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Abstract

We study the optimal information design when the receiver can probabilistically verify

the state at a cost. The optimal mechanism trades o¤ between in�uencing the receiver�s

action choice and state-veri�cation choice. The optimal mechanism involves at most three

messages, and is a combination of a cuto¤ structure and a negative assortative structure. For

the action choice, the mechanism recommends the sender-preferred action when the state is

above a threshold. Moreover, above this threshold, the mechanism only recommends state

veri�cation when the state is far enough from the receiver�s outside option in either direction.

In contrast to Matyskova and Montes (2023), the receiver acquires information with positive

probability under the optimal mechanism. Moreover, the optimal mechanism reveals more

information comparing to the case where state veri�cation is exogenous. Finally, we apply

our model to a monopoly pricing problem and show that making information more accessible

to consumers has a nonmonotonic e¤ect on the retail price.

1 Introduction

Di¤erent from the cheap-talk literature, the information-design literature assumes that the in-

formed party (the sender) has commitment power and analyzes the optimal information structure
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to in�uence the action of the other party (the receiver). In this paper, we study an information-

design problem in which the receiver can verify the state at a cost.

By incorporating costly state veri�cation in a model of Bayesian persuasion (Kamenica and

Gentzkow, 2011; Kamenica, 2019), this paper studies how the optimal information structure

trades o¤ between in�uencing the receiver�s choice of information acquisition and action, and

provides full characterization of the optimal information structure.

Environment. We analyze the optimal disclosure mechanism in a stylized Bayesian persua-

sion problem with endogenous information acquisition. The sender would like to sell a product

to the receiver, and the receiver decides whether to buy it. The receiver only wants to buy the

product if the quality of the product is above a certain level, while the sender always wants to

sell the product.

The sender commits to an information structure, and sends a message to the receiver according

to the committed information structure and the actual quality. After receiving the message, the

receiver can decide whether to incur a cost to acquire extra information about the quality before

purchasing. We consider a stylized information acquisition technology, namely, probabilistic state

veri�cation. If the receiver decides to bare the cost, then she learns the quality perfectly with some

probability. But the veri�cation can also fail. In this case, the receiver does not learn anything

in addition. Finally, based on the received message and the outcome of the state veri�cation, the

receiver chooses whether to buy the product or not.

The central innovation of our model, that the receiver could acquire further information us-

ing an imperfect technology after receiving information from the sender, is a natural assumption

in many applications of Bayesian persuasion. The party who provides the information often

does not have control over the other party�s alternative information sources. For example, while

E-commerce platforms can provide information about their products through reviews and recom-

mendations, they cannot forbid consumers to go to other sources for further information on the

products. Similarly, even though �rms can provide information to potential investors, investors

can also conduct their own research or purchase information from other sources.

Main result. The optimal information structure combines a cuto¤ structure and a negative
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assortative structure. It recommends the receiver to buy the product if and only if the quality

is above a quality threshold. For quality above the threshold, the optimal information structure

recommends not to verify the quality if and only if the quality is in an interval around the

receiver�s outside option. If it is recommended not to buy the product, the receiver does not buy

the product and does not verify the quality. If it is recommended to buy the product and not

to verify, the receiver buys the product and does not verify. If it is recommended to buy the

product and verify the quality, the receiver veri�es the quality and buys the product only if the

quality is not found out to be lower than receiver�s outside option.

We show that the optimal information structure only involves three messages, and can be

characterized by three cuto¤s. The lowest qualities are revealed, and moderate qualities are

pooled and revealed to dissuade the receiver from state veri�cation.

Related literature. This paper contributes to the literature on Bayesian persuasion ini-

tiated by Kamenica and Gentzkow (2011). Most of the literature assumes that the sender is

the only source of information. Some notable exceptions consist of Au (2015), Kolotilin et al.

(2017), Kolotilin (2018), and Guo and Shmaya (2019), which all consider a receiver with private

information. Gentzkow and Kamenica (2016) and Li and Norman (2018, 2019) consider multiple

senders.

This paper considers Bayesian persuasion with endogenous information acquisition. The

paper is closest to Matyskova and Montes (2023), Bizzotto et al. (2020), and Ederer and Min

(2022). Matyskova and Montes (2023) consider an environment with general payo¤ functions

and uniformly posterior-separable information cost. One implication of such a cost function is

that the receiver has access to information of any precision level and any form, which is not true

in this paper. They show that the optimal information structure can be solved as a standard

Bayesian persuasion problem under a receiver-never-learn constraint. In contrast, with limited

access to information, the receiver still learns under the optimal information structure in this

paper. Both Bizzotto et al. (2020) and Ederer and Min (2022) consider an environment with

a binary state space, while this paper considers an environment with a continuous state space.

The assumption of a rich enough state space is important for our results, as the non-unitary

assortative structure we �nd in this paper cannot arise in a model with less than three states.
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These authors also consider information technologies di¤erent from this paper. In Bizzotto et

al. (2020), the receiver can run a binary test on the quality, the precision of which is symmetric

in both states. Ederer and Min (2022) consider a probabilistic lie detection technology instead,

which indicates whether the message is a lie or not.

In terms of our assumption on receiver�s information technology, this paper is related to the

recent literature on communication with detectable deception. The majority of the literature

considers detectable deception in a cheap-talk setting. Dziuda and Salas (2018) and Balbuzanov

(2019) consider lie detection similar to Ederer and Min (2022). Sadakane and Tam (2022) and

Zhao (2018) consider state veri�cation rather than lie detection, and Zhao (2018) also endogenizes

state veri�cation. Levkun (2021) considers fact checking provided by a third party, which is

equivalent to state veri�cation in the binary-state setting he considers.

