Identification-robust inference for the LATE with high-dimensional covariates

Yukun Ma Vanderbilt University

> ESEM August 27, 2023

Yukun Ma

ESEM2023

ミ▶ ▲ミ▶ ミヒ のへで

Motivation

Figure: American Economic Review 2018-2022

• heterscadesticity

3 1 3

LATE

- the effect of a treatment for subjects who comply with the experimental treatment assigned to their sample group (compliers).
- Assume we have N observations
 - Y_i : outcome of interest for unit i.
 - $D_i \in \{0, 1\}$: receipt of treatment.
 - $Z_i \in \{0, 1\}$: offer of the treatment.
 - X_i : *p*-dimensional controls (e.g. high-dimensional covariates $p \gg N$).
- Imbens and Angrist (1994) propose

$$heta = rac{\mathrm{E}_P[Y|Z=1] - \mathrm{E}_P[Y|Z=0]}{\mathrm{E}_P[D|Z=1] - \mathrm{E}_P[D|Z=0]} = rac{ITT}{ITT_D} := rac{\delta}{\pi}.$$

• Weak identification in LATE: $\pi \to 0$

★ ■ ▶ ★ ■ ▶ ■ ■ ■ • • • • • •

Weak identification

• When instruments Z are weakly correlated with endogenous regressors D, conventional methods for IV estimation and inference become unreliable.

$$heta = rac{\delta}{\pi},$$

normal approximation of $\hat{\theta}$ can be derived using delta method by linearized $\hat{\theta}$ in $(\hat{\delta}, \hat{\pi})$. However, $\hat{\theta}$ is highly nonlinear in $\hat{\pi}$ when $\hat{\pi}$ is close to zero.

• Solution: test inversion. Given $H_0: \theta = \theta_0$, we have $\delta - \theta_0 \pi = 0$. Then the AR statistic

$$AR(\theta) = (\delta - \theta \pi)' \Omega(\theta)^{-1} (\delta - \theta \pi)$$

follows a χ^2 distribution under H_0 .

- A large literature in econometrics has developed methods for making inference with weak instruments,
 - Stock and Wright $(2000) \Rightarrow$ S test.
 - Kleibergen (2002) \Rightarrow K test.
 - ▶ Andrews and Mikusheva (2016) \Rightarrow QLR test and pQLR test.

Weak identification

• When instruments Z are weakly correlated with endogenous regressors D, conventional methods for IV estimation and inference become unreliable.

$$heta = rac{\delta}{\pi},$$

normal approximation of $\hat{\theta}$ can be derived using delta method by linearized $\hat{\theta}$ in $(\hat{\delta}, \hat{\pi})$. However, $\hat{\theta}$ is highly nonlinear in $\hat{\pi}$ when $\hat{\pi}$ is close to zero.

• Solution: test inversion. Given $H_0: \theta = \theta_0$, we have $\delta - \theta_0 \pi = 0$. Then the AR statistic

$$AR(\theta) = (\delta - \theta \pi)' \Omega(\theta)^{-1} (\delta - \theta \pi)$$

follows a χ^2 distribution under H_0 .

- A large literature in econometrics has developed methods for making inference with weak instruments,
 - Stock and Wright $(2000) \Rightarrow$ S test.
 - ▶ Kleibergen (2002) \Rightarrow K test.
 - ▶ Andrews and Mikusheva (2016) \Rightarrow QLR test and pQLR test.
- none of them considers the model with high-dimensional covariates.

Contributions

- Weak identification in an IV context:
 - S statistic by Stock and Wright (2000), K statistic by Kleibergen (2005), Conditional test by Moreira (2003,2009), Andrews and Mikusheva (2016).
 - \blacktriangleright An important complement to existing literature: $p\gg N$
- ML based econometric methods:
 - Belloni, Chernozhukov, and Kato (2015), Chernozhukov et al. (2013,2016,2017).
 - ▶ An important complement to existing literature: weak identification.

