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Introduction

e Recent research highlights importance of heterogeneity in macroeconomics.
e Heterogeneous agent (HA) models with aggregate shocks are solved with global
Krusell-Smith (KS) method or local perturbation method.
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Multiple shocks No Yes
Multiple endogenous states No Yes
Estimation/Calibration No Yes
Large shocks Yes No
Risky steady state Yes No
Nonlinearity e.g. ZLB Yes No
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This paper: a new efficient, reliable, and interpretable global solution method for high
dimensional HA models with aggregate shocks using deep learning.



Deep Learning for High Dimensional Models

e Deep learning’s success in high dimensional scientific computing problems.

e This paper: use deep learning to “learn” policy and value functions in HA model.
e Three key steps to “learn” high-dim functions:
1. Deep neural networks to represent function:
fl@) =L o LN o Lo o £)(a),
hy = LP(hp—1) = 0 (Wphp—1 + by),
o : element-wise nonlinear activation function: e.g. max(0, z).
2. Cast high-dim function into an objective function.

3. Efficient optimization: stochastic gradient descent (SGD).

Similar procedure, but more efficient than polynomial approximation.
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1. Use neural networks (NN) to represent value & policy functions.
2. Nest sub-NN of generalized moments to represent state distribution.

3. lteratively update value & policy functions, and generalized moments.
Apply DeepHAM to three economies:

1. Krusell-Smith problem: competitive equilibrium.

2. Krusell-Smith problem with a financial sector (in the paper).

3. Constrained efficiency problem in HA models with aggregate shocks.
Main features:

1. High accuracy compared to other global solution methods.

2. Efficient computational speed (no curse of dimensionality).

3. Interpretability of distribution representation and function mappings.
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Computational Setup: Krusell-Smith Method

e Curse of dimensionality shows up in recursive form of household i's problem:
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subject to budget & borrowing constraints. I': distribution over (a,y) of all households.

e Household must know I to predict factor prices = infinite dimension I' is state variable.
e Krusell-Smith method (KS, 1998; Maliar et al., 2010):
1. Approximate state: §; = (a;,v:, Z,m1). mq: first moment of individual asset distribution.
2. Log linear law of motion for m;:
log(mq 1+1) = A(Z) + B(Z) log(mqy).
e Very costly in complex HA models with multiple assets or multiple shocks.

e New approach: “learn” high dimensional value & policy functions with deep learning.
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Special case: Q(a) = a yields the first moment.

Algorithm solves generalized moments (GMs) that matter most for policy and value
functions. (“numerically determined sufficient statistics”)

e GMs provide interpretabilitiy on how heterogeneity matters.



DeepHAM Algorithm: General Procedure
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DeepHAM Algorithm: General Procedure

e Formulate discrete time N-agent HA models, solve value and policy functions
parameterized by neural nets V(s),c(s). s = (a;,yi, Z,T).

e Parameterize two parts of mapping:
1. Distribution I — J generalized moments = >°. Q;(a;).
2. (ai,yi, Z {5 23 Qi(ai)}) = e, V.
e |teratively update value and policy functions. In each iteration:

1. Simulate stationary distribution with the latest policy.
2. Given policy function, update value function.

3. Given value function, optimize policy function on simulated paths.



DeepHAM: Policy Function Optimization

In iteration k, given V(*)(s), optimize policy C*)(s) on simulated paths.

For N-agent competitive equilibrium, solve with fictitious play: separate it into /N individual
problems, when solving i's problem, fix other agents’ policy from last “play”. Iterate:
1. At “play” £+ 1, last play’s policy C%%9)(s) is known.

