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Abstract

This paper proves a new central limit theorem for a sample that exhibits multi-way depen-

dence and heterogeneity across clusters. Statistical inference for situations where there is both

multi-way dependence and cluster heterogeneity has thus far been an open issue. Existing theory

for multi-way clustering inference requires identical distributions across clusters (implied by the

so-called separate exchangeability assumption). Yet no such homogeneity requirement is needed

in the existing theory for one-way clustering. The new result therefore theoretically justifies the

view that multi-way clustering is a more robust version of one-way clustering, consistent with

applied practice. The result is applied to linear regression, where it is shown that a standard

plug-in variance estimator is valid for inference.

1 Introduction

Clustering standard errors on multiple dimensions is common and attractive in applied econometrics

because it allows observations to be dependent whenever they share a cluster on any dimension.1

The variance estimator proposed by Cameron et al. (2011) (henceforth CGM) has thus been widely

applied to contexts with multi-way dependence. Existing justification for the asymptotic validity

of the CGM estimator and other inference procedures in multi-way clustering relies on separate

∗Department of Economics, Princeton University. Email: lyap@princeton.edu.
1E.g., Dube et al. (2010) clustered on state and border segment when studying the effect of minimum wages on
employment; Nunn and Wantchekon (2011) clustered on ethnic groups and district when studying the effect of slave
trade on trust; Michalopoulos and Papaioannou (2013) clustered on country and ethnolinguistic family when studying
the effect of pre-colonial institutions on development.
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exchangeability, which implies the homogeneity of clusters. This paper provides general conditions

such that the plug-in mean estimator is asymptotically normal, and the CGM variance estima-

tor is consistent, even when clusters are heterogeneous. These conditions do not include separate

exchangeability, and they mimic the conditions in one-way clustering: the only substantive assump-

tion is that two observations are independent when they do not share any cluster. Since asymptotic

normality and consistent variance estimation are sufficient for valid inference, the results in this

paper provide sufficient general conditions for valid inference in multi-way clustering.

An environment with multi-way clustering permits dependence whenever observations share at

least one cluster. To fix ideas, suppose observations can be partitioned on two different dimen-

sions — state and industry. Observations in the same state or in the same industry are plausibly

correlated, but two observations in different states and different industries are assumed to be inde-

pendent.2 The CGM variance estimator accommodates such dependence, and subsequent literature

provided a theoretical basis for its validity (e.g., Davezies et al. (2021); MacKinnon et al. (2021)).

Menzel (2021) also showed the validity of a bootstrap procedure for multi-way clustering that is

robust to asymptotic non-normalities.3 The theoretical basis for inference thus far relies on sepa-

rate exchangeability, the assumption that random variables are exchangeable on either clustering

dimension, though not necessarily both.

However, as noted by MacKinnon et al. (2021), separate exchangeability implies identical marginal

distributions. Since exchangeability implies identical distribution, separate exchangeability in the

state-industry example implies that random variable in Alaska and California must be drawn from

the same distribution. In contrast, existing asymptotic theory on one-way clustering (e.g., Hansen

and Lee (2019); Djogbenou et al. (2019)) allows the distribution of the random variable to be

heterogeneous over clusters. The only substantive assumption is that observations that do not

share any cluster are independent. Since the only available conditions for the validity of multi-way

clustering require separate exchangeability, the literature lacks general conditions for multi-way

clustering that generalize one-way clustering and permit heterogeneity over clusters. This paper

fills the gap, and thus justifies multi-way clustering as a more robust version of one-way clustering.

2This setting permits more general dependence structures than one-way clustering. If there is one-way clustering
by state, then two observations from different states are automatically independent. In two-way clustering, two
observations from different states are not necessarily independent because they may share the same industry.

3Menzel (2021) pointed out that a purely interactive data-generating processes unique to multi-way dependence has
an asymptotic distribution that is not normal. Section 2 will consider this process and show how the assumptions of
this paper rules it out.
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Example 1. To illustrate separate exchangeability, consider an additive random effects model.

Individual i who belongs to cluster g(i) on the G dimension and cluster h(i) on the H dimension

has random variable Wi generated from Wi = αg(i) + γh(i) + εi, where cluster-specific αg, γh and

individual-specific εi are independent of each other. If we assume separate exchangeability, then αg,

γh, and εi are iid.4 In contrast, under one-way cluster asymptotics, the cluster-specific error αg

is allowed to be heteroskedastic. General conditions provided in this paper permits valid inference

even when αg, γh, εi are heteroskedastic in this model.

The main result is a central limit theorem for multi-way clustering with heterogeneous cluster sizes

and distributions. I apply the theorem to a simple setting of a linear regression, but it is more

broadly applicable to many other econometric procedures that exhibit a similar clustering structure.

2 Setting and Main Result

Consider a setup with two-way clustering on dimensions G and H for random vectors {Wi}ni=1,

where Wi := (Wi1,Wi2, · · · ,WiK)′ ∈ RK and i is the unit of observation, for a sequence of pop-

ulations of size n.5 For example, G could denote states and H denote industries. This section

establishes a central limit theorem (CLT) for a weighted sum of the random vector i.e.,
∑

i ωiWi,

where ωi are nonstochastic scalar weights, as n → ∞. For C ∈ {G,H}, let NC
c denote the set of

observations in cluster c on dimension C — this partitions the population on the C dimension.

Let g(i) and h(i) denote the cluster that observation i belongs to on the G and H dimensions

respectively. These cluster identities are nonstochastic and observed. Let NC
c = |NC

c | denote

the cluster size for C ∈ {G,H} and Ngh := |NG
g ∩ NH

h |. These cluster sizes are allowed to be

heterogeneous in a way that will be formalized in the assumptions below. Wi is assumed to be

independent of any Wj when j /∈ NG
g(i) ∪ NH

h(i) =: Ni, i.e., when i and j do not share a cluster on

either dimension. Hence, Ni is the set of observations plausibly dependent with i. This environment

is stated as Assumption 1, the main substantive assumption.

Assumption 1. Wi⊥⊥ Wj if g(i) ̸= g(j) and h(i) ̸= h(j).

4To see this, for individuals i and j where g(i) ̸= g(j), h(i) = h(j) = h, separate exchangeability implies αg(i)+γh+εi
d
=

αg(j) + γh + εj . Since αg, γh and εi are independent, εi
d
= εj and αg

d
= αg′ .

5Clustering in more than two dimensions is possible, and derivations are entirely analogous.
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Assumption 1 is agnostic about the dependence structure whenWi andWj share at least one cluster.

It also allows the data generating process to be arbitrarily heterogeneous across different clusters,

mimicking the heterogeneity permitted in one-way clustering (e.g., Hansen and Lee (2019)). Since

one-way clustering is a special case of two-way clustering where everyone is in their own H cluster,

the result here generalizes existing results in one-way clustering. In contrast, existing literature

in multi-way clustering assumes separate exchangeability that additionally imposes identical dis-

tribution over clusters, so they do not immediately generalize one-way clustering. {Wi}ni=1 being

separately exchangeable implies Assumption 1 but the converse is not true.6

Observations that share a cluster are allowed to be dependent, but they need not be. Hence,

let Aij := 1[Wi ⊥̸⊥ Wj ] be a 0-1 indicator for whether Wi and Wj are actually dependent, so

Aij = Aji, and Aii = 1.7 This notation allows a particular form of misspecification where the

researcher is conservative and clusters on dimension G when it is not required. Every observation

Wi is weighted by nonstochastic scalar ωi. For positive definite matrix Q, let λmin(Q) denote the

smallest eigenvalue of Q. Then, let Qn := V ar (
∑n

i=1 ωiWi) denote the variance of the sum and

λn := λmin(Qn) denote its smallest eigenvalue. For example, when K = 1 and equal weights are

placed on all observations, Wi is a scalar and λn = Qn = V ar(
∑

i ωiWi). K0 is used throughout

the paper to denote an arbitrary constant.

Assumption 2. For C ∈ {G,H}, and k ∈ {1, 2, · · · ,K}, there exists K0 < ∞ such that:

1. E[W 4
ik] ≤ K0 for all i.

2. 1
λn

maxc

(∑
i∈NC

c
|ωi|
)2

→ 0.

3. 1
λn

∑
c

∑
i,j∈NC

c
Aij |ωiωj | ≤ K0.

Assumption 2.1 requires the fourth moment to be bounded, which is stronger than the moment

condition in one-way clustering.8 The proof in one-way clustering usually verifies a Lindeberg

6To illustrate this, let Ngh = 1 and Wgh denote the observation in cluster g and h on the respective dimensions.
Due to Kallenberg (2005), {Wgh}g≥1,h≥1 is separately exchangeable if and only if there exists a representation

Wgh = f(αg, γh, εgh), where (αg, γh, εgh)
iid∼ U [0, 1]. Then, it is obvious that Wgh ⊥⊥ Wg′h′ for g ̸= g′, h ̸= h′.

