare, earn more than humans, average human worse off
 - Both algos tend to improve market quality (price efficiency, liquidity, volatility)
- Proxies used in field research (liquidity, trading volume, price efficiency) not good proxies for human welfare