< □ > < 同 > < 三 > < 三 > 三目 • の Q C

Setup

• Model random vector W = (Y, D, Z, X')' as follows,

$$\begin{split} E[D|Z,X] &= \Lambda(Z\beta_{11} + X'\beta_{12}) \quad \text{(First stage)} \\ E[Z|X] &= \Lambda(X\gamma) \quad \text{(Propensity score)} \\ E[Y|Z,X] &= Z\beta_{21} + X'\beta_{22} \quad \text{(Reduce form)} \end{split}$$

- ► **Y**: the outcome of interest
- $D \in \{0, 1\}$: receipt of treatment
- $Z \in \{0, 1\}$: offer of treatment
- ▶ X: p-dimensional controls

•
$$\Lambda(t) = \frac{\exp(t)}{1 + \exp(t)}$$
 for all $t \in \mathbb{R}$

Setup

• Model random vector W = (Y, D, Z, X')' as follows,

$$\begin{split} E[D|Z,X] &= \Lambda(Zeta_{11}+X'eta_{12}) := m(Z,X) \quad (\text{First stage}) \\ E[Z|X] &= \Lambda(X\gamma) := p(X) \quad (\text{Propensity score}) \\ E[Y|Z,X] &= Zeta_{21}+X'eta_{22} := g(Z,X) \quad (\text{Reduce form}) \end{split}$$

- ► **Y**: the outcome of interest
- $D \in \{0, 1\}$: receipt of treatment
- $Z \in \{0, 1\}$: offer of treatment
- ▶ X: p-dimensional controls

•
$$\Lambda(t) = \frac{\exp(t)}{1 + \exp(t)}$$
 for all $t \in \mathbb{R}$

• The doubly robust LATE proposed by Tan (2006) is given by

$$\theta_0 = \frac{E[g(1,X) - g(0,X) + \frac{Z}{p(X)}(Y - g(1,X)) - \frac{1 - Z}{1 - p(X)}(Y - g(0,X))]}{E[m(1,X) - m(0,X) + \frac{Z}{p(X)}(D - m(1,X)) - \frac{1 - Z}{1 - p(X)}(D - m(0,X))]} := \frac{E[a]}{E[b]}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Setup

• Consider a score for LATE

$$\psi(W;\theta,\eta) = \overbrace{g(1,X) - g(0,X) + \frac{Z(Y - g(1,X))}{p(X)} - \frac{(1 - Z)(Y - g(0,X))}{1 - p(X)}}^{a} \\ - \theta \times \Big(\underbrace{m(1,X) - m(0,X) + \frac{Z(D - m(1,X))}{p(X)} - \frac{(1 - Z)(D - m(0,X))}{1 - p(X)}}_{b}\Big),$$

with

- ▶ low-dimensional parameter vector $\theta \in \Theta$.
- nuisance parameter $\eta = (g, m, p) \in T$ for a convex set T.
- specifically, $\eta = (\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma)$.

$$E[\psi(W_i; heta_0,\eta_0)]=0.$$

★ E ★ E ★ E = 900

4 **D b** 4 **A b**

Properties of the score

• Moment condition:

 $E[\psi(W_i; heta_0,\eta_0)]=0.$

• Neyman orthogonality condition:

$$\partial_\eta \mathrm{E}_P \psi(W; heta_0,\eta_0)[\eta-\eta_0]=0.$$

★ E ► ★ E ► Ø < Ø</p>

High-dimensional QLR test statistic

Step 1: Randomly split the sample $\{1, \dots, N\}$ into K folds $\{I_1, \dots, I_K\}$.