A counterexample for the converse is some Wgh = −Wgh′ . These random variables are allowed to be perfectly
correlated since they share a cluster under Assumption 1. However, we cannot find a representation f(.), because
that representation implies E[Wgh|αg]⊥⊥ E[Wgh′ |αg].

7It is insufficient to define the indicator as Aij := 1[Cov(Wi,Wj) ̸= 0], since the proof contains third and fourth
moments. For K = 1, zero covariance between a pair of observations is insufficient to ensure objects such as
E[WiWjWk] and E[WiWjWkWl]− E[WiWk]E[WjWl] are zero.

8See equation (7) of Hansen and Lee (2019) for the condition in one-way clustering.
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condition because blocks of observations are independent of each other. With multi-way depen-

dence, we no longer have independent blocks because each cluster can have observations that are

dependent with observations from a different cluster when these observations share a cluster on

a different dimension. Hence, a different proof strategy is required. The proof in this paper uses

Stein’s method, which requires stronger moment restrictions, but provides a non-asymptotic bound

on the approximation error — details are in Subsection 2.1.

Assumption 2.2 requires the contribution of the cluster with the largest weight to be small relative

to the total variance. In the special case where everyone is equally weighted with ωi = 1, the

condition is simply (1/λn)maxc(N
C
c )2 → 0. Intuitively, this condition is required so that the

removal of a cluster does not change the variance substantively. This assumption allows the ratio

of any two cluster sizes to diverge to infinity. It is identical to equation (12) of Hansen and Lee

(2019) when C = G = H. Assumption 2.2 also rules out having components that are perfectly

negatively correlated: if the components of the vector were perfectly negatively correlated, λn = 0.

Assumption 2.3 is fairly unrestrictive about the convergence rate. To aid exposition, suppose

ωi = 1 ∀i, K = 1, and C is taken to be the clustering dimension that λn ≍
∑

c

∑
i,j∈NC

c
Aij .

9 With

strong dependence, Aij = 1 for all i, j ∈ NC
c , so λn ≍

∑
c(N

C
c )2. However, if the researcher were

conservative and clustered on C when the data is indeed iid, then Aij = 1 if and only if i = j, so

λn ≍ n. Assumption 2.3 has implications on λn, which then determines how strong Assumption 2.2

is. Namely, when λn ≍ n, Assumption 2.2 requires maxc(N
C
c )2/n → 0. When λn ≍

∑
c(N

C
c )2, then

Assumption 2.2 only requires maxc(N
C
c )2/(

∑
c′(N

C
c′ )

2) → 0. The weaker version of Assumption 2.2

permits balanced panels where the unit and time dimensions increase at the same rate, while the

stronger version does not.10 The assumption that (1/λn)
∑

c(N
C
c )2 ≤ K0 matches equation (11) of

Hansen and Lee (2019).

Remark 1. Assumption 2.3 rules out the following purely interactive model. As pointed out by

Menzel (2021), this model has an asymptotic distribution that is non-normal, and there is no

analog in one-way clustering. For g ∈ {1, · · · ,M}, h ∈ {1, · · · ,M} and Ngh = 1, we observe

Wgh = αgγh, where αg, γh are iid with mean zero and variances σ2
α and σ2

γ respectively, so there are

M2 observations. Then,
∑

g,hWgh/M =
(∑

g αg/
√
M
)(∑

h γh/
√
M
)

d−→ Z1Z2, where Z1 and Z2

9To be clear about the notation, a ≍ b if and only if there exists K0 < ∞ such that a/b, b/a ∈ [−K0,K0]. Since E[W 2
i ]

is bounded, λn ≍ maxC∈{G,H}
∑

c

∑
i,j∈NC

c
Aij .

10To see this, let M denote the number of units and time periods, so there are M2 observations.
maxc(N

C
c )2/(

∑
c′(N

C
c′ )

2) = M2/M3 = 1/M → 0, but maxc(N
C
c )2/n = M2/M2 = 1 ̸= o(1).
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are independent standard normal distributions. This limiting distribution is also known as Gaussian

chaos.
∑

g(N
G
g )2/λn = M3/(M2σ2

ασ
2
γ) = M/σ2

ασ
2
γ → ∞ violates Assumption 2.3.

Theorem 1. Under Assumption 1 and 2, Q
−1/2
n

∑n
i=1 ωi(Wi − E[Wi])

d−→ N(0, IK). Further,

1. If E[Wi] = 0 ∀i, then Q−1
n Q̂n

p−→ IK , where Q̂n :=
∑

i

∑
j∈Ni

ωiωjWiW
′
j.

2. If E[Wi] = µ ∀i and 1
λn

∑
c

∑
i,j∈NC

c
|ωiωj | ≤ K0 for some K0 < ∞, then, for W̄ =

(
∑

i ωiWi)/(
∑

j ωj) and Q̂n :=
∑

i

∑
j∈Ni

ωiωj(Wi−W̄ )(Wj−W̄ )′, W̄
p−→ µ and Q−1

n Q̂n
p−→ IK .

The theorem tells us that, under the aforementioned conditions, Q
−1/2
n

∑n
i=1 ωi(Wi − E[Wi]) is

asymptotically standard normal and the plug-in variance estimator proposed by CGM is consistent

for multi-way clustering. One-way clustering is a special case of this theorem when one dimension

is weakly nested within the other: examples include G = H so both dimensions are identical, or if

we cluster by county and state (as counties are nested in states), or if everyone is in their own H

cluster. A sufficient condition for consistent variance estimation is E[Wi] = 0, similiar to theorem

3 of Hansen and Lee (2019). This assumption is sufficient in many applications: for example, linear

regressions considered in Section 3 are identified by requiring the expectation of the residual term

to be zero. Additionally, the condition E[Wi] = µ matches theorem 4 of Hansen and Lee (2019) for

consistent variance estimation. Theorem 1.2 uses a stronger form of Assumption 2.3 where Aij = 1

for all i, j ∈ NC
c .

Remark 2. If E[Wi] ̸= 0, then the variance estimator need not be consistent. Unlike one-way

clustering, it may not even be conservative. Suppose E[Wi] ̸= 0 for some i, and define W̃i := Wi −

E[Wi]. Then, Q−1
n

∑
i

∑
j∈Ni

WiW
′
j = Q−1

n

(∑
i

∑
j∈Ni

W̃iW̃
′
j

)
+ Q−1

n

(∑
i

∑
j∈Ni

E[Wi]E[Wj ]
′
)
.

Since Q−1
n

(∑
i

∑
j∈Ni

W̃iW̃
′
j

)
= oP (1) by Theorem 1.1, and Qn is positive semidefinite, whether

the asymptotic variance is over or under estimated depends on whether
∑

i

∑
j∈Ni

E[Wi]E[Wj ]
′ is

positive semidefinite. Let K = 1 for exposition. In one-way clustering, the variance is weakly over-

estimated, so inference is conservative. To see this, let WG
g denote the vector of Wi such that g(i) =

g.
∑

i

∑
j∈Ni

E[Wi]E[Wj ] =
∑

g

∑
i,j∈NG

g
E[Wi]E[Wj ] =

∑
g 1

′E[WG
g ]E[WG

g ]′1 ≥ 0. In two-way

clustering,
∑

i

∑
j∈Ni

E[Wi]E[Wj ] can be negative. An example is where n = 3: cov(W1,W3) = 0

but cov(W1,W2) ̸= 0 and cov(W2,W3) ̸= 0, so W1 and W2 share a cluster in one dimension and W2

and W3 share a cluster on a different dimension. Further, E[W2] = −1 and E[W1] = E[W3] = 1.

Then,
∑

i

∑
j∈Ni

E[Wi]E[Wj ] = −1.
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2.1 Proof Sketch

The proof of Theorem 1 proceeds by first proving a CLT for a scalar random variable, then applying

the Cramer-Wold device to obtain the multivariate CLT. The scalar CLT is proven using Stein’s

method. I adapt the proof strategy from Ross (2011) to obtain an upper bound on the Wasserstein

distance between a pivotal statistic and the standard normal random variable. By exploiting the

multi-way clustering structure, the upper bound on the distance can be shown to converge to zero.

All details are in Appendix A.

