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Motivation

Figure: American Economic Review 2018-2022
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LATE

the effect of a treatment for subjects who comply with the
experimental treatment assigned to their sample group (compliers).

Assume we have N observations

I Yi : outcome of interest for unit i.

I Di ∈ {0, 1} : receipt of treatment.

I Zi ∈ {0, 1} : offer of the treatment.

I Xi : p-dimensional controls
( e.g. high-dimensional covariates p� N).

Imbens and Angrist (1994) propose

θ =
EP [Y |Z = 1]− EP [Y |Z = 0]

EP [D|Z = 1]− EP [D|Z = 0]
=

ITT

ITTD
:=

δ

π
.

Weak identification in LATE: π → 0
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Weak identification

When instruments Z are weakly correlated with endogenous regressors D,
conventional methods for IV estimation and inference become unreliable.

θ =
δ

π
,

normal approximation of θ̂ can be derived using delta method by linearized θ̂
in (δ̂, π̂). However, θ̂ is highly nonlinear in π̂ when π̂ is close to zero.

Solution: test inversion.
Given H0 : θ = θ0, we have δ − θ0π = 0. Then the AR statistic

AR(θ) = (δ − θπ)′Ω(θ)−1(δ − θπ)

follows a χ2 distribution under H0.

A large literature in econometrics has developed methods for making inference

with weak instruments,

I Stock and Wright (2000)⇒ S test.
I Kleibergen (2002)⇒ K test.
I Andrews and Mikusheva (2016)⇒ QLR test and pQLR test.

none of them considers the model with high-dimensional covariates.
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Contributions

Weak identification in an IV context:

I S statistic by Stock and Wright (2000), K statistic by Kleibergen
(2005), Conditional test by Moreira (2003,2009), Andrews and
Mikusheva (2016).

I An important complement to existing literature: p� N

ML based econometric methods:

I Belloni, Chernozhukov, and Kato (2015), Chernozhukov et al.
(2013,2016,2017).

I An important complement to existing literature: weak
identification.
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Setup

Model random vector W = (Y,D,Z,X′)′ as follows,

E[D|Z,X] = Λ(Zβ11 +X′β12) (First stage)

E[Z|X] = Λ(Xγ) (Propensity score)

E[Y |Z,X] = Zβ21 +X′β22 (Reduce form)

I Y : the outcome of interest
I D ∈ {0, 1}: receipt of treatment
I Z ∈ {0, 1}: offer of treatment
I X: p-dimensional controls
I Λ(t) = exp(t)

1+exp(t)
for all t ∈ R
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Setup

Model random vector W = (Y,D,Z,X′)′ as follows,

E[D|Z,X] = Λ(Zβ11 +X′β12) := m(Z,X) (First stage)

E[Z|X] = Λ(Xγ) := p(X) (Propensity score)

E[Y |Z,X] = Zβ21 +X′β22 := g(Z,X) (Reduce form)

I Y : the outcome of interest
I D ∈ {0, 1}: receipt of treatment
I Z ∈ {0, 1}: offer of treatment
I X: p-dimensional controls
I Λ(t) = exp(t)

1+exp(t)
for all t ∈ R

The doubly robust LATE proposed by Tan (2006) is given by

θ0 =
E[g(1,X)−g(0,X)+ Z

p(X)
(Y−g(1,X))− 1−Z

1−p(X)
(Y−g(0,X))]

E[m(1,X)−m(0,X)+ Z
p(X)

(D−m(1,X))− 1−Z
1−p(X)

(D−m(0,X))]
:= E[a]

E[b]
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Setup

Consider a score for LATE

ψ(W ; θ, η) =

a︷ ︸︸ ︷
g(1, X)− g(0, X) +

Z(Y − g(1, X))

p(X)
−

(1− Z)(Y − g(0, X))

1− p(X)

− θ ×
(
m(1, X)−m(0, X) +

Z(D −m(1, X))

p(X)
−

(1− Z)(D −m(0, X))

1− p(X)︸ ︷︷ ︸
b

)
,

with

I low-dimensional parameter vector θ ∈ Θ.

I nuisance parameter η = (g,m, p) ∈ T for a convex set T .

I specifically, η = (β11, β12, β21, β22, γ).

E[ψ(Wi; θ0, η0)] = 0.
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Properties of the score

Moment condition:

E[ψ(Wi; θ0, η0)] = 0.