Step 2: For each $k \in \{1, \dots, K\}$, obtain $\hat{\eta}_k$ by using only the subsample of those observations with indices $i \in \{1, \dots, N\} \setminus I_k$

) use lasso logistic regression to estimate $(\hat{\beta}_{11,k}, \hat{\beta}_{12,k})$,

$$\begin{aligned} &(\widehat{\beta}_{11,k},\widehat{\beta}_{12,k}) \in \arg\min_{\beta_{11},\beta_{12}} \mathbb{E}_{I_k^c}[L_1(W_i;\beta_{11},\beta_{12})] + \frac{\lambda_1}{|I_k^c|} \|(\beta_{11},\beta_{12})\|_1, \\ &L_1(W_i;\beta_{11},\beta_{12}) = D_i(Z_i\beta_{11} + X_i'\beta_{12}) - \log(1 + \exp(Z_i\beta_{11} + X_i'\beta_{12})). \\ &\text{use lasso logistic regression to estimate } \widehat{\gamma}_k. \\ &\text{use lasso OLS regression to estimate } (\widehat{\beta}_{21},\widehat{\beta}_{22}), \end{aligned}$$

$$egin{aligned} &(\widehat{eta}_{21,k},\widehat{eta}_{22,k})\in\ &rg\min_{eta_{21,eta_{22}}}\mathbb{E}_{I_k^c}[(Y_i-Z_ieta_{21}-X_i'eta_{22})^2]+rac{\lambda_3}{|I_k^c|}\|(eta_{21},eta_{22})\|_1. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

High-dimensional QLR test statistic

Step 3: Compute $\widehat{q}_N(\theta)$ and $\widehat{\Omega}(\theta_1, \theta_2)$ for $\theta_1, \theta_2 \in \Theta$,

$$\widehat{q}_N(heta) = rac{1}{\sqrt{N}}\sum_{k=1}^K\sum_{i\in I_k}\psi(W_i; heta,\widehat{\eta}_k)$$

$$\begin{split} \widehat{\Omega}(\theta_1, \theta_2) &= \frac{1}{N} \sum_{k=1}^K \sum_{i \in I_k} \psi(W_i; \theta_1, \widehat{\eta}_k) \psi(W_i; \theta_2, \widehat{\eta}_k) \\ &- \frac{1}{N^2} \sum_{k=1}^K \sum_{k'=1}^K \sum_{i \in I_k, i' \in I_{k'}} \psi(W_i; \theta_1, \widehat{\eta}_k) \psi(W_{i'}; \theta_2, \widehat{\eta}_{k'}). \end{split}$$

An illustration of K=2-fold cross-fitting.

High-dimensional QLR test statistic

Step 4: Take independent draws $\boldsymbol{\xi} \sim N(0, \widehat{\Omega}(\theta_0, \theta_0))$ and calculate $R = R(\boldsymbol{\xi}, h_N, \widehat{\Omega})$, where

$$R(\xi,h_N,\widehat{\Omega}) = \xi^2 \widehat{\Omega}(heta_0, heta_0)^{-1} - \inf_{ heta} (V(heta)\xi + h_N)^2 \widehat{\Omega}(heta, heta)^{-1},$$

with
$$V(\theta) = \widehat{\Omega}(\theta, \theta_0) \widehat{\Omega}(\theta_0, \theta_0)^{-1}$$
 and
 $h_N(\theta) = \widehat{q}_N(\theta) - \widehat{\Omega}(\theta, \theta_0) \widehat{\Omega}(\theta_0, \theta_0)^{-1} \widehat{q}_N(\theta_0).$

Step 5: Calculate the conditional critical value $c_{\alpha}(\tilde{h})$ as

$$c_lpha(\widetilde{h}) = \min\{c: P(R(\xi,h_N,\widehat{\Omega}) > c | h_N = \widetilde{h}) \leqslant lpha \}.$$

Step 6: Reject the null hypothesis $H_0: \theta = \theta_0$ when $R(\xi, h_N, \widehat{\Omega})$ exceeds the $(1 - \alpha)$ quantiles $c_{\alpha}(h_N)$ and report the $(1 - \alpha)$ confidence interval $CI_{\alpha} = \{\theta : R(\xi, h_N, \widehat{\Omega}) \leq c_{\alpha}(h_N)\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Main result