For ease of exposition, consider a simpler environment where K = 1, ωi = 1 for all i, and Aij = 1

whenever c(i) = c(j) for some c, and E[Wi] = 0. Lemma 4 in Appendix A provides an explicit

bound on the Wasserstein distance. With dW (.) denoting the Wasserstein distance, σ2
n := Qn and

R =
∑

iXi/σn,

dW (R,Z) ≤ 1

σ3
n

n∑
i=1

∣∣∣∣∣∣
∑

j,k∈Ni

E[WiWjWk]

∣∣∣∣∣∣+
√
2√

πσ2
n

√√√√√V ar

 n∑
i=1

∑
j∈Ni

WiWj



At this point, my proof departs from the proofs in existing statistical literature that employ Stein’s

method (e.g., Chen and Shao (2004)). Let Ni := |Ni|. Holder’s inequality is employed on objects

such as
∑

i |
∑

j,k∈Ni
E[WiWjWk]|. Existing literature uses the L1 norm of moments E[W 3

i ] and

L∞ norm of Ni, resulting in (maxmNm)2
∑

iE[W 3
i ]. In contrast, my proof uses the L∞ norm of

E[W 3
i ] and L1 norm of Ni, resulting in maxmE[W 3

m]
∑

iN
2
i . Hence,

1

σ3
n

n∑
i=1

∣∣∣∣∣∣
∑

j,k∈Ni

E[WiWjWk]

∣∣∣∣∣∣ ≤ 1

σ3
n

max
m

E[W 3
m]
∑
i

N2
i

Since maxmE[W 3
m] is bounded by Assumption 2.1, it suffices to show

∑
iN

2
i /σ

3
n → 0. Due to

Assumption 1, Ni ≤ NG
g(i) +NH

h(i), so

1

σ3
n

∑
i

N2
i ≤ 1

σ3
n

∑
i

(NG
g(i) +NH

h(i))
2 ≤ 1

σ3
n

max
g,h

(NG
g +NH

h )
∑
i

(Ng(i) +Nh(i))

≤
[
1

σn
max
g,h

(NG
g +NH

h )

]
1

σ2
n

(∑
g

(NG
g )2 +

∑
h

(NH
h )2

)
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Since λn = σn whenK = 1, maxg,h(N
G
g +NH

h )/σn → 0 by Assumption 2.2 and
(∑

g(N
G
g )2 +

∑
h(N

H
h )2

)
/σ2

n

is bounded by Assumption 2.3. Hence, the term is o(1).

A similar argument is made for the fourth moment that features in V ar
(∑n

i=1

∑
j∈Ni

WiWj

)
.

To complete the proof for variance estimation, observe that since the fourth moments exist, the

consistency of the plug-in variance estimator can be proven by using Chebyshev’s inequality and

existing intermediate results.

Remark 3. Due to the proof strategy, the intermediate results are informative about the quality

of the normal approximation. With dK(.) denoting the Kolmogorov distance, proposition 1.2 from

Ross (2011) implies that dK(R,Z) ≤ (2/π)1/4
√

dW (R,Z). Since Z is standard normal in the proof

of CLT, the bound on dW (.) also places a bound on the Kolmogorov distance dK(.). This is then

informative of the maximum distance between the pivotal statistic and the standard normal.

3 Application

This section applies Theorem 1 to linear regressions, showing that using the normal approximation

with the CGM estimator is valid. Consider a linear model where scalar outcome Yi is generated by

Yi = Diθ +W ′
iγ + ui =: X ′

iβ + ui

Di ∈ R is the regressor of interest, Wi ∈ RK−1 is a vector of controls that may include the

intercept, and let Xi = (Xi1, Xi2, · · · , XiK)′ := (Di,W
′
i )

′ ∈ RK . We are interested in estimating

θ. The coefficient vector β := (θ, γ′)′ ∈ RK is the same for all individuals. The stochastic residual

term ui satisfies E[ui|Xi] = 0 for all i, and is allowed to be multi-way clustered. The standard OLS

estimator is

β̂ =

(
n∑

i=1

XiX
′
i

)−1( n∑
i=1

XiYi

)
= β +

(
n∑

i=1

XiX
′
i

)−1( n∑
i=1

Xiui

)

This object is assumed to be well-defined in that
∑n

i=1XiX
′
i is invertible. Using an equivalent

representation with data matrices, the model is Y = Dθ + Wγ + u = Xβ + u. Let MW =

I −W (W ′W )−1W ′ denote the annihilator matrix. Let D̃ := MWD be the D with W ’s partialled
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out, and define Ỹ , ũ in a similar manner. By the Frisch-Waugh-Lovell theorem (FWL),

θ̂ = (D̃′D̃)−1D̃′Ỹ = θ + (D̃′D̃)−1D̃′ũ = θ +

(∑
i

D̃2
i

)−1(∑
i

D̃iũi

)
= β̂1

where D̃i is the ith component of D̃, so
∑

i D̃iũi = D̃′ũ = D′MWu =
∑

i D̃iui. Let σ
2
n := V ar(θ̂) =

V ar
(∑

i D̃iui/(
∑

i′ D̃
2
i′)
)
and σ̂2

n :=
(∑

i

∑
j∈Ni

ûiûjD̃iD̃j

)
/
(∑

i D̃
2
i

)2
. Estimated residuals are

ûi := Yi −Xiβ̂ = ui −Xi(β̂ − β). Due to FWL, ûi = Ỹi − D̃iθ̂ = ui − D̃i(θ̂ − θ).

Inference for θ̂, depends on whether we are conditioning on X: the conditions for asymptotic

normality differ slightly between random and nonrandom X. I consider each of them in turn.

3.1 Fixed Regressors

First, consider regressions where the X’s are nonrandom. An example might be when the object of

interest is the difference between male and female wages. Their unobserved error may be correlated

by state and industry conditional on X, but the gender status Di is fixed. This can be viewed as

inference on a descriptive object.

With ui’s having a multi-way clustered structure, we can apply Theorem 1 on
(∑

i D̃
2
i

)−1∑
i D̃iui,

where scalar weights are given by ωi = D̃i/(
∑

i′ D̃
2
i′).

Assumption 3. For C ∈ {G,H} and nonstochastic D̃i, there exists K0 < ∞ such that:

1. E[u4i ] ≤ K0, E[ui] = 0.

2.
maxc

(∑
i∈NC

c
|D̃i|

)2

∑
c′

(∑
j∈NC

c′
|D̃j |

)2 → 0.

3.

∑
c′
∑

i,j∈NC
c

|D̃iD̃j |

V ar(
∑

i D̃iui)
≤ K0.

4. ui⊥⊥ uj if g(i) ̸= g(j) and h(i) ̸= h(j).

Proposition 1. Under Assumption 3, (θ̂ − θ)/σn
d−→ N(0, 1), and σ̂2

n/σ
2
n

p−→ 1.

Assumption 3 works in the environment where there is no misspecification, so Aij = 1 whenever i, j

share at least one cluster. Hence, σ2
n ≍ maxC∈{G,H}

∑
c

∑
i,j∈NC

c
|ωiωj |, satisfying the conditions
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of Theorem 1. Consequently, instead of making an assumption on the contribution of the cluster

with the largest weight on the total variance, a leverage condition in the form of Assumption

3.2 can be obtained. This condition is also empirically verifiable: the researcher can calculate

LC := maxc

(∑
i∈NC

c
|D̃i|

)2
/

(∑
c′

(∑
j∈NC

c′
|D̃j |

)2)
, and check if it is small. As a benchmark,

when observations are not clustered and all weights D̃i are the same, LC = 1/n. Hence, if we

believe that n = 30 is sufficiently large for asymptotics in the iid case, then LC < 1/30 may be

acceptable.

Proposition 1 implies that the usual inference procedure is still valid even when the unobserved

component is arbitrarily heterogeneous across different clusters. In contrast, the separate exchange-

ability of ui requires ui to be identically distributed across different clusters (e.g., the unobserved

component of wages for women is identically distributed across states) — it is a strong assumption

that is no longer required here. If there are fixed effects in the model, the vector of indicators can

be collected in W and the argument proceeds as usual.11

3.2 Stochastic Regressors

Next, consider stochastic X. This is the relevant case when considering causal regressions. For

example, we may be interested in the effect of a randomly assigned opportunity to participate in

a job training program Di on wages Yi. Both Xi and ui are plausibly correlated within state and

within industry. Although θ̂ = β̂1, we can no longer apply Theorem 1 to
∑

i D̃iui because the

multi-way dependence structure breaks once Xi’s are random.

Define Sn :=
∑n

i=1E[XiX
′
i] and Qn := V ar (

∑n
i=1Xiui), and denote their sample analogs as Ŝn =∑

iXiX
′
i and Q̂n :=

∑
i

∑
j∈Ni

ûiûjXiX
′
j . Let the smallest eigenvalue of Qn be λn := λmin(Qn).