Neyman orthogonality condition:

∂ηEPψ(W ; θ0, η0)[η − η0] = 0.
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High-dimensional QLR test statistic

Step 1: Randomly split the sample {1, · · · , N} into K folds {I1, · · · , IK}.

Step 2: For each k ∈ {1, · · · ,K}, obtain η̂k by using only the subsample of those
observations with indices i ∈ {1, · · · , N} \ Ik
(i) use lasso logistic regression to estimate (β̂11,k, β̂12,k),

(β̂11,k, β̂12,k) ∈ arg min
β11,β12

EIc
k
[L1(Wi;β11, β12)] +

λ1

|Ick|
‖(β11, β12)‖1,

L1(Wi;β11, β12) = Di(Ziβ11 +X′iβ12)− log(1 + exp(Ziβ11 +X′iβ12)).

(ii) use lasso logistic regression to estimate γ̂k.

(iii) use lasso OLS regression to estimate (β̂21, β̂22),

(β̂21,k, β̂22,k) ∈

arg min
β21,β22

EIc
k
[(Yi − Ziβ21 −X′iβ22)2] +

λ3

|Ick|
‖(β21, β22)‖1.
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High-dimensional QLR test statistic

Step 3:

Compute q̂N(θ) and Ω̂(θ1, θ2) for θ1, θ2 ∈ Θ,

q̂N(θ) =
1√
N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ, η̂k)

Ω̂(θ1, θ2) =
1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)

− 1

N2

K∑
k=1

K∑
k′=1

∑
i∈Ik,i′∈Ik′

ψ(Wi; θ1, η̂k)ψ(Wi′ ; θ2, η̂k′).

An illustration of K=2-fold cross-fitting.

I1 Score I2 Nuisance I1 Nuisance I2 Score

∑
i∈I1 ψ(Wi; θ, η̂1)

∑
i∈I2 ψ(Wi; θ, η̂2)
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High-dimensional QLR test statistic

Step 4: Take independent draws ξ ∼ N(0, Ω̂(θ0, θ0)) and calculate

R = R(ξ, hN , Ω̂), where

R(ξ, hN , Ω̂) = ξ2Ω̂(θ0, θ0)−1 − inf
θ

(V (θ)ξ + hN)2Ω̂(θ, θ)−1,

with V (θ) = Ω̂(θ, θ0)Ω̂(θ0, θ0)−1 and

hN(θ) = q̂N(θ)− Ω̂(θ, θ0)Ω̂(θ0, θ0)−1q̂N(θ0).

Step 5: Calculate the conditional critical value cα(h̃) as

cα(h̃) = min{c : P (R(ξ, hN , Ω̂) > c|hN = h̃) 6 α}.

Step 6: Reject the null hypothesis H0 : θ = θ0 when R(ξ, hN , Ω̂) exceeds the
(1− α) quantiles cα(hN) and report the (1− α) confidence interval

CIα = {θ : R(ξ, hN , Ω̂) 6 cα(hN)}.
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Main result
The empirical process

GN(·) =
1√
N

∑
i∈[N]

(
ψ(Wi; ·, η0)

︸ ︷︷ ︸
qN (θ)

− EP [ψ(W ; ·, η0)]
)
.

Propose an estimator of GN(·) as

ĜN(θ) =
√
N
( 1

N

K∑
k=1

∑
i∈Ik

ψ(Wi; θ, η̂k)︸ ︷︷ ︸
q̂N (θ)

− EP [ψ(Wi; θ, η̂k)]
)
.

Theorem
Suppose some regularity assumptions hold. Under the null, we have

ĜN(θ) = GN(θ) + OP (N−1/2r′N).

The process ĜN(·) weakly converges to a centered Gaussian process G(·) over
θ ∈ Θ with covariance function Ω(θ1, θ2) =
EP [(ψ(W ; θ1, η0)− EP [ψ(W ; θ1, η0)]) (ψ(W ; θ2, η0)− EP [ψ(W ; θ2, η0)])] as
N →∞.
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Variance estimation

The variance Ω(θ1, θ2) can be consistently estimated uniformly under H0 by

Ω̂(θ1, θ2) =
1

N

∑
k∈[K]

∑
i∈Ik

ψ(Wi; θ1, η̂k)ψ(Wi; θ2, η̂k)

− 1

N2

∑
k,k′∈[K]