In terms of the structure of our optimal information structure, our result shares some simi-

larities with the negative assortative information structure in Goldstein and Leitner (2018), Guo

and Shmaya (2019), Terstiege and Wasser (2020), and Kolotilin et al. (2022). Goldstein and

Leitner (2018) consider the design of optimal stress test, and provide examples of nonmonotone

rules. Guo and Shmaya (2019) consider a Bayesian persuasion problem with a privately informed

receiver and �nd that the optimal disclosure mechanism has a nested-interval structure. Ter-

stiege and Wasser (2020) study the buyer-optimal information structure under monopoly pricing

with the constraint that the information structure be extensionproof: the seller must have no

incentive to add information. They show that an optimal extensionproof information structure

takes the form of unitary single-peaked p-pairwise disclosure. Kolotilin et al. (2022) provide sim-

ple conditions for the positive and negative assortative patterns of information disclosure, and

according to their terminology, our optimal information structure has a non-unitary assortative

pattern. Interestingly, even though our optimal mechanism is similar to those in Goldstein and

Leitner (2018) and Guo and Shmaya (2019), the reasons behind are quite di¤erent. Goldstein

and Leitner (2018) obtain the nonmonotone structure because the gain-to-cost ratio, which is

crucial to their optimal stress test, is not monotone in the type. Guo and Shmaya (2019) obtain

the nest-interval structure because, when the private information is precise enough, high types

are easier to persuade, which means that a separating mechanism is optimal. In this paper, the
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negative assortative pattern among the recommended types arises because it is optimal for the

sender to provide extra information to dissuade the receiver from state veri�cation.

2 Model

We consider a Bayesian persuasion game with two players, Sender (S) and Receiver (R). Sender

(he) sends Receiver (she) a message that depends on a state of nature that is unobserved by

Receiver. Upon receiving the message, Receiver decides whether to verify the state. Receiver

then chooses an action.

Disclosure. Let � represents the state of nature, and � is drawn from the cumulative distrib-

ution function (CDF) F over [0; 1], which admits the strictly positive probability density function

(PDF) f . The sender chooses an information structure. After the state of nature is drawn, the

receiver observes a message generated by the chosen information structure. An information struc-

ture is combination (M;G (:)) of a message set M and a function G : [0; 1] ! �(M) such that

if the state is �, then a message m 2 M is drawn according to distribution G (�) and observed

by the receiver. A no-disclosure mechanism has G (�) = G
�
�0
�
for all � 2 [0; 1]. A truth-telling

mechanism has distributions G (�) whose supports are disjoint across �, so that it fully reveals

the state. A cuto¤ mechanism with two intervals has a cuto¤ �� such that 1) for � < �� and

�0 > ��, the supports of G (�) and G
�
�0
�
are disjoint, 2) for all �; �0 < ��, G (�) = G

�
�0
�
, and 3)

G (�) = G
�
�0
�
for all �; �0 > ��. A deterministic information structure has a degenerated G (�)

for each � 2 [0; 1], and can be summarized by a function m : � !M:

State veri�cation. Receiver can verify the state � at a cost c > 0, and denote the state-

veri�cation e¤ort by e 2 f0; 1g. The state veri�cation generates a signal s 2 [0; 1] [ f�g. The

expertise level q 2 (0; 1] determines the probability that Receiver learns the state. With proba-

bility q, s = �; and with probability 1 � q, s = �. The expertise q is independent of the state,

so there is no updating of Receiver�s belief when state veri�cation is not successful. We refer to

the vector (q; c) as the state-veri�cation technology, and de�ne C = c=q as the quality-adjusted

veri�cation cost. For notation simplicity, we assume that Receiver still receives a signal s = � if

she chooses not to verify the state. We assume that Receiver does not verify the state whenever
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she is indi¤erent.

Payo¤s. Receiver chooses a binary action a 2 f0; 1g. When a = 1, Sender gets a payo¤

of 1, and Receiver gets a payo¤ of �. When a = 0, Sender gets zero payo¤, and Receiver gets

a constant payo¤ of R 2 (0; 1). In addition, Receiver bears the state-veri�cation cost c if she

chooses to verify the state. Sender�s payo¤ uS (a) is independent of the state �, and Receiver�s

payo¤ uR (a; e; �) is summarized in Table 1.

e = 1 e = 0

a = 1 � � c �

a = 0 R� c R

Table 1. Receiver�s payo¤

Sender�s objective is to maximize the probability of Receiver choosing a = 1. Receiver chooses

a = 1 if E (�js;m;G) > R, and a = 0 if E (�js;m;G) < R. We further assume that Receiver

always chooses a = 1 whenever she is indi¤erent.

Timeline. There are four stages. First, Sender chooses an information structure (M;G), and

nature draws � according to F . Second, Sender observes state �, and sends message m according

to G (�). Third, Receiver observes message m, and decides whether to verify the state. Fourth,

Receiver observes signal s, and chooses action a. The payo¤s are realized.

2.1 An example

Consider an E-commerce platform (Sender) that receives commission fees according to the sales

volume, so its payo¤ is independent of the product quality. The customer�s payo¤ from purchasing

the product depends on the product quality �, which is uniformly distributed on [0; 1]. The

product price p is 0:6, so the customer�s payo¤ is ��0:6 if she buys the product, and 0 otherwise.

The platform�s revenue is 1 if the customer buys the product, and 0 if not.

The platform designs a disclosure rule about the product quality and can commit to this rule.