The asymptotic variance of β̂ and its sample analog are V (β̂) := S−1
n QnS

−1
n and V̂ (β̂) := Ŝ−1

n Q̂nŜ
−1
n

respectively.

Assumption 4 provides sufficient conditions for asymptotic normality of the estimator β̂ and con-

sistency of the CGM variance estimator. The conditions mimic Assumption 2 so that Theorem 1

is applicable to the random vector Xiui. The new condition is a weak regularity condition that

λmin (Sn/n) ≥ K1 > 0, mimicking to the rank condition in OLS.

11Fixed effects account for a shift in the unobserved component, so separate exchangeability still makes a restriction
on the distribution of the remaining unobserved component.
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Assumption 4. For C ∈ {G,H}, and k ∈ {1, 2, · · · ,K}, there exists K0 < ∞ and K1 > 0:

1. E[u4i |Xi] ≤ K0, E[X4
ik] ≤ K0, E[ui|Xi] = 0 for all i.

2. 1
λn

maxc(N
C
c )2 → 0.

3. 1
λn

∑
c(N

C
c )2 ≤ K0.

4. (X ′
i, ui)

′⊥⊥ (X ′
j , uj)

′ if g(i) ̸= g(j) and h(i) ̸= h(j).

5. λmin

(
1
nSn

)
≥ K1.

Proposition 2. Under Assumption 4, Q
−1/2
n Sn(β̂−β)

d−→ N(0, IK), and [S−1
n QnS

−1
n ]−1[Ŝ−1

n Q̂nŜ
−1
n ]

p−→

IK .

Proposition 2 is useful for doing F tests on a subvector of β. The proof of Proposition 2 proceeds

by applying Theorem 1 to
∑

iXiui, and showing that S−1
n Ŝn

p−→ IK . The latter requires the rank

condition of Assumption 4.5. It then remains to show that the remainder terms are asymptotically

negligible. Nonetheless, if we are only interested in θ, using the residualized objects θ̂ and variance

estimator for the residualized object σ̂2
n is still valid. This follows from FWL, and the refinement

of FWL for variance estimators in Ding (2021).

Corollary 1. Under Assumption 4, (θ̂ − θ)/σn
d−→ N(0, 1), and σ̂n/σn

p−→ 1.

The practitioner’s takeaway from Proposition 2 is that the existing CGM variance estimator can be

used for valid inference with multi-way clustering. With Corollary 1, θ̂ and σ̂2
n can be used as the

mean and variance estimators respectively. These results provide the formal theoretical guarantee

for using the estimator, under weaker conditions that permits heterogeneity across clusters.

Besides the application mentioned, Theorem 1 also has implications on the conditions required for

valid inference when the random variable is multi-way clustered in many other econometric models,

including design-based settings and instrument variables models. Inference for estimators based

on moment conditions can be done by straightforward application of Theorem 1 as in the linear

regression case.
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A Proof of Theorem 1

The proof strategy is as follows. I first prove Lemma 1, which is a central limit theorem (CLT) for

scalars that permits weights on the random variable. The proof of Lemma 1 relies on Lemmas 2 to

7. Lemmas 2 to 4 derive an upper bound on the Wasserstein distance between a pivotal statistic

and standard normal Z. Lemmas 5 to 7 then show that the derived upper bound is o(1). With

Lemma 1, the multivariate CLT of Theorem 1 is obtained by using the Cramer-Wold device. The

remainder of the proof proceeds in the following order: (i) introduce definitions and notation, (ii)

state Lemma 1, (iii) state and prove Lemmas 2 to 7, (iv) prove Lemma 1, (v) state and prove Lemma

8 that is required for consistent variance estimation, then (vi) complete the proof of Theorem 1.

The following definitions and notations are used throughout the proof. Let dW (X,Y ) denote the

Wasserstein distance between random variables X and Y , so dW (X,Y ) = 0 if and only if the

distributions of X and Y are identical. The norms of functions are defined as the sup norm i.e.,

||f || = supx∈D |f(x)|. For vector a, ||a|| = (a′a)1/2 is the Euclidean norm, and for positive semi-

definite matrix A and λmax(A) denoting the largest eigenvalue, ||A|| =
√
λmax(A′A) denotes the

spectral norm, and A1/2 denotes the symmetric matrix such that A1/2A1/2 = A.
∑

i∈NG
g

∑
j∈NG

g
is

abbreviated as
∑

i,j∈NG
g
. The dependency neighborhood of i, Ni ⊆ {1, · · · , n}, is defined as the set

of observations where i ∈ Ni and Xi is independent of {Xj}j ̸=Ni
, and Ni := |Ni| is the number of

observations in i’s dependency neighborhood. In the rest of this proof, Xi denotes a scalar random

variable while Wi ∈ RK as stated in the main text is a random vector.

Every scalar random variable Xi is weighted by nonstochastic ωi. Denote the variance of the sum

as σ2
n := V ar (

∑n
i=1 ωiXi). We are interested in the asymptotic distribution of (1/σn)

∑n
i=1 ωiXi.

If all observations are equally weighted, ωi = 1 ∀i.

Assumption 5. For C ∈ {G,H}, there exists K0 < ∞ such that:

1. E[Xi] = 0 and E[X4
i ] ≤ K0 < ∞ for all i.

2. 1
σ2
n
maxc

(∑
i∈NC

c
|ωi|
)2

→ 0

3. 1
σ2
n

∑
c

∑
i,j∈NC

c
Aij |ωiωj | ≤ K0 < ∞

4. Xi⊥⊥ Xj if g(i) ̸= g(j) and h(i) ̸= h(j).
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Lemma 1. Under Assumption 5, (1/σn)
∑n

i=1 ωiXi
d−→ N(0, 1), where σ2

n := V ar (
∑n

i=1 ωiXi).

Further, using feasible estimator σ̂2
n :=

∑
i

∑
j∈Ni

ωiωjXiXj, σ̂
2
n/σ

2
n

p−→ 1.

Lemma 2. If R is a random variable and Z has a standard normal distribution, and we define

the family of functions F = {f : ||f ||, ||f ′′|| ≤ 2, ||f ′|| ≤
√
2π}, then dW (R,Z) ≤ supf∈F |E[f ′(R)−

Rf(R)]|.

Proof. See Ross (2011) theorem 3.1.

Lemma 3. Let X1, · · · , Xn be random variables such that E[Xi] = 0, σ2
n = V ar(

∑
iXi), and define

R =
∑

iXi/σn. If Ri :=
∑

j ̸=Ni
Xj/σn, then

E[Rf(R)] = E

[
1

σn

n∑
i=1

Xi(f(R)− f(Ri)− (R−Ri)f
′(R))

]
+ E

[
1

σn

n∑
i=1

Xi(R−Ri)f
′(R)

]

Proof. Start from right hand side:

E

[
1

σn

n∑
i=1

Xi(f(R)− f(Ri)− (R−Ri)f
′(R))

]
+ E

[
1

σn

n∑
i=1

Xi(R−Ri)f
′(R)

]

= E

[
1

σn

n∑
i=1

Xi(f(R)− f(Ri))

]
= E

[
1

σn

n∑
i=1

Xif(R)

]
+ E

[
1

σn

n∑
i=1

Xif(Ri)

]

= E

[
1

σn

n∑
i=1

Xif(R)

]
= E[Rf(R)]

The first equality in the final line comes from the fact that Ri is independent of Xi based on how

dependency neighborhoods are defined. Hence, E[Xif(Ri)] = 0.

Lemma 4. Let X1, · · · , Xn be random variables such that, E[Xi] = 0, σ2
n = V ar(

∑
iXi), and define

R =
∑

iXi/σn. Let the collection (X1, · · · , Xn) have dependency neighborhoods Ni, i = 1, · · · , n.

Then for Z a standard normal random variable,

dW (R,Z) ≤ 1

σ3
n

n∑
i=1

∣∣∣∣∣∣
∑

j,k∈Ni

E[XiXjXk]

∣∣∣∣∣∣+
√
2√

πσ2
n

√√√√√V ar

 n∑
i=1

∑
j∈Ni

XiXj

 (1)

Proof. Due to Lemma 2, to bound dW (R,Z) from above, it is sufficient to bound |E[f ′(R)−Rf(R)]|,
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where ||f ||, ||f ′′|| ≤ 2, ||f ′|| ≤
√
2/π. Define Ri :=

∑
j ̸=Ni

Xj/σn, so Xi is independent of Ri.

|E[f ′(R)−Rf(R)]| = |E[f ′(R)]− E[Rf(R)]|

≤

∣∣∣∣∣E[f ′(R)]− E

[
1

σn

n∑
i=1

Xi(f(R)− f(Ri)− (R−Ri)f
′(R))

]
− E

[
1

σn

n∑
i=1

Xi(R−Ri)f
′(R)

]∣∣∣∣∣
≤

∣∣∣∣∣E
[
1

σn

n∑
i=1

Xi(f(R)− f(Ri)− (R−Ri)f
′(R))

]∣∣∣∣∣+
∣∣∣∣∣E
[
f ′(R)

(
1− 1

σn

n∑
i=1

Xi(R−Ri)

)]∣∣∣∣∣
The first inequality applies Lemma 3, and the second inequality applies the triangle inequality.