∑
i∈Ik,i′∈Ik′

ψ(Wi; θ1, η̂k)ψ(Wi′ ; θ2, η̂k′)

and Ω̂(θ1, θ2) = Ω(θ1, θ2) + OP (ρN) with ρN . δN .
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Simulation designs

X ∼ N(0,Σ) with Σjk = 0.5|j−k|

N = 500, dim(X) = 5, 100, 300, and 500

compliance class Q :=


0 never-taker

1 always-taker

2 compliers

P [Q = 2|X] = exp(β0+β1x)
1+exp(β0+β1x)

=

{
0.1 weakly identified case

0.5 strongly identified case

Z = exp(γ0+γ1x)
1+exp(γ0+γ1x)

+ v with v ∼ N(0, 1)
s.t.
=⇒ P (Z = 1) = 0.5

D = Z ∗ 1{Q = 2}+Q ∗ 1{Q 6= 2}
Y = D +X + ε with ε ∼ N(0, 1) =⇒ θ0 = 1.
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Simulation designs

I compare the proposed method HD-QLR (this paper) with

the conditional QLR test (AM16) : robust against weak
identification but not against high-dimensional setting

ML methods (CCDDHNR18 and BCFH17): robust against
high-dimensional setting but not against weak identification.
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Comparisons: strong identification

AM16 with HD-QLR (this paper)
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Comparisons: weak identification

AM16 with HD-QLR (this paper)
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Comparisons: strong identification

CCDDHNR18 and BCFH17 with HD-QLR (this paper)
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Comparisons: weak identification

CCDDHNR18 and BCFH17 with HD-QLR (this paper)
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Revisit Erik Hornung (2015)
“Railroads and growth in Prussia”

Data: highly detailed city-level data from the historical German
state of Prussia.

Yi : urban population growth rate.

Di : whether the city was connected to the railroad in a given
year.

Zi : whether the city was located within a straight-line corridor
between two important cities (nodes).

Xi : whether the city has street access, whether the city has
waterway access, military population, age composition, school
enrollment rate, etc.
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Results
Yit: population periods
growth rate 49-52 52-55 55-58 58-61 61-64 64-67 67-71

Panel A: AM16

LATE 0.010 0.020 0.063 0.030 0.037 0.056 0.044
CI [-0.017, [0.004, [0.030, [0.011, [0.019, [0.012, [0.018,

0.05] 0.039] 0.063] 0.050] 0.050] 0.420] 0.155]
length of CI 0.067 0.035 0.033 0.039 0.031 0.408 0.137

Panel B: CCDDHNR18

LATE 0.012 0.011 0.007 0.000 0.020 0.012 0.011
CI [-0.019, [-0.014, [-0.009, [-0.016, [-0.019, [-0.014, [-0.016,

0.039] 0.035] 0.044] 0.030] 0.052] 0.039] 0.036]
length of CI 0.058 0.048 0.053 0.046 0.070 0.052 0.052

Panel C:BCFH17

LATE 0.009 0.009 0.012 0.006 0.015 0.012 0.013
CI [-0.009, [-0.006, [-0.007, [-0.008, [-0.009, [-0.018, [-0.008,

0.026] 0.023] 0.031] 0.020] 0.040] 0.041] 0.034]
length of CI 0.035 0.029 0.038 0.028 0.049 0.059 0.042

Panel D: HD-QLR (this paper)

LATE 0.010 0.011 0.014 0.004 0.018 0.014 0.011
CI [0.000, [0.002, [0.003, [-0.001, [0.003, [-0.004, [-0.002,

0.021] 0.018] 0.027] 0.016] 0.029] 0.032] 0.023]
length of CI 0.021 0.016 0.024 0.017 0.026 0.033 0.024

Size N 929 924 914 926 924 919 919
dim(X) 212 212 212 212 212 212 212
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Takeaways

I develop a test statistic to make inference for the high-dimensional
LATE, independent of the strength of identification.

The test has uniformly correct asymptotic size.

Simulation results indicate that the proposed test is robust against
weak identification and high-dimensional settings, outperforming
other conventional tests.

Empirical illustrations show that conventional tests exhibit a
positive bias in the length of confidence intervals and lose
significance when high-dimensional covariates are taken into
account.
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Future work

Not limited to LATE, extend to general IV estimation.
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Thank you!

feel free to email me any comments
yukun.ma@vanderbilt.edu
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Motivation: Lee et al. (2022)

Figure: American Economic Review 2013-2019
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