The empirical process

$$\mathbb{G}_N(\cdot) = \underbrace{rac{1}{\sqrt{N}}\sum_{i\in[N]} ig(\psi(W_i;\cdot,\eta_0) - \mathrm{E}_P[\psi(W;\cdot,\eta_0)]ig)}_{q_N(heta)}.$$

Propose an estimator of $\mathbb{G}_{N}(\cdot)$ as

$$\widehat{\mathbb{G}}_{N}(heta) = \underbrace{\sqrt{N}\Big(rac{1}{N}\sum_{k=1}^{K}\sum_{i\in I_{k}}\psi(W_{i}; heta,\widehat{\eta}_{k})}_{\widehat{q}_{N}(heta)} - \operatorname{E}_{P}\left[\psi(W_{i}; heta,\widehat{\eta}_{k})
ight]\Big).$$

Theorem

Suppose some regularity assumptions hold. Under the null, we have

$$\widehat{\mathbb{G}}_N(heta) = \mathbb{G}_N(heta) + O_P(N^{-1/2}r'_N).$$

The process $\widehat{\mathbb{G}}_{N}(\cdot)$ weakly converges to a centered Gaussian process $\mathbb{G}(\cdot)$ over $\theta \in \Theta$ with covariance function $\Omega(\theta_{1}, \theta_{2}) =$ $\mathbf{E}_{P}[(\psi(W; \theta_{1}, \eta_{0}) - \mathbf{E}_{P}[\psi(W; \theta_{1}, \eta_{0})])(\psi(W; \theta_{2}, \eta_{0}) - \mathbf{E}_{P}[\psi(W; \theta_{2}, \eta_{0})])]$ as $N \to \infty$.

Variance estimation

The variance $\Omega(\theta_1, \theta_2)$ can be consistently estimated uniformly under H_0 by

$$\begin{split} \widehat{\Omega}(\theta_1, \theta_2) &= \frac{1}{N} \sum_{k \in [K]} \sum_{i \in I_k} \psi(W_i; \theta_1, \widehat{\eta}_k) \psi(W_i; \theta_2, \widehat{\eta}_k) \\ &- \frac{1}{N^2} \sum_{k, k' \in [K]} \sum_{i \in I_k, i' \in I_{k'}} \psi(W_i; \theta_1, \widehat{\eta}_k) \psi(W_{i'}; \theta_2, \widehat{\eta}_{k'}) \end{split}$$

and $\widehat{\Omega}(\theta_1, \theta_2) = \Omega(\theta_1, \theta_2) + O_P(\rho_N)$ with $\rho_N \lesssim \delta_N$.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ≯ 三日 のへで

Simulation designs

•
$$X \sim N(0, \Sigma)$$
 with $\Sigma_{jk} = 0.5^{|j-k|}$
• $N = 500$, dim $(X) = 5, 100, 300$, and 500
• compliance class $Q := \begin{cases} 0 & \text{never-taker} \\ 1 & \text{always-taker} \\ 2 & \text{compliers} \end{cases}$
• $P[Q = 2|X] = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)} = \begin{cases} 0.1 & \text{weakly identified case} \\ 0.5 & \text{strongly identified case} \end{cases}$
• $Z = \frac{\exp(\gamma_0 + \gamma_1 x)}{1 + \exp(\gamma_0 + \gamma_1 x)} + v$ with $v \sim N(0, 1) \stackrel{s.t.}{\Longrightarrow} P(Z = 1) = 0.5$
• $D = Z * \mathbb{1}\{Q = 2\} + Q * \mathbb{1}\{Q \neq 2\}$
• $Y = D + X + \varepsilon$ with $\varepsilon \sim N(0, 1) \implies \theta_0 = 1$.

Simulation designs

I compare the proposed method HD-QLR (this paper) with

- the conditional QLR test (AM16) : robust against weak identification but not against high-dimensional setting
- ML methods (CCDDHNR18 and BCFH17): robust against high-dimensional setting but not against weak identification.