Consequently, it is sufficient to show that the first term is bounded by the corresponding first term

of Equation (1), and the second term is bounded by the corresponding second term.

Consider the first term. By Taylor expansion of f(Ri) around f(R), and the triangle inequality,

the term that generates the third moment is:

|E

[
1

σn

n∑
i=1

Xi(f(R)− f(Ri)− (R−Ri)f
′(R))

]
| ≤ ||f ′′||

2σn

∣∣∣∣∣
n∑

i=1

E[Xi(R−Ri)
2]

∣∣∣∣∣
=

1

σ3
n

∣∣∣∣∣∣
n∑

i=1

E

Xi

∑
j∈Ni

Xj

2∣∣∣∣∣∣ = 1

σ3
n

∣∣∣∣∣∣
n∑

i=1

∑
j,k∈Ni

E[XiXjXk]

∣∣∣∣∣∣ ≤ 1

σ3
n

n∑
i=1

∣∣∣∣∣∣
∑

j,k∈Ni

E[XiXjXk]

∣∣∣∣∣∣
Turning now to the second term,∣∣∣∣∣E

[
f ′(R)

(
1− 1

σn

n∑
i=1

Xi(R−Ri)

)]∣∣∣∣∣ ≤ ||f ′||
σ2
n

∣∣∣∣∣E
[
σ2
n − σn

n∑
i=1

Xi(R−Ri)

]∣∣∣∣∣
≤ ||f ′||

σ2
n

E

∣∣∣∣∣∣σ2
n −

n∑
i=1

Xi

∑
j∈Ni

Xj

∣∣∣∣∣∣ ≤ ||f ′||
σ2
n

E

σ2
n −

n∑
i=1

Xi

∑
j∈Ni

Xj

21/2

11/2

≤
√
2√

πσ2
n

√√√√√V ar

 n∑
i=1

∑
j∈Ni

XiXj



Lemma 5. E[|XiXjXk|] ≤ maxmE[|Xm|3], E[|XiXjXkXl|] ≤ maxmE[|Xm|4], and |E[XiXk]E[XjXl]| ≤

maxmE[|Xm|4].
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Proof. By the arithmetic mean — geometric mean (AM-GM) inequality,

E|XiXjXk| ≤
1

3

(
E|Xi|3 + E|Xj |3 + E|Xk|3

)
≤ max

m
E[|Xm|3]

A similar argument yields E[|XiXjXkXl|] ≤ maxmE[|Xm|4]. For the final result, first observe that

E[XiXk]
2 ± 2E[XiXk]E[XjXl] + E[XjXl]

2 = (E[XiXk]± E[XjXl])
2 ≥ 0. Hence,

|E[XiXk]E[XjXl]| ≤
1

2
(E[XiXk]

2 + E[XjXl]
2) ≤ 1

2
(E[X2

i X
2
k ] + E[X2

jX
2
l ])

≤ 1

4
(E[X4

i ] + E[X4
j ] + E[X4

k ] + E[X4
l ]) ≤ max

m
E[X4

m]

Lemma 6. Under Assumption 5, 1
σ3
n

∑n
i=1

∣∣∣∑j,k∈Ni
E[ωiωjωkXiXjXk]

∣∣∣→ 0.

Proof. Note that E[XiXjXk] = 0 whenever one of {Xi, Xj , Xk} is independent of the other two,

so E[ωiωjωkXiXjXk] is nonzero only if Aij , Aik, or Ajk is nonzero. Apply the triangle inequality

and push the absolute value into the expectation.

1

σ3
n

n∑
i=1

∣∣∣∣∣∣
∑

j,k∈Ni

E[ωiωjωkXiXjXk]

∣∣∣∣∣∣ ≤ 1

σ3
n

n∑
i=1

∣∣∣∣∣∣
∑

j,k∈Ni

(Aij +Ajk +Aik)E[ωiωjωkXiXjXk]

∣∣∣∣∣∣
≤ 1

σ3
n

n∑
i=1

∑
j,k∈Ni

(Aij +Ajk +Aik)|ωiωjωk|E[|XiXjXk|]

≤ maxmE[|Xm|3]
σ3
n

n∑
i=1

∑
j,k∈Ni

|ωiωjωk|(Aij +Ajk +Aik)

The last inequality applies Lemma 5. Observe maxmE[|Xm|3] ≤ K0 since the 4th moment exists,

so it remains to show that the remaining terms are o(1).

1

σ3
n

n∑
i=1

∑
j,k∈Ni

(Aij +Ajk +Aik)|ωiωjωk| ≤
1

σ3
n

n∑
i=1

 ∑
j,k∈NG

g(i)

+
∑

j,k∈NH
h(i)

 (Aij +Ajk +Aik)|ωiωjωk|
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It is sufficient to consider the G dimension as the H dimension is analogous.

1

σ3
n

n∑
i=1

∑
j,k∈NG

g(i)

(Aij +Ajk +Aik)|ωiωjωk| =
3

σ3
n

∑
g

∑
i,j,k∈NG

g

Aij |ωiωjωk|

1

σ3
n

∑
g

∑
i,j,k∈NG

g

Aij |ωiωj ||ωk| ≤

(
maxg

∑
k∈NG

g
|ωk|

σn

)
1

σ2
n

∑
g

∑
i,j∈NG

g

Aij |ωiωj | = o(1)

Convergence occurs because (1/σ2
n)
∑

g

∑
i,j∈NG

g
Aij |ωiωj | < ∞ by Assumption 5.3 and maxg

∑
k∈NG

g
|ωk|/σn =(

maxg

(∑
k∈NG

g
|ωk|

)2
/σ2

n

)1/2

= o(1) by Assumption 5.2.

Lemma 7. Under Assumption 5, 1
σ4
n
V ar

(∑n
i=1

∑
j∈Ni

ωiωjXiXj

)
= o(1).

Proof.

1

σ4
n

V ar

∑
i

∑
j∈Ni

ωiωjXiXj

 =
1

σ4
n

E

∑
i

∑
j∈Ni

ωiωjXiXj

2− 1

σ4
n

∑
i

∑
j∈Ni

E[ωiωjXiXj ]

2

=
1

σ4
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

(E[ωiωjωkωlXiXjXkXl]− E[ωiωkXiXk]E[ωjωlXjXl])

=
1

σ4
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

ωiωjωkωl(E[XiXjXkXl]− E[XiXk]E[XjXl])

When (Xi, Xk)⊥⊥ (Xj , Xl), E[XiXjXkXl] = E[XiXj ]E[XkXl]. Hence, we only have to consider

where there is at least one pair that is correlated i.e., when Aij , Ail, Akj , or Akl is not zero. As

before, with finite 4th moment and Lemma 5, it is sufficient to show

1

σ4
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

|ωiωjωkωl|(Aij +Ail +Akj +Akl) = o(1)

It is sufficient to consider the Aij term because everything else is analogous.

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

|ωiωjωkωl|Aij ≤
∑
i

 ∑
j∈NG

g(i)

+
∑

j∈NH
h(i)


 ∑

k∈NG
g(i)

+
∑

k∈NH
h(i)


 ∑

l∈NG
g(j)

+
∑

l∈NH
h(j)

 |ωiωjωkωl|Aij
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The first and last terms of the summation take the form:

∑
i

∑
j∈NG

g(i)

∑
k∈NG

g(i)

∑
l∈NG

g(j)

|ωiωjωkωl|Aij =
∑
g

∑
i,j,k,l∈NG

g

|ωiωjωkωl|Aij ≤

max
g

∑
k,l∈NG

g

|ωk||ωl|

∑
g

∑
i,j∈NG

g

|ωiωj |Aij

Since 1
σ2
n
maxh

∑
i,k∈NH

h
|ωi||ωk| = o(1) and 1

σ2
n

∑
g

∑
i,j∈NG

g
|ωiωj |Aij < ∞ by Assumption 5, these

terms are o(1) when divided by σ4
n.