2. For agent i = 1, update her optimal policy C(k7£+1)(s) according to:

Ty, (k
C(knzlff){( )E ck—1)), (Zﬁ u Czt + 8 17 )(Si,T)>

subject to others all following C(¥¥)(s) in the first T periods.
3. All agents adopt the new policy C**+1(s) in “play” ¢+ 1.
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In iteration k, given V(*)(s), optimize policy C*)(s) on simulated paths.
For N-agent competitive equilibrium, solve with fictitious play: separate it into /N individual
problems, when solving i's problem, fix other agents’ policy from last “play”. Iterate:

1. At “play” £+ 1, last play’s policy C%%9)(s) is known.

2. For agent i = 1, update her optimal policy C(k7£+1)(s) according to:

Ty, (k
C(knzlff){( )E ck—1)), (Zﬁ u Czt + 8 17 )(Si,T)>

subject to others all following C(¥¥)(s) in the first T periods.
3. All agents adopt the new policy C**+1(s) in “play” ¢+ 1.

Optimization solved on Monte Carlo simulation with N agents on a large number of sample
paths in a computational graph.



Computational Graph for Policy Function Optimization

Iré%xE“(c(k—n),g (ﬁzT + BTV (81,75 @V)>

+
—> ﬁn 7—>UT71 —> UT —
T o
cr—
[ 2 [ - Value
T T NN
Policy Policy Policy
NN NN NN
Wo, To } (Wr-1,TT-1
FOC
VA
HH budget HH budget HH budget - )
S0, Z 8 S1, 7 8 Sr_1,27_ 2 STz
\—[ 0220 kconslraint" b constraint» e constraint"{ ner ,}-‘*

1 1 1
[ 20,2 21,2 1 [zT—lazT—l 2r, Zr ]

t=20 t=1 t=T-1 t=T

Budget constraint a; 11 = (rs + 1 — 8)aiy + wilyis — civ. 8¢ = (@i, Vi, Zt, Tt). Cumulative utility

Uie =" _o B ul(cir)



Remarks on optimization over simulated paths

e Agents formulate expectation over future prices through simulation: no perceived law of
motion needed.

e Similar to the idea of (model-based) reinforcement learning.

e Our formulation: easily extend to constrained efficiency problem.
e Competitive equilibrium: fictitious play.
e Constrained efficiency: optimize all agents’ policy together.

e Finite agent approximation + fictitious play: could be used for solving strategic

equilibrium.

10



Accuracy Results for Krusell-Smith Problem

Method and Moment Choice Bellman error  Std of error
KS Method (Maliar et al., 2010) 0.0253 0.0002
DeepHAM with 1st moment 0.0184 0.0023
DeepHAM with 1 generalized moments 0.0151 0.0015

e Highly accurate compared to Krusell-Smith (KS) method EEEEITTED

e Even only with first moment as model input, DeepHAM outperform KS method due to
better capture of nonlinearity.

e Generalized moment yields more accurate solution than the first moment, as it extract
more relevant information.

11



Interpretation of the Generalized Moment (GM)

Value for zi=0,Z,=2' Value forzj=1,Z,=2'
102.6
104.2
1025
104.1
102.4
39.5
104.0
1023
38.75 39.00 39.25 39.50 38175 39.00 39.25 39.50
— Generalized moment Generalized moment
© 39.0
o Value for zi=0,Z,=2" Value for zi=1,Z,=2"
38.5 103.1 104.4
103.0 104.3
38.0 102.9
20 30 40 50 60 1042
asset a 3875 39.00 39.25 39.50 38,75 39.00 39.25 39.50
Generalized moment Generalized moment
1 X 2
Plot of Qi(a) Map + >, Qi(a:) to value function

e Basis function concave in asset, value function is linear wrt the GM.
e Heterogeneity matters! Unanticipated redistributive policy shock: asset from rich to
poor HH = generalized moment=- unshocked agent welfare].
e KS method implies no effect, as first moment not change. 12



DeepHAM for Constrained Efficiency Problem

e Constrained efficiency problem: planner’s allocation in incomplete market.
e Important “second best” allocation, but hard to solve in HA models.

e Literature only solves for HA models without aggregate shocks (Davila, Hong, Krusell,
Rios-Rull, 2012; Nuno and Moll, 2018).
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DeepHAM for Constrained Efficiency Problem

e Constrained efficiency problem: planner’s allocation in incomplete market.
e Important “second best” allocation, but hard to solve in HA models.

e Literature only solves for HA models without aggregate shocks (Davila, Hong, Krusell,
Rios-Rull, 2012; Nuno and Moll, 2018).

e DeepHAM solves constrained efficiency problem as easily as solve competitive
equilibrium, just to remove the fictitious play procedure.

e We solve constrained efficiency problem of Davila et al. (2012), and that with aggregate
shocks and countercyclical unemployment risk.

o It takes DeepHAM 20 minutes to solve Davila et al. (2012) on GPU, which takes
conventional methods > 10 hours on CPU.