If the customer has no private information, the platform will reveal whether the quality is above
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or below 0:2. When the quality is revealed to be above 0:2, the average quality is 0:6, and the

customer is indi¤erent between buying and not buying and buys the product. When the quality

is revealed to be below 0:2, the average quality is 0:1, and the customer would not buy.

When the customer can acquire extra information after the platform�s disclosure, the optimal

disclosure rule is no longer a simple cuto¤ mechanism. Suppose the customer can learn the

quality � with probability 0:9 at a cost c = 0:01. The optimal disclosure rule is illustrated in

Figure 1.

Figure 1. Optimal disclosure rule

In this numerical example, � = 0:92, � = 0:50 and �� = 0:34. According to the optimal

disclosure rule, the platform reveals whether the quality � is below or above a quality threshold

�� and whether the quality � is close to the price 0:6. First, the platform recommends No-buy

if quality � is below ��, and the customer follows the recommendation and simply does not buy

the product. The platform recommends Buy if � is above ��. Second, on top of this No-buy/Buy

recommendation, the platform further reveals whether � is between � and �, and indicates the

product is Fair-value if so. In this case, the customer buys the product without further searching

for product information. If a product is recommended as Buy but not indicated as Fair-value,

the customer would further search for product information and buys the product only if she �nds

no bad news.

The average quality of Fair-value products is 0:71, while the average quality of Buy product is

0:67, which is still higher the price. We will show in our analysis later that a product indicated as

Fair-value always has a higher expected value than a product indicated as Buy but not Fair-value,

and more No-Buy recommendation is made.
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3 Analysis

In this section, we �rst discuss the benchmark case with exogenous state veri�cation. We then

discuss the optimal information structure when state veri�cation is endogenous.

3.1 Benchmark: exogenous state veri�cation

When state veri�cation is exogenous, then with probability q, Receiver is perfectly informed,

and no information provided by Sender could in�uence her action choice a; with probability

1� q, Receiver is uninformed, and chooses action based on the information received from Sender.

Therefore, the optimal information structure is the same as when there is no private information.

When there is no private information, the persuasion problem is a simple one: Sender, who wants

to maximize the probability that a = 1, chooses an information structure and sends a message

to Receiver accordingly. Receiver chooses a = 1 if and only if the expected value of � given the

message is at least R.

The optimal information structure is a simple cuto¤ mechanism with two messages, m0 and

m1. There is a cuto¤ �e 2 [0; R] such that m (�) = m0 for all � < �e, and m (�) = m1 for all

� > �e. When Receiver has no private information, Receiver chooses a = 0 if m = m0, Receiver

chooses a = 1 if m = m1. The cuto¤ �e is 0 if E (�) � R and given by

E (�j� > �e) = R

if E (�) < R. Figure 2 illustrates the optimal information structure.

Figure 2. Optimal information structure when state veri�cation is exogenous

When state veri�cation is exogenous, given the perfect revealing nature of state veri�cation,

the optimal information structure does not distort disclosure to in�uence Receiver�s belief updat-

8



ing. We will see in the next section that this is not true when state veri�cation is endogenous or

with other information technology (Guo and Shmaya 2019).

3.2 Preliminary analysis

The space of all information structures is the space of all functions that map the state space

[0; 1] to the space of all distributions over the message space M . Our �rst result shows that we

can reduce the search of the optimal information structure to information structures that involve

only three messages. Denote the action choice given message m and signal s by a (m; s), the

state-veri�cation choice given message m by e (m).

The state-veri�cation technology has two distinctive features: 1) when state veri�cation is

successful, Receiver receives perfect information about the state, that is, s = � 2 [0; 1]. The in-

formation content that Receiver receives from Sender becomes redundant. Thus, for any m 2M ,

a (m; s) = 1 if s � R, and a (m; s) = 1 if s < R. 2) When state veri�cation is unsuccessful, Re-

ceiver receives no information, that is, s = �. Receiver�s updating solely depends on information

provided by Sender, which is the same as if no state veri�cation has ever taken place. So, for any

m 2M , a (m;�) = 1 if E (�jm;G (�)) � R, and a (m;�) = 0 if E (�jm;G (�)) < R.

Therefore, we do not need to keep track of Receiver�s action when state veri�cation is suc-

cessful, but only when it is unsuccessful. Even though the optimal information structure can

be very complicated, given that Receiver�s action a and state-veri�cation decision e are both

binary, by Kamenica and Gentzkow (2011), any information structure is outcome-equivalent to

an information structure with four types of messages: type-11, a (m;�) = 1, e (m) = 1; type-10,

a (m;�) = 1, e (m) = 0; type-01, a (m;�) = 0, e (m) = 1; type-00, a (m;�) = 0, e (m) = 0.

The message type fully determines Receiver�s choices after receiving that message. For example,

when Receiver receives a type-01 message, she veri�es the state. When the state veri�cation is

successful, and the state is revealed to be above R, Receiver chooses a = 1. When the state

veri�cation is unsuccessful, or the state is revealed to be below R, Receiver chooses a = 0.

Now we show that type-01 messages are not a part of any optimal information structure.

Lemma 1 (No type-01) The optimal information structure never sends message m such that

a (m;�) = 0, and e (m) = 1.
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Proof. Suppose a type-01 message m is used in the optimal information structure. There must

be a positive measure of � � R such that Pr (mj�) > 0. Otherwise, state veri�cation always

leads to a = 0 and it is suboptimal to verify the state. Therefore, we can consider another

information structure that, for all �, given which m is sent with positive probability, truthfully

reveals the state with the same probability instead. For all � � R, Pr (a = 1) = q after m is

sent in the original information structure and Pr (a = 1) = 1 after � is revealed. For all � < R,

Pr (a = 1) remains unchanged. This is a strict improvement, which contradicts the optimality

of the original information structure. Therefore, there cannot be any type-01 message in the

optimal information structure.