The interactive terms have the form:

∑
i

∑
j∈NG

g(i)

∑
k∈NG

g(i)

∑
l∈NH

h(j)

|ωiωjωkωl|Aij

=
∑
i,j,k

∑
g

1[i ∈ NG
g ]1[j ∈ NG

g ]1[k ∈ NG
g ]
∑
l

∑
h

1[j ∈ NH
h ]1[l ∈ NH

h ]|ωiωjωkωl|Aij

=
∑
j

∑
i,k

∑
g

1[i ∈ NG
g ]1[j ∈ NG

g ]1[k ∈ NG
g ]Aij |ωiωjωk|

∑
h

∑
l

1[j ∈ NH
h ]1[l ∈ NH

h ]|ωl|

≤

(
max

j

∑
h

∑
l

1[j ∈ NH
h ]1[l ∈ NH

h ]|ωl|

)∑
g

∑
i,j,k∈NG

g

|ωiωjωk|Aij


=

max
h

∑
l∈NH

h

|ωl|

∑
g

∑
i,j,k∈NG

g

|ωiωjωk|Aij


=

max
h

∑
l∈NH

h

|ωl|

max
g

∑
k∈NG

g

|ωk|

∑
g

∑
i,j∈NG

g

|ωiωj |Aij



Since
∑

g

∑
i,j∈NG

g
|ωiωj |Aij/σ

2
n ≤ K0 and maxg

∑
k∈NG

g
|ωk|/σn = o(1),

1

σ4
n

∑
i

∑
j∈NG

g(i)

∑
k∈NG

g(i)

∑
l∈NH

h(j)

|ωiωjωkωl|Aij

≤

 1

σn
max
h

∑
l∈NH

h

|ωl|

 1

σn
max

g

∑
k∈NG

g

|ωk|

 1

σ2
n

∑
g

∑
i,j∈NG

g

|ωiωj |Aij

 = o(1)
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Proof of Lemma 1. Apply Lemma 4 on random variable ωiXi to obtain:

dW (R,Z) ≤ 1

σ3
n

n∑
i=1

∣∣∣∣∣∣
∑

j,k∈Ni

E[ωiωjωkXiXjXk]

∣∣∣∣∣∣+
√
2√

πσ2
n

√√√√√V ar

 n∑
i=1

∑
j∈Ni

ωiωjXiXj


Applying Lemma 6 and 7 on each of the two terms, dW (R,Z) = o(1). Proof for consistency of the

variance estimator is equivalent to proving that (σ̂2
n − σ2

n)/σ
2
n = oP (1). By Chebyshev’s inequality,

P

(
σ̂2
n − σ2

n

σ2
n

> ϵ

)
≤ 1

ϵ2
1

σ4
n

E[(σ̂2
n − σ2

n)
2] =

V ar
(∑

i

∑
j∈Ni

ωiωjXiXj

)
ϵ2σ4

n

= oP (1)

The convergence in the last step occurs by Lemma 7.

Lemma 8. Under Assumption 1, 2.1 and 2.2, ∀i, ||(1/(
∑

i ωi))
∑

i ωi(Wi − E[Wi])||
p−→ 0.

Proof. It suffices to show convergence elementwise. Let Xi denote a scalar components of Wi, i.e.,

Xi = Wim, where m ∈ {1, 2, · · · ,K}. By Chebyshev’s inequality, and maxm,k E[W 2
mk] < K0,

P

(
1∑
i ωi

∑
i

ωi(Xi − E[Xi]) > ϵ

)
≤ 1

ϵ2
1

(
∑

i ωi)
2E

∑
i

∑
j∈Ni

ωiωj(Xi − E[Xi])(Yi − E[Yi])


≤ K0

ϵ2
(∑

j ωj

)2 ∑
i

∑
j∈Ni

ωiωj

Hence, it suffices to show (
∑

i

∑
j∈Ni

ωiωj)/
(∑

j ωj

)2
= o(1). Observe

∑
i

∑
j∈Ni

ωiωj(∑
j ωj

)2 ≤
maxi

∑
j∈Ni

|ωj |(∑
j ωj

)
(∑

j ωj

)
(∑

j ωj

)

so it suffices to show maxi
∑

j∈Ni
|ωj |/

(∑
j ωj

)
= o(1). Since λn ≤

∑
i

∑
j∈Ni

|ωiωj |maxmE[W 2
mk] ≤(∑

j |ωj |
)2

maxmE[W 2
mk],

(
maxi

∑
j∈Ni

|ωj |
)2

(∑
j ωj

)2 =

(
maxi

∑
j∈Ni

|ωj |
)2

maxmE[W 2
mk](∑

j ωj

)2
maxmE[W 2

mk]
≤ max

m
E[W 2

mk]

(
maxi

∑
j∈Ni

|ωj |
)2

λn
= o(1)
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Convergence occurs due to Assumption 2.2 and maxmE[W 2
mk] < K0.

Proof of Theorem 1. To show that Q
−1/2
n

∑n
i=1 ωi(Wi − E[Wi])

d−→ N(0, IK), due to the Cramer-

Wold device, it suffices to show that ∀l ∈ RK , l′Q
−1/2
n

∑n
i=1 ωi(Wi − E[Wi])

d−→ l′N(0, IK). If l

is a vector of zeroes, then l′Q
−1/2
n

∑n
i=1 ωi(Wi − E[Wi])

d−→ l′N(0, IK) is immediate. For ||l|| >

0, it suffices to show (1/||l||)l′Q−1/2
n

∑n
i=1 ωi(Wi − E[Wi])

d−→ (1/||l||)l′N(0, IK) = N(0, 1). For

all nonstochastic l ∈ RK\{0}, let σ2
n(l) := V ar

(∑
i(l/||l||)′ (Qn/λn)

−1/2 ωi(Wi − E[Wi])
)
, so the

following hold:

1. E

[((
l

||l||

)′ (
1
λn

Qn

)−1/2
(Wi − E[Wi])

)]
= 0 and E

[((
l

||l||

)′ (
1
λn

Qn

)−1/2
(Wi − E[Wi])

)4
]
≤

K0 for all i.

2. 1
σ2
n(l)

maxc

(∑
i∈NC

c
|ωi|
)2

→ 0.

3. 1
σ2
n(l)

∑
c

∑
i,j∈NC

c
Aij |ωiωj | ≤ K0.

4.

((
l

||l||

)′ (
1
λn

Qn

)−1/2
(Wi − E[Wi])

)
⊥⊥
((

l
||l||

)′ (
1
λn

Qn

)−1/2
Wj

)
if g(i) ̸= g(j) and h(i) ̸=

h(j).

For item 1, since λn := λmin(Qn), all eigenvalues of Qn/λn must be at least 1. Hence, all eigen-

values of (Qn/λn)
−1/2 are bounded above by 1. This implies |(l/||l||)′(Qn/λn)

−1/2| ≤ K1 for

some arbitrary constant K1 < ∞. Item 1 then follows from Assumption 2.1. Observe that

σ2
n(l) = (l/||l||)′(Qn/λn)

−1/2Qn(Qn/λn)
−1/2(l/||l||) = 1/λn. Then, Assumption 2.2 yields item

2 and Assumption 2.3 yields item 3. Item 4 is immediate from Assumption 1. By applying Lemma

1, (1/σn(l))(l/||l||)′(Qn/λn)
−1/2

∑n
i=1 ωi(Wi − E[Wi])

d−→ N(0, 1). By using σ2
n(l) = 1/λn, this is

equivalent to (l/||l||)′Q−1/2
n

∑n
i=1 ωi(Wi − E[Wi])

d−→ N(0, 1) as required.

Proof of Theorem 1.1

Turning to consistent variance estimation, it suffices to show that for all l ∈ RK such that ||l|| = 1,

P (l′Q−1
n (Q̂n −Qn)l > ϵ) → 0. Now, impose the assumption that E[Wi] = 0.

P (l′Q−1
n (Q̂n −Qn)l > ϵ) ≤ 1

ϵ2
E

[(
l′(Q−1

n (Q̂n −Qn))
)2]

=
1

ϵ2
E

(l′( 1

λn
Qn

)−1 1

λn
(Q̂n −Qn)

)2
 ≤ 1

ϵ2
E

[(
l′0

1

λn
(Q̂n −Qn)

)2
]
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where l0 is a vector whose entries are all bounded above by some arbitrary constant K1 < ∞ by

a similar argument as before. Hence, it suffices to show that (1/λn)(Q̂n − Qn)
p−→ 0K×K , where

0K×K is a K × K matrix of zeroes. Since Q̂n − Qn =
∑

i

∑
j∈Ni

ωiωjWiW
′
j − E[ωiωjWiW

′
j ], it

suffices to show convergence elementwise. Let Xi and Yi denote scalar components of Wi, i.e.,

Xi = Wim, Yi = Wip, where m, p ∈ {1, 2, · · · ,K}.