13



Constrained Efficiency for HA Models w or w/o Agg Shock

No aggregate shock Aggregate shock

Market Constrained Opt. Market Constrained Opt.
Average assets 30.635 119.741 34.296 95.811
Wealth Gini 0.864 0.862 0.812 0.878
Consumption Gini  0.615 0.386 0.578 0.388

Findings:
1. Both models: K in constrained optimum > competitive equilibrium.

e Why? Overcome pecuniary externality: K 1= w 1, R ], redistribute from rich to poor (high
labor share).
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Wealth Gini 0.864 0.862 0.812 0.878
Consumption Gini  0.615 0.386 0.578 0.388

Findings:
1. Both models: K in constrained optimum > competitive equilibrium.

e Why? Overcome pecuniary externality: K 1= w 1, R ], redistribute from rich to poor (high
labor share).

2. Constrained optimal K in model w/ agg shock < w/o agg shock.
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Constrained Efficiency for HA Models w or w/o Agg Shock
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Agg shock = precautionary saving 1 by poor HHs = labor share lower than model w/o agg

shock. So planner raises K less in constrained efficient equilibrium. 5



Conclusion

o We develop DeepHAM, an efficient, reliable, and interpretable deep learning based
method to solve HA models with aggregate shocks globally.

e Deep learning based model reduction informs interpretable generalized moments of
distribution that matters.

e For the first time, we solve constrained efficiency in HA models with aggregate shock.

e “Neural network techniques will open up a new research avenue in macro-finance.” (RFS
2021). A few possible directions:

1. Asset pricing in models with rich heterogeneity.
2. HA(NK) models: asset pricing, welfare, and optimal policy.

3. Models with search and matching, or rich spatial structure (“DeepSAM").

16



Thank You!

Comments and questions are welcome!

Email: yucheng.yang@bf.uzh.ch
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e Solving HA models with aggregate shocks:
1. Global KS method: Krusell and Smith (1998), Den Haan (2010) project, Fernandez-Villaverde et
al. (2019), etc.
2. Local perturbation method: Reiter (2009), Ahn et al. (2017), Winberry (2018), Bayer and
Luetticke (2020); Boppart, Krusell and Mitman (2018), Auclert et al. (2021), etc.
e Deep learning for high dimensional problems:
1. Stochastic control & PDE: Han and E (2016), Han, Jentzen and E (2018).
2. Macroeconomics: Duarte (2018), Fernandez-Villaverde et al. (2020, 2021), Maliar et al. (2021),
Azinovic et al. (2022), among many others.
e How heterogeneity matters in macro: Kaplan and Violante (2018), Kaplan et al. (2018), Auclert (2019),
etc.
e Constrained efficiency problem in HA models: Davila et al. (2012), Nuno and Moll (2018), Bhandari et
al. (2021), etc.
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DeepHAM: Value Function Learning

Define cumulative utility for HH ¢ up to ¢:

In iteration k, given policy function C*=1)(s):

1. Sample states s from the stationary distribution. Then the value of each state s can be
approximately calculated as cumulative utility in the following T (T large enough) periods
following policy C*~1)(s):

T
‘7(k> (8) =) EﬁT =E Z BTU (Ci,T)

=0

2. Learn value function V(’“)(s) parameterized by deep neural networks with regression. @9
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Solution Comparison
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Accuracy Measures: Bellman Equation Errors

For the KS problem, only using solved value function V'(-), Bellman equation error is

—1

ci

y’,Z/,y’f'i
X Pr (Z',y”, y 12y, yﬂ')}
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