We can further combine the other three types of messages into three messages. Denote the

resulting three messages by m�, m0, and m1, which correspond to type-00, type-10, and type-11

messages, respectively.

Incentive compatibility implies that, for m0,

E (�jm0) � R; (A0)

qPr (� < Rjm0) (R� E (�j� < R;m0)) � c; (C0)

and for m1,

E (�jm1) � R; (A1)

qPr (� < Rjm1) (R� E (�j� < R;m1)) � c: (C1)

(A0) and (A1) imply that a (m0; �) = a (m1; �) = 1. (C0) implies e (m0) = 0, and (C1) implies

e (m1) = 1. The left-hand side of (C0) and (C1) are the bene�t of state veri�cation. For m 2

fm0;m1g, a (m;�) = 1. Therefore, state veri�cation only changes Receiver�s action a when � < R

and it happens with probability q. The payo¤ changes, when the state veri�cation is successful,

is R� �. Hence, the bene�t of state veri�cation is given by qPr (� < Rjm) (R� E (�j� < R;m)),

which is increasing in Pr (� < Rjm) and decreasing in E (�j� < R;m).

The presence of the constraints (C0) and (C1) indicate that Receiver�s choice depends not

only on the mean of the posterior, but also on the entire distribution of the posterior. This
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separates this paper from most other work on information design with a continuum of states

(Kamenica and Gentzkow 2011; Dworczak and Martini 2019; Kleiner, Moldovanu and Strack

2021; Arieli et al. 2023).

Our next lemma shows that there is a cuto¤ �� below R such that, a (m;�) = 0 for all � < ��,

and a (m;�) = 1 for all � � ��, which corresponds to the Buy/No-buy cuto¤ in the platform

example.

Lemma 2 (Cuto¤ for a (m;�)) There exists some �� < R such that a (m;�) = 0 if and only

if � < ��.

We prove Lemma 2 formally in the Appendix using calculus of variations. Here, we derive

this result heuristically by focusing on deterministic information structures. Suppose �rst that

there is some � > R, given which m� is sent in the optimal information structure. Then, consider

another information structure that truthfully reveals these ��s. Since Pr (a = 1jm�) = 0, this

strictly improves Sender�s payo¤. Therefore, the optimal information structure will only send m�

when � < R.

Next, suppose that the optimal information structure sends m� for some �0 < R and m0

for some �00 < �0. Consider a new information structure that sends m0 given �0 and m�

given �00. Given the new information structure, E (�jm0) and E (�j� < R;m0) are higher, while

Pr (� < Rjm0) remains unchanged. Such a change relaxes both (A0) and (C0), which further

enables the new information structure to send m0 for some extra � < R that sends m� in the orig-

inal information structure. This strictly increase Pr (m0j� < R), which implies Pr (a = 1j� < R)

is higher under the new information structure. This is a contradiction. The same logic applies

to the message m1.

The optimal information structure is equivalent to an information structure that truthful

reveals all � < ��. For low �, the optimal information structure truthfully reveals the state and

dissuades Receiver both from choosing a = 1 and investing in the state veri�cation. Figure 3

illustrates the cuto¤ structure for a (m;�).
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Figure 3. Cuto¤ structure for a (m;�)

Given (A0) and (A1), E (�jm0) � R and E (�jm1) � R. Therefore, �� � �e. This means that

the optimal information structure reveals more low states when state veri�cation is endogenous.

Moreover, the optimal information structure sends only one message above �e when state ver-

i�cation is exogenous and up to two messages above �� when state veri�cation is endogenous.

This means that the optimal information structure with endogenous state veri�cation is more

informative above the cuto¤ as well. Thus, we have

Corollary 1 The optimal information structure reveals more information when state veri�cation

is endogenous than when state veri�cation is exogenous.

3.3 Optimal information design

In this section, we consider a constrained information design problem. We show that, given

any ��, the optimal information structure has a negative assortative structure on the interval

[��; 1]. That is, there exists two thresholds � and �, such that m (�) = m0 for all � 2
�
�; �
�
, and

m (�) = m1 for all � 2 (��; �) [
�
�; 1
�
. Hence, we have the main characterization result of this

paper.

Theorem 1 Any optimal information structure is outcome-equivalent to an information struc-

ture with at most three messages that is characterized by three cuto¤s ��, �, and � such that

0 � �� � � � � � 1 and satis�es

1. m (�) =

8>>>><>>>>:
m� if � < ��

m0 if � < � < �

m1 o.w.

;

2. a (m�; �) = 0, a (m0; �) = a (m1; �) = 1, e (m�) = e (m0) = 0, and e (m1) = 1;
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3. for all m 2 fm�;m0;m1g, a (m; s) = 1 if s = � > R, and a (m; s) = 0 if s = � < R.

The optimal information structure is a combination of a cuto¤ structure and a negative

assortative structure. For the action recommendation, the optimal information structure has a

cuto¤ structure. Below ��, the recommended action is a = 0. For this interval, sending m� is

equivalent to truthful revealing, because, for all � < R, Receiver�s optimal action is a = 0 and �� <

R. Above ��, the recommended action is a = 1. For the state-veri�cation recommendation, the

optimal information structure has a negative assortative structure for � > ��. State veri�cation

is only recommended for � in between �� and �, and in between � and 1. A typical three-message

optimal information structure is illustrated in Figure 4.