P

 1

λn

∑
i

∑
j∈Ni

ωiωj(XiYj − E[XiYj ]) > ϵ

 ≤ 1

ϵ2
1

λ2
n

V ar

∑
i

∑
j∈Ni

ωiωjXiYj


≤ 1

ϵ2λ2
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

|E[ωiωjωkωlXiXjYkYl]− E[ωiωkXiYk]E[ωjωlXjYl]|

≤ K0

λ2
n

∑
i

∑
j

∑
k∈Ni

∑
l∈Nj

|ωiωjωkωl|(Aij +Ail +Akj +Akl) = o(1)

The inequality in the last line is obtained due to Holder’s inequality and finite moments. An

argument similar to that of Lemma 7 yields the o(1) equality.

Proof of Theorem 1.2

Now assume E[Wi] = µ. Using Lemma 8, W̄
p−→ µ is immediate, i.e., W̄ = µ + oP (1). To ease

notation, let W̃i := Wi − µ. Hence, Qn =
∑

i

∑
j∈Ni

ωiωjE[W̃iW̃
′
j ].

Q̂n =
∑
i

∑
j∈Ni

ωiωj(Wi − W̄ )(Wj − W̄ )′ =
∑
i

∑
j∈Ni

ωiωj(W̃i + oP (1))(W̃j + oP (1))
′

=
∑
i

∑
j∈Ni

ωiωjW̃iW̃
′
j + 2

∑
i

∑
j∈Ni

ωiωjW̃i1
′
KoP (1) +

∑
i

∑
j∈Ni

ωiωj1K1′KoP (1)

Since Q−1
n

∑
i

∑
j∈Ni

ωiωjW̃iW̃
′
j = 1+ oP (1) by Theorem 1.1, it then remains to show that each of

the two remaining terms are oP (1) when pre-multiplied by Q−1
n .

(
1

λn
Qn

)−1 1

λn

∑
i

∑
j∈Ni

ωiωj1K1′K ≤ K0

(
1

λn
Qn

)−1

1K1′K = O(1)1K1′K

The first inequality is due to the assumption that (1/λn)
∑

i

∑
j∈Ni

|ωiωj | ≤ K0, and the O(1) term

occurs due to the eigenvalues of (Qn/λn)
−1 being bounded above by 1. Take some component X̃i
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of W̃i. For all ϵ > 0, there exists Mϵ = K2
0/ϵ < ∞ such that:

P

∣∣∣∣∣∣ 1λn

∑
i

∑
j∈Ni

ωiωjX̃i

∣∣∣∣∣∣ ≥ Mϵ

 ≤ 1

λnMϵ
E

∣∣∣∣∣∣
∑
i

∑
j∈Ni

ωiωjX̃i

∣∣∣∣∣∣


≤ 1

Mϵ
max

i
E[|X̃i|]

1

λn

∑
i

∑
j∈Ni

|ωiωj | ≤
K0

K2
0/ϵ

= ϵ

Hence, Q−1
n

∑
i

∑
j∈Ni

ωiωjW̃i1
′
K = 1K1′KOP (1). Since OP (1)oP (1) = oP (1), the result is obtained.

B Proof of Propositions

Proof of Proposition 1. We have θ̂−θ =
(∑

i D̃
2
i

)−1 (∑
i D̃iui

)
=
∑

i ωiui, where ωi := D̃i/(
∑

j D̃
2
j ).

Let σ2
n := V ar(ωiui). Apply Theorem 1 with K = 1 to

∑
i ωiui. Assumption 1 and Assumption

2.1 are automatically satisfied for clustered random variable ui and weight ωi. Assumption 2.2 is

satisfied because

1

σ2
n

max
c

∑
i∈NC

c

|ωi|

2

≤

1

(
∑

i D̃
2
i )

2 maxc

(∑
i∈NC

c
|D̃i|

)2
K0

1

(
∑

i D̃
2
i )

2

∑
c′

(∑
j∈NC

c′
|D̃j |

)2 =

1

(
∑

i D̃
2
i )

2 maxc

(∑
i∈NC

c
|D̃i|

)2
1

(
∑

i D̃
2
i )

2

∑
c′

(∑
j∈NC

c′
|D̃j |

)2 → 0

where the first inequality comes from Assumption 3.3 and convergence occurs due to Assumption

3.2. Assumption 2.3 is satisfied because

1

σ2
n

∑
c

∑
i,j∈NC

c

Aij |ωiωj | =

1

(
∑

i D̃
2
i )

2

∑
c′
∑

i,j∈NC
c
|D̃iD̃j |

1

(
∑

i D̃
2
i )

2V ar
(∑

i D̃iui

) < ∞

Hence, Theorem 1 yields (θ̂ − θ)/σn
d−→ N(0, 1).

To prove consistent variance estimation, it suffices to show (σ̂2
n − σ2

n)/σ
2
n = oP (1).

σ̂2
n =

∑
i

∑
j∈Ni

ωiuiωjuj − 2

∑
i

∑
j∈Ni

ω2
i ωjuj

 (θ̂ − θ) +

∑
i

∑
j∈Ni

ω2
i ω

2
j

 (θ̂ − θ)2
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By Theorem 1,
(∑

i

∑
j∈Ni

ωiuiωjuj − σ2
n

)
/σ2

n = oP (1). Since (θ̂ − θ)2/σ2
n

d−→ Z2 = χ2
1,

(∑
i

∑
j∈Ni

ω2
i ω

2
j

)
(θ̂ − θ)2

σ2
n

=

∑
i

∑
j∈Ni

ω2
i ω

2
j

OP (1)

(∑
i

∑
j∈Ni

D̃2
i D̃

2
j

)
(∑

i D̃
2
i

)4 ≤

(
maxi

∑
j∈Ni

D̃2
j

)
(∑

i D̃
2
i

)3 ∑
i D̃

2
i∑

i D̃
2
i

≤

(
maxi

∑
j∈Ni

D̃2
j

)
(∑

i D̃
2
i

)2 O(1)

≤

maxg

(∑
j∈NG

g
|D̃j |

)2
∑

g′

(∑
j∈NG

g′
|D̃j |

)2 +
maxh

(∑
j∈NH

h
|D̃j |

)2
∑

h′

(∑
j∈NH

h′
|D̃j |

)2
O(1) = o(1)

Convergence occurs due to Assumption 3.2, so
(∑

i

∑
j∈Ni

ω2
i ω

2
j

)
(θ̂ − θ)2/σ2

n = oP (1). Finally,

(∑
i

∑
j∈Ni

ω2
i ωjuj

)
(θ̂ − θ)

σ2
n

=

(∑
i

∑
j∈Ni

D̃2
i D̃juj

)
σn

(∑
i D̃

2
i

)3 OP (1)

Applying Markov and Minkowski inequalities,

P


∣∣∣∑i

∑
j∈Ni

D̃2
i D̃juj

∣∣∣(∑
i D̃

2
i

)3
σn

> ϵ

 ≤ 1

ϵ

1(∑
i D̃

2
i

)3
σn

E

∣∣∣∣∣∣
∑
i

∑
j∈Ni

D̃2
i D̃juj

∣∣∣∣∣∣


≤ 1

ϵ

1(∑
i D̃

2
i

)3
σn

∑
i

∑
j∈Ni

E|D̃2
i D̃juj | ≤

1

ϵ

maxi
∑

j∈Ni
E|D̃juj |(∑

i D̃
2
i

)2
σn

∑
i D̃

2
i∑

i D̃
2
i

= o(1)

Convergence occurs because

maxi

(∑
j∈Ni

E|D̃juj |
)2

(∑
i D̃

2
i

)2 ≤
maxj E|uj |2maxi

(∑
j∈Ni

|D̃j |
)2

(∑
i D̃

2
i

)2 = o(1)

For Proposition 2, I first prove a consistency result.

Lemma 9. Under Assumption 1, 2.1 and 2.2, and E[Wi] = 0 ∀i, ||(1/(
∑

i ωi))
∑

i ωi(WiW
′
i −
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E[WiW
′
i ])||

p−→ 0.

Proof. It suffices to show convergence elementwise. Let Xi and Yi denote scalar components of

Wi, i.e., Xi = Wim, Yi = Wip, where m, p ∈ {1, 2, · · · ,K}. By Chebyshev’s inequality, and

maxm,k E[W 4
mk] < K0,

P

(
1∑
i ωi

∑
i

ωi(XiYi − E[XiYi]) > ϵ

)

≤ 1

ϵ2
1

(
∑

i ωi)
2E

∑
i

∑
j∈Ni

ωiωj(XiYi − E[XiYi])(XjYj − E[XjYj ])

 ≤ K0

ϵ2
(∑

j ωj

)2 ∑
i

∑
j∈Ni

ωiωj

Hence, it suffices to show (
∑

i

∑
j∈Ni

ωiωj)/
(∑

j ωj

)2
= o(1). This follows from a similar argument

as Lemma 8.