물 이 이 물 이 물 물

• AM16 with HD-QLR (this paper)

Yukun Ma

17/27

Comparisons: weak identification • AM16 with HD-QLR (this paper)

Yukun Ma

18/27

Simulation designs

I compare the proposed method HD-QLR (this paper) with

- the conditional QLR test (AM16) : robust against weak identification but not against high-dimensional setting
- ML methods (CCDDHNR18 and BCFH17): robust against high-dimensional setting but not against weak identification.

글 이 이 글 이 글 날

Comparisons: strong identification • CCDDHNR18 and BCFH17 with HD-QLR (this paper)

Yukun Ma

20 / 27

Comparisons: weak identification • CCDDHNR18 and BCFH17 with HD-QLR (this paper)

Yukun Ma

ESEM2023

Revisit Erik Hornung (2015) "Railroads and growth in Prussia"

- Data: highly detailed city-level data from the historical German state of Prussia.
- Y_i : urban population growth rate.
- D_i : whether the city was connected to the railroad in a given year.
- Z_i : whether the city was located within a straight-line corridor between two important cities (nodes).
- X_i : whether the city has street access, whether the city has waterway access, military population, age composition, school enrollment rate, etc.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Results

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Y_{it} : population				periods			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	growth rate	49-52	52 - 55	55 - 58	58-61	61-64	64-67	67-71
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Panel A: AM16							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LATE	0.010	0.020	0.063	0.030	0.037	0.056	0.044
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CI	[-0.017,	[0.004,	[0.030,	[0.011,	[0.019,	[0.012,	[0.018,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.05]	0.039]	0.063]	0.050]	0.050]	0.420]	0.155]
$\begin{tabular}{ c c c c c c c } \hline Panel B: CCDDHNR18 \\ LATE & 0.012 & 0.011 & 0.007 & 0.000 & 0.020 & 0.012 & 0.011 \\ CI & [-0.019, [-0.014, [-0.009, [-0.016, [-0.019, [-0.014, [-0.016, \\ 0.039] & 0.035] & 0.044] & 0.030] & 0.052] & 0.039] & 0.036] \\ ength of CI & 0.058 & 0.048 & 0.053 & 0.046 & 0.070 & 0.052 & 0.052 \\ \hline & Panel C:BCFH17 \\ \hline LATE & 0.009 & 0.009 & 0.012 & 0.006 & 0.015 & 0.012 & 0.013 \\ CI & [-0.009, [-0.006, [-0.007, [-0.008, [-0.009, [-0.018, [-0.008, \\ 0.026] & 0.023] & 0.031] & 0.020] & 0.040] & 0.041] & 0.034] \\ ength of CI & 0.035 & 0.029 & 0.038 & 0.028 & 0.049 & 0.059 & 0.042 \\ \hline & Panel D: HD-QLR (this paper) \\ \hline LATE & 0.010 & 0.011 & 0.014 & 0.004 & 0.018 & 0.014 & 0.011 \\ CI & [0.000, [0.002, [0.003, [-0.001, [0.003, [-0.004, [-0.002, \\ 0.021] & 0.018] & 0.027] & 0.016] & 0.029 & 0.032 & 0.023] \\ ength of CI & 0.021 & 0.016 & 0.024 & 0.017 & 0.026 & 0.033 & 0.024 \\ \hline Size N & 929 & 924 & 914 & 926 & 924 & 919 & 919 \\ dim(X) & 212 & 212 & 212 & 212 & 212 & 212 & 212 \\ \hline \end{tabular}$	length of CI	0.067	0.035	0.033	0.039	0.031	0.408	0.137
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Panel B: CCDDHNR18							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LATE	0.012	0.011	0.007	0.000	0.020	0.012	0.011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CI	[-0.019,	[-0.014,	[-0.009,	[-0.016,	[-0.019,	[-0.014,	[-0.016,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.039]	0.035]	0.044]	0.030]	0.052]	0.039]	0.036]
$\begin{tabular}{ c c c c c } \hline Panel C:BCFH17\\ LATE & 0.009 & 0.009 & 0.012 & 0.006 & 0.015 & 0.012 & 0.013\\ CI & [-0.009, & [-0.006, & [-0.007, & [-0.008, & [-0.009, & [-0.018, & [-0.008, \\ 0.026] & 0.023] & 0.031] & 0.020] & 0.040] & 0.041] & 0.034]\\ ength of CI & 0.035 & 0.029 & 0.038 & 0.028 & 0.049 & 0.059 & 0.042\\ \hline \hline & Panel D: HD-QLR (this paper)\\ \hline & Panel D: HD-QLR (this paper)\\ LATE & 0.010 & 0.011 & 0.014 & 0.004 & 0.018 & 0.014 & 0.011\\ CI & [0.000, & [0.002, & [0.003, & [-0.001, & [0.003, & [-0.004, & [-0.002, \\ 0.021] & 0.018] & 0.027] & 0.016] & 0.029 & 0.032\\ ength of CI & 0.021 & 0.016 & 0.024 & 0.017 & 0.026 & 0.033 & 0.024\\ \hline Size N & 929 & 924 & 914 & 926 & 924 & 919 & 919\\ dim(X) & 212 & 212 & 212 & 212 & 212 & 212 & 212\\ \hline \end{tabular}$	length of CI	0.058	0.048	0.053	0.046	0.070	0.052	0.052
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Panel C:BCFH17							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LATE	0.009	0.009	0.012	0.006	0.015	0.012	0.013
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CI	[-0.009,	[-0.006,	[-0.007,	[-0.008,	[-0.009,	[-0.018,	[-0.008,
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		0.026]	0.023]	0.031]	0.020]	0.040]	0.041]	0.034]
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	length of CI	0.035	0.029	0.038	0.028	0.049	0.059	0.042
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Panel D: HD-QLR (this paper)							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LATE	0.010	0.011	0.014	0.004	0.018	0.014	0.011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CI	[0.000,	[0.002,	[0.003,	[-0.001,	[0.003,	[-0.004,	[-0.002,
		0.021]	0.018]	0.027]	0.016]	0.029]	0.032]	0.023]
Size N 929 924 914 926 924 919 919 dim(X) 212 212 212 212 212 212 212 212	length of CI	0.021	0.016	0.024	0.017	0.026	0.033	0.024
$\dim(X) \qquad 212 212 212 212 212 212 212 212$	Size N	929	924	914	926	924	919	919
	$\dim(\mathbf{X})$	212	212	212	212	212	212	212