Figure 4. Three-message optimal information structure

To understand Theorem 1, we formulate Sender�s choice between messages m0 and m1 as

an in�nite-dimensional maximization problem. We show that, for any feasible and incentive

compatible information structure with a speci�c cut-o¤ ��, it is not optimal if it does not have

a negative assortative structure on [��; 1]. The proof is in Appendix, and we explain the result

heuristically by focusing on deterministic information structure.

Consider the following constrained maximization problem with a �xed �� > 0.

max
x0(�);x1(�)2[0;1]
x0(�)+x1(�)=1

Z R

��
[x0 (�) + x1 (�) (1� q)] f (�) d� +

Z 1

R
f (�) d�

s.t.

Z 1

��
(� �R)x0 (�) f (�) d� � 0; (A0)Z 1

��
(� �R)x1 (�) f (�) d� � 0; (A1)

C

Z 1

R
x0 (�) f (�) d� +

Z R

��
(� �R+ C)x0 (�) f (�) d� � 0; (C0)
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where x0 (�) and x1 (�) are the probabilities that m0 and m1 are sent given �, respectively. Note

that we have ignored the constraint (C1). This is because when (C1) is violated, Receiver would

not verify the state. In this case, we can simply replace the message m1 with m0. This new

solution will be a solution of the original problem with the constraint (C1).

We can see from the constraints (A0)-(C1) the trade-o¤ between sending m0 and m1: for

� > R, sending either signal leads to certain acceptance and relaxes (A0) or (A1), but sending

m0 also relaxes (C0); for � < R, sending m1 induces investigation and a positive probability of

rejection, but it only tightens (A1), while sending m0 induces no investigation, but it a¤ects (C0)

in additional to tightening (A0).

Moreover, note that the extent to which assigning � > R to either signal relaxes (A0) or (A1)

depends on the distance between � and R, � � R. High � brings more to the table than low �.

However, to (C0), quantity matters rather than quality, that is, the extent how assigning � > R

to m0 relaxes (C0) depends only on f (�), but not � �R.

Rewrite (A0) and (A1) as

Z 1

R
(� �R)x0 (�) f (�) d�| {z }

CR0

�
Z R

��
(R� �)x0 (�) f (�) d�| {z }

CC0

;

and Z 1

R
(� �R)x1 (�) f (�) d�| {z }

CR1

�
Z R

��
(R� �)x1 (�) f (�) d�| {z }

CC1

:

The left-hand side can be viewed as credibility resources (CR0 and CR1), and the right-hand

side can be viewed as credibility costs (CC0 and CC1). Each unit of � > R brings in ��R units

of credibility resources to either m0 or m1, and the e¤ect is the same. On the other hand, each

unit of � < R incurs ��R units of credibility cost to either m0 or m1, and the e¤ect is the same

as well. If the maximization problem is subject to only (A0) and (A1), then x0 (�) = 1 for all

� � ��. The only reason to send m1 instead of m0 is to satisfy (C0).

Note that

CR0 + CR1 =

Z 1

R
(� �R) f (�) d�,
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which is a constant. Thus, the total credibility resource are �xed and an information structure

simply distributes them across m0 and m1.

Furthermore, rewrite (C0) as

C

Z 1

R
x0 (�) f (�) d�| {z }
V C0

�
Z R

��
(R� � � C)x0 (�) f (�) d�| {z }

V B0

:

The left-hand side can be viewed as the net veri�cation cost (V C0), and the right-hand side the

net veri�cation bene�t (V B0). State veri�cation does not bring any bene�t for � > R, because

a = 1 regardless of the outcome of state veri�cation. Each unit of � > R raises C units of net

veri�cation cost, and each unit of � < R brings R� � � C units of net veri�cation bene�t.

To show that the optimal information structure must have a cuto¤ structure above R, consider

the following maximization problem

max
x0(�)2[0;1]

C

Z 1

R
x0 (�) f (�) d�

s.t. Z 1

R
(� �R)x0 (�) f (�) d� = CR0;

which requires the information structure to provide a �xed amount of credibility resource CR0

while maximizing the net veri�cation cost. The solution to this maximization problem has a

cuto¤ structure, which is characterized by a cuto¤ � 2 (R; 1) such that

Z �

R
(� �R) f (�) d� = CR0:

Intuitively, since high � counts more toward the credibility resource, keeping the total credibility

resource constant at CR0, sending m0 for low � would increase the total probability that m0 is

sent.

For any information structure, if we replace the part of the original information structure

above R with the resulting cuto¤ structure such that x0 (�) = 1 if � 2
�
R; �

�
and x1 (�) = 1 if

� 2
�
�; 1
�
. The resulting information structure is also the unique maximizer of

R 1
R x0 (�) f (�) d�,
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which is equivalent to relaxing (C0). If the resulting information induces more net veri�ca-

tion cost than the original one, then it is possible to further improve Sender�s payo¤ by re-

placing some m1 with m0. Thus, the optimal structure must have a cuto¤ structure on [R; 1].

Second, consider the following minimization problem

min
x0(�)2[0;1]

Z R

��
(R� � � C)x0 (�) f (�) d�

s.t. Z R

��
(R� �)x0 (�) f (�) d� = CC0:

Notice that

Z R

��
(R� � � C)x0 (�) f (�) d� =

Z R

��
(R� �)x0 (�) f (�) d� � C

Z R

��
x0 (�) f (�) d�

= CC0 � C
Z R

��
x0 (�) f (�) d�:

The solution to this maximization problem also has a cuto¤ structure, which is characterized by

a cuto¤ � 2 (��; R) such that Z R

�
(R� �) f (�) d� = CC0:

Replace the part of the original information structure below R with the resulting cuto¤

structure, such that x0 (�) = 1 if � 2 (�;R) and x1 (�) = 1 if � 2 (��; �). The resulting infor-

mation structure also uniquely maximizes
R R
�� x0 (�) f (�) d�, which is equivalent to maximizing

Pr (a = 1j� 2 (��; R)). Therefore, the optimal structure has a cuto¤ structure on [��; R].