Proof of Proposition 2. E[ui|Xi] = 0 implies E[Xiui] = 0 by law of iterated expectations. Since

E[u4i |Xi] ≤ K0, E[u4iX
4
ik] = E[E[u4i |Xi]X

4
ik] ≤ K0E[X4

ik] ≤ K2
0 is bounded. By Theorem 1,

Q
−1/2
n

∑n
i=1Xiui

d−→ N(0, IK).

To complete the normality result, I show that S−1
n Ŝn

p−→ IK , which is the same as showing that

||S−1
n (Ŝn − Sn)||

p−→ 0. By applying Lemma 9 with ωi = 1, (1/n)(Ŝn − Sn) = (1/n)
∑

i(XiX
′
i −

E[XiX
′
i]) = oP (1). Hence, it suffices that (Sn/n)

−1 has bounded eigenvalues, i.e., λmin(Sn/n) ≥

K1 > 0, which is true by Assumption 4.5. Since β̂ − β = Ŝ−1
n

∑
iXiui, by Slutsky’s lemma,

Q
−1/2
n Sn(β̂ − β)

d−→ N(0, IK).

Next, proceed to consistent variance estimation. Showing that ||Q−1
n Q̂n−IK || = oP (1) is equivalent

to showing that, ∀l ∈ RK , l′
(
Q−1

n (Q̂n −Qn)
)
l = oP (1).

Q̂n :=
∑
i

∑
j∈Ni

ûiûjXiX
′
j =

∑
i

∑
j∈Ni

(ui −X ′
i(β̂ − β))(uj −X ′

j(β̂ − β))XiX
′
j

=
∑
i

∑
j∈Ni

uiujXiX
′
j − 2

∑
i

∑
j∈Ni

uiX
′
j(β̂ − β)XiX

′
j

+

∑
i

∑
j∈Ni

X ′
i(β̂ − β)X ′

j(β̂ − β)XiX
′
j
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By Theorem 1, l′Q−1
n (
∑

i

∑
j∈Ni

uiujXiX
′
j −Qn)l = oP (1). Hence, it remains to show:

∣∣∣∣∣∣
∣∣∣∣∣∣Q−1

n

−2

∑
i

∑
j∈Ni

uiX
′
j(β̂ − β)XiX

′
j

+

∑
i

∑
j∈Ni

X ′
i(β̂ − β)X ′

j(β̂ − β)XiX
′
j

∣∣∣∣∣∣
∣∣∣∣∣∣ = oP (1)

Observe thatX ′
i(β̂−β) =

(
X ′

iS
−1
n Q

1/2
n

)(
Q

−1/2
n Sn(β̂ − β)

)
=
(
X ′

iS
−1
n Q

1/2
n

)
(ZK+1KoP (1)), where

1K is a K-vector of ones. Hence, addressing the second term,

X ′
i(β̂ − β)X ′

j(β̂ − β) =
(
X ′

iS
−1
n Q1/2

n

)
(ZK + 1KoP (1))(ZK + 1KoP (1))

′
(
X ′

jS
−1
n Q1/2

n

)′
=
(
X ′

iS
−1
n Q1/2

n

)
(IKOP (1) + oP (1))

(
X ′

jS
−1
n Q1/2

n

)′
= X ′

iS
−1
n QnS

−1
n XjOP (1)

This implies

Q−1
n

∑
i

∑
j∈Ni

X ′
i(β̂ − β)X ′

j(β̂ − β)XiX
′
j

 = Q−1
n

∑
i

∑
j∈Ni

(
X ′

iS
−1
n QnS

−1
n Xj

)
XiX

′
j

OP (1)

=
1

n2

(
1

λn
Qn

)−1
∑

i

∑
j∈Ni

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)(
1

n
Sn

)−1

Xj

)
XiX

′
j

OP (1)

The eigenvalues of (Qn/λn) are bounded. To see this, it suffices to show that there exists K0 < ∞

such that λmax(Qn)/λn ≤ K0. Due to finite moments, Qn := V ar(
∑

iXi) ≤ K01K×K
∑

c(N
C
c )2.

Since (
∑

c(N
C
c )2)/λn ≤ K0 by Assumption 4, λnK0 ≥

∑
c(N

C
c )2, which implies λn ≥ (

∑
c(N

C
c )2)/K0.

Hence,

λmax(Qn)

λn
≤
∑

c(N
C
c )2K0∑

c(N
C
c )2 1

K0

= K2
0

Recall that (Sn/n)
−1 has bounded eigenvalues. The proof of Theorem 1 also showed that (Qn/λn)

−1
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has bounded eigenvalues. By using Markov and Minkowski inequalities,

P

 1

n2

∣∣∣∣∣∣l′
(

1

λn
Qn

)−1
∑

i

∑
j∈Ni

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)(
1

n
Sn

)−1

Xj

)
XiX

′
j

 l

∣∣∣∣∣∣ > ϵ


≤ 1

n2ϵ
E

∣∣∣∣∣∣l′
(

1

λn
Qn

)−1
∑

i

∑
j∈Ni

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)(
1

n
Sn

)−1

Xj

)
XiX

′
j

 l

∣∣∣∣∣∣


≤ 1

n2ϵ

∑
i

Nimax
m,k

E[X4
mk]K0 ≤

maxiNi

n

n

n
K0 → 0

where K0 ∈ R is an arbitrary (finite) constant. Convergence occurs due to Assumption 4.2, which

implies maxiNi/n → 0. This occurs due to the result that maxi
∑

j∈Ni
|ωj |/

(∑
j ωj

)
= o(1) in the

proof of Lemma 8, using ωi = 1.

Going back to the first term,

Q−1
n

∑
i

∑
j∈Ni

uiX
′
j(β̂ − β)XiX

′
j = Q−1

n

∑
i

∑
j∈Ni

ui

(
X ′

iS
−1
n Q1/2

n

)
(ZK + 1KoP (1))XiX

′
j

=
1

n
√
λn

(
1

λn
Qn

)−1∑
i

∑
j∈Ni

ui

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)1/2
)
XiX

′
jOP (1)

By using Markov and Minkowski inequalities,

P

 1

n
√
λn

∣∣∣∣∣∣l′
(

1

λn
Qn

)−1∑
i

∑
j∈Ni

ui

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)1/2
)
XiX

′
jl

∣∣∣∣∣∣ > ϵ


≤ 1

n
√
λnϵ

E

∣∣∣∣∣∣l′
(

1

λn
Qn

)−1∑
i

∑
j∈Ni

ui

(
X ′

i

(
1

n
Sn

)−1( 1

λn
Qn

)1/2
)
XiX

′
jl

∣∣∣∣∣∣


≤ 1

n
√
λnϵ

∑
i

∑
j∈Ni

max
m1,m2,k

E
[∣∣Xm1kum1X

2
m2

∣∣]K0

≤ 1

n
√
λnϵ

∑
i

Ni max
m1,m2,k

E
[
|Xm1kum1 |2

]1/2
E
[
|X2

m2
|2
]1/2

K0

≤ maxiNi√
λn

1

ϵ
max

m1,m2,k
E[X2

m1ku
2
m1

]1/2E[X4
m2

]1/2K0 = o(1)

The penultimate inequality occurs due to Holder’s inequality. Observe that maxiNi/
√
λn = o(1) if

and only if maxc(N
C
c )2/λn = o(1), which is given by Assumption 4.2. Convergence in the last step

occurs because maxiNi/
√
λn = o(1), and finite moments.
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Hence, it has been shown that Q−1
n Q̂n

p−→ IK . Then, [S−1
n QnS

−1
n ]−1[Ŝ−1

n Q̂nŜ
−1
n ]

p−→ IK by the

continuous mapping theorem.

Proof of Corollary 1. By Proposition 2, (β̂1 − β1)/[V (β̂)]
1/2
11

d−→ N(0, 1). Since θ̂ = β̂1, [V (β̂)]11 =

V (β̂1) = V (θ̂) = σ2
n. Hence, (θ̂ − θ)/σn

d−→ N(0, 1).

A further implication of Proposition 2 is that [V̂ (β̂)]11/[V (β̂)]11
p−→ 1. Using theorem 3 of Ding

(2021), the Liang-Zeger estimators (Liang and Zeger, 1986) are numerically equivalent regardless

of whether the long regression or the residualized regression were used. Since the CGM estimator

is a function of the Liang-Zeger estimators, σ̂2
n = [V̂ (β̂)]11. Hence, σ̂

2
n/σ

2
n

p−→ 1.
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