Yukun Ma

Takeaways

• I develop a test statistic to make inference for the high-dimensional LATE, independent of the strength of identification.

	Low-dimensional model	High-dimensional model
Strong Identification	t-test,	CCDDHNR18, BDFH17
Weak Identification	AR, S, K, AM16	HD-QLR

- The test has uniformly correct asymptotic size.
- Simulation results indicate that the proposed test is robust against weak identification and high-dimensional settings, outperforming other conventional tests.
- Empirical illustrations show that conventional tests exhibit a positive bias in the length of confidence intervals and lose significance when high-dimensional covariates are taken into account.

(日本)(四本)(日本)(日本)

Takeaways

• I develop a test statistic to make inference for the high-dimensional LATE, independent of the strength of identification.

	Low-dimensional model	High-dimensional model
Strong Identification	t-test,	CCDDHNR18, BDFH17
Weak Identification	AR, S, K, AM16	HD-QLR

- The test has uniformly correct asymptotic size.
- Simulation results indicate that the proposed test is robust against weak identification and high-dimensional settings, outperforming other conventional tests.
- Empirical illustrations show that conventional tests exhibit a positive bias in the length of confidence intervals and lose significance when high-dimensional covariates are taken into account.

(本間)) (종) (종) (종)

Future work

• Not limited to LATE, extend to general IV estimation.

< <>>>

Thank you!

feel free to email me any comments yukun.ma@vanderbilt.edu

Yukun Ma

ESEM2023

26 / 27

= ▶ ▲ = ▶ = = + • • • • •

Motivation: Lee et al. (2022)

Figure: American Economic Review 2013-2019