In Proposition 1, we further classify the optimal information structure into four groups.

Proposition 1 Any optimal information structure is outcome-equivalent to one of the following

mechanism:

1. No-disclosure mechanism: Sender reveals no information and always recommends a = 1,

and state veri�cation is never recommended;
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2. Cuto¤ mechanism: Sender reveals whether � is above or below a cuto¤ and recommends

a = 1 if and only if � is above the cuto¤, and state veri�cation is never recommended;

3. Negative assortative mechanism: Sender reveals whether � is in an interval around R and

recommends state veri�cation if � is not in this interval, and a = 1 is always recommended;

4. Three-message mechanism.

Figure 5 illustrates all four types of optimal information structures.

Figure 5. Classi�cation of optimal information structures

The no-disclosure mechanism corresponds to the information structure that only sends one

message. Since m0 is sent with positive probability in any optimal information structure, then

in any no-disclosure mechanism, m0 is the only message sent by Sender. This is also the most

preferred information structure by Sender, and Sender achieves the highest payo¤ possible when
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the optimal information structure is a no-disclosure mechanism. It occurs when the prior belief

is optimistic and state veri�cation is expensive.

The cuto¤mechanism corresponds to the information structure that does not sendm1. Sender

reveals enough information such that Receiver does not verify the state. It occurs when the prior

belief is less optimistic and state veri�cation is expensive.

The negative assortative mechanism corresponds to the information structure that does not

send m�. Sender always recommends his preferred action, but it is too costly to dissuade state

veri�cation completely. It occurs when the prior belief is optimistic but state veri�cation is less

expensive.

The three-message mechanism is the one discussed in Theorem 1, and all three messages are

sent. It occurs when prior belief is less optimistic and state veri�cation is less expensive.

In the next section, we solve the optimal information structure for the environment with uni-

form distribution, and provide explicit conditions for each type of optimal information structures.

4 Optimal information structure under uniform distribution

In this section, we consider the uniform distribution, i.e., for all � 2 (0; 1), f (�) = 1, and illustrate

how our characterization can be used to solve for the optimal information structure.

We �rst provide the necessary and su¢ cient condition under which the optimal information

structure is a no-disclosure mechanism. In a no-disclosure mechanism, by Proposition 1, only m0

is sent. When Sender always sends m0, which recommends a = 1 and e = 0, Receiver �nds it

optimal to follow the recommendation that a = 1 if and only if

R � E (�) = 1

2
. (1)

Furthermore, for no state veri�cation to be optimal, the bene�t of state veri�cation must be

small enough, that is, (C0) must be satis�ed. Therefore,

C

Z 1

R
d� +

Z R

0
(� �R+ C) d� = C (1�R) +

�
C � R

2

�
R � 0,
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which can be simpli�ed to

R �
p
2C: (2)

Given (1) and (2), under the no-disclosure mechanism, action a = 1 is chosen with probability

1, so Sender has achieved the highest possible payo¤. As a result, (1) and (2) are necessary and

su¢ cient for the optimal mechanism to be a no-disclosure mechanism.

Proposition 2 Suppose the state is uniformly distributed. The optimal information structure is

a no-disclosure mechanism if and only if

R � 1

2
and R �

p
2C.

Second, we provide the su¢ cient and necessary condition, under which the optimal infor-

mation structure induces state veri�cation, that is, m1 is sent with positive probability. We

start with a useful lemma that partially characterizes optimal information structures that recom-

mend state veri�cation with positive probability, which does not rely on the uniform distribution

assumption.

Lemma 3 If, in the optimal information structure, there is a positive measure of � such that

m (�) = m1, then (C0) is binding.

To see why Lemma 3 must hold, suppose (C0) is not binding in the optimal information

structure. If there is some positive measure of � such that E (�) � R and m (�) = m1. We can

always pick a subset of these ��s such that the expected value equals R and setm (�) = m0 instead

of m1. By construction, (A0) and (A1) still hold. Since (C0) is not binding, if the measure of

these ��s is small enough, (C0) holds as well. This strictly improves Sender�s payo¤ and therefore

is a contradiction.

Given � � R, if (C0) is binding, � is uniquely pinned down by

C
�
� �R

�
� (R� �)

�
R� R+ �

2
� C

�
= 0:
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Denote the unique solution to the above equation that satis�es � � R by

�C0
�
�
�
:= R� C �

q
2C
�
� �R

�
+ C2.

Suppose (A0) is binding, � is uniquely pinned down by

�A0
�
�
�
:= 2R� �;

which is the solution to the equation

�
� �R

��� +R
2

�R
�
+ (R� �)

�
R+ �

2
�R

�
= 0.

By Lemma 3, if (C0) is not binding, m1 is not sent. In that case, � = 1 and � = ��. Suppose (C0)

binds. Since (A0) requires that � is not smaller than �A0
�
�
�
, we must have �C0

�
�
�
� �A0

�
�
�
.

Moreover, @
@� (�C0 (�)� �A0 (�)) > 0, and �C0 (�) = �A0 (�) if � = R+4C. Therefore, � � R+4C

whenever m1 is sent with positive probability. When R + 4C � 1, no such � < 1 exists. As a

result, the optimal information structure does not send m1. Together with the condition R > 1
2 ,

which guarantees �� > 0, 1 � R + 4C forms a su¢ cient condition for the optimality of the

cuto¤ mechanism. When q � 2
3 , these two conditions are also necessary. Since Proposition 2 has

already identi�ed the condition for a no-disclosure mechanism, in the remaining region in the

parameter space, i.e.,
p
2C < R < 1 � 4C, the optimal information structure must recommend

state veri�cation with positive probability. Proposition 3 further identi�es conditions for the

optimal information structure to recommend state veri�cation with positive probability when

q > 2
3 .

Proposition 3 Suppose the state is uniformly distributed. If q � 2
3 , then the optimal information

structure recommends state veri�cation with positive probability if and only if

p
2C < R < 1� 4C.

If 23 < q < 1, then the optimal information structure recommends state veri�cation with positive
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probability if and only if
p
2C < R < 1�Q (q)C,

where

Q (q) :=
4q

3� 2q � q2 � (1� q)
3
2
p
9� q

.

If q = 1, then the optimal information structure never recommends state veri�cation with positive

probability.

Moreover, Q
�
2
3

�
= 4, limq!1Q (q) = 1, and, for all q 2 (0; 1), Q0 (q) > 0, which implies

that as q gets larger, the set of R such that the optimal information structure recommends state

veri�cation gets smaller. Intuitively, as q increases, while C remains �xed, it becomes more

likely the true state is discovered by Receiver when the state is veri�ed. This means that it is

relatively more costly to send message m1. As a result, Sender reduces the use of message m1.

The proposition is illustrated in Figures 6(a) and 6(b).

Figure 6(a). Optimal mechanism (q = 0:6) Figure 6(b). Optimal mechanism (q = 0:8)

For both �gures, the optimal information structure is a no-disclosure mechanism in the white

region, and a cuto¤ mechanism in the yellow region. Both of these mechanisms recommend

no state veri�cation. The optimal mechanism is a three-message mechanism in the red region

and a negative assortative mechanism in the blue region. Both of these mechanisms involve

state veri�cation. Figure 6(a) represents the situation when q < 2
3 , when the state veri�cation
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technology is relatively imprecise. In this case, the line R = 1 � Q (q)C is always to the right

of the line R = 1 � 4C. The total area of the blue and red regions is always the same, which

corresponds to the �rst part of Proposition 3. When q = 2
3 , the two lines coincide. Figure

6(b) represents the situation when q > 2
3 , when the state veri�cation technology is relatively

precise. In this case, the line R = 1 � Q (q)C is always to the left of the line R = 1 � 4C and

it determines the boundary between the yellow region and the (combined) blue and red region,

which corresponds to the second part of Proposition 3. The boundary between the blue and red

regions does not admit a closed form expression and is plotted here numerically.

Moreover, Figures 6(a) and 6(b) also show that, a su¢ cient condition for no state veri�cation

in the optimal information structure is C � 1
8 . Intuitively, when state veri�cation is costly

enough, it is possible to prevent Receiver from verifying. On the other hand, given c and q, the

optimal information structure induces state veri�cation only for intermediate level of R. This is

because, for low R, it is easier to support no disclosure and for high R, that is, it is easier to

satisfy (A0) than (C0), so the optimal information structure allocates all the credibility resources

to m0 rather than m1.

5 Information and price setting

A seller can supply information to consumers to segment the market and charge higher prices to

high-value buyers. Suppose in our model Sender is a seller of a good and Receiver a buyer. In this

case, the outside option R can be interpreted as the price set by the seller and the seller sets the

price and chooses the information revealed to the buyer at the same time. Lewis and Sappington

(1994) consider a monopoly pricing problem with a seller who chooses how much information

potential buyers would get. In their setting, the seller chooses how likely potential buyers would

have access to an exogenously given signal and they show in a variety of settings that the seller

would either choose to provide the maximal amount of information or no information. In this

section, we show in our setting that no information is only optimal when the veri�cation cost is

high enough, and full information is never optimal. Moreover, the optimal price is not monotone

in the veri�cation cost.

For simplicity, consider the uniform distribution case, i.e., for all � 2 (0; 1), f (�) = 1, and
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assume the veri�cation technology is perfect, i.e., q = 1. We can solve the seller�s problem in two

steps: step 1, given any R, choose the optimal information structure; step 2, choose the optimal

R�. By Proposition 3, when q = 1, for any price R, the optimal information structure is either a

no-information mechanism or a cuto¤ mechanism. As a result, no state veri�cation would take

place in equilibrium. Figures 6(a) and (b) reduce to Figure 7, which has only white (no-disclosure

mechanism) and yellow (cuto¤ mechanism) regions.

Figure 7. Optimal mechanism (q = 1)

For all combinations of (c;R) in the white region, the optimal information structure is a no-

disclosure mechanism, no state veri�cation takes place, and all buyers buy the product. For all

combinations of (c;R) in the (light and dark) yellow region, the optimal information structure is

a cuto¤ mechanism, no state veri�cation takes place, and all buyers with � above the cuto¤ ��

buy the product.

Next, we would like to �nd the optimal price R� given c. For each c, we proceed by looking

for the most pro�table price region by region.

Consider �rst the white region. When buyers has no information about their ��s, the seller

sets the price and sell to all buyers. Therefore, the seller would set a price that as close to an

uninformed buyer�s willingness to pay, E (�) = 1
2 , as possible. Thus, for a given c, the most

pro�table price in this region must lie in the upper boundary.

The trade-o¤ faced by the seller in the yellow region is more interesting. Setting a higher

price has two opposite e¤ects. A higher price leads to lower sales. However, the extent how

the cuto¤ �� increases as the price increases depends on which of the two constraints, (A0) or
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(C0), binds. When (A0) is the binding constraint (the light yellow region), the seller�s problem

is equivalent to the monopoly pricing problem when the buyers know their ��s. As a result, the

price that maximizes the seller�s payo¤ in this region is the price closest to the monopoly price

1
2 . Thus, for a given c, the most pro�table price in the light yellow region must lie in the lower

boundary.

When (C0) is binding (the dark yellow region), the seller�s problem is di¤erent from the

monopoly pricing problem, and we can show that the most pro�table price in this region is

higher than the monopoly price, and increasing in the veri�cation cost.

Because of the presence of two di¤erent concerns�to guarantee that the buyers are willing

to buy the product in light yellow region, and to guarantee that the buyers don�t have enough

incentive to verify the state in the dark yellow region�the optimal price is non-monotone in the

veri�cation cost.

Proposition 4 Suppose the state is uniformly distributed, the veri�cation technology is perfect

and the seller chooses both the information structure and price. The optimal price R� is given by

R� =

8>>>><>>>>:
1
2 if c � 1

8 ,

1� 4c if 1
10 < c <

1
8 ,

1
2 +

3
16c+

1
16

p
c (9c+ 16) if c � 1

10 .

(3)

Moreover, the optimal information structure recommends Buy if � > �� and No-buy if � < ��,

where �� is given by

�� =

8>>>><>>>>:
0 if c � 1

8 ,

1� 8c if 1
10 < c <

1
8 ,

R� � c�
p
2c (1�R�) + c2 if c � 1

10 .

(4)

Figure 8 illustrates the optimal price R� as a function of c.

24



Figure 8. Optimal price R� (q = 1)

Note that the e¤ect of decreasing the veri�cation cost on the optimal price is not monotone.

Therefore, making information more accessible to consumers could increase the retail price in

equilibrium. To understand why this is the case, note that when 1
10 < c <

1
8 , the optimal price

is such that both (A0) and (C0) bind ((c;R) lies in the boundary of the dark and light yellow

regions). Moreover, the seller would prefer to set a even higher price if (A0) can be ignored.

Suppose now c decreases. This means that (A0) is no longer binding and thus the seller can

increase the price.

Moreover, in contrast to Lewis and Sappington (1994), in which the optimal information

structure is characterized by two extremes: either no information or maximal information, an

intermediate level of information is provided by the seller in our model when the veri�cation cost

is low. Intuitively, in order to keep the veri�cation incentive su¢ ciently low when the veri�cation

cost is low, the seller would have to set a very low price, which would make selling to all buyers

unattractive. Instead, the seller sets a higher price and only sells to buyers with valuation high

enough to justify buying at the price without veri�cation.

6 Discussion

In this section, we discuss one extension of the model, and compare the optimal information

structure to the equilibrium communication strategy when there is no commitment power.
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6.1 Unlimited round of state veri�cation

One constraint on our information acquisition technology is that Receiver can only verify the

state once. State veri�cation technology itself is not most �exible, and the one-round assumption

further limits the �exibility of the information acquisition technology.

When Receiver can choose as many rounds of state veri�cation as she wants, then if she

strictly prefers verifying the state for one round, she would verify the state until the veri�cation

is successful.

Lemma 4 Receiver either does not learn the state or always learns the state.

When the previous round of state veri�cation is not successful, Receiver does not update her

belief, and the incentive for state veri�cation remains the same as in the beginning of the previous

round. Therefore, given a message, if Receiver has no incentive to verify the state for one round,

then she does not learn the state; if Receiver has incentive to verify the state, then she learns the

state perfectly.

This means that our model with unlimited rounds of state veri�cation is equivalent to our

baseline model when q = 1. In Proposition 3, we show that the optimal information structure

never recommends state veri�cation when the state is uniformly distributed and q = 1. This

result also holds for other distributions.

Proposition 5 (No state-veri�cation mechanism) Suppose unlimited rounds of state veri-

�cation. The optimal information structure is a no-disclosure mechanism or a cuto¤ mechanism,

and no state veri�cation takes place.

To see why Proposition 5 holds, suppose in the optimal information structure, m1 is sent

with positive probability. For each � that sends m1, since Receiver always learns � by Lemma 4,

Pr (a = 1) if and only if � � R, when unlimited rounds of state veri�cation is allowed. Therefore,

an information structure that sends m1 for � above R cannot be optimal, as Sender can pool

these ��s with some ��s below R and sends m0 instead. On the other hand, if the information

structure only sends m1 below R, Receiver would not choose to verify. Therefore, the optimal

information structure would never send m1 with positive probability.
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This result is reminiscent of the receiver-never-learn result in Matyskova and Montes (2023).

Since the sender can provide any information that the receiver may acquire, it is without loss

to assume that the sender provides information that prevents the receiver from acquiring infor-

mation. Notice, however, that our state veri�cation technology and cost do not satisfy their

assumptions and, therefore, their result does not apply to our setting.

6.2 Role of commitment power

Communication with detectable deception has been studied in a cheap-talking setting (Dziuda

and Salas, 2018; Balbuzanov, 2019; Levkun, 2021; Sadakane and Tam, 2022; Zhao, 2018). The

resulting equilibrium communication strategy has a negative assortative strategy. In a cheap

talk game, low types can always mimic high types, and there is no way to truthfully reveal the

lowest types. Such feature can be observed in both environments with exogenous and endogenous

deception detection. For example, 1) with exogenous lie detection, Dziuda and Salas (2018) show

that the moderate types and the highest types tell the truth, and the lowest types pretend to be

the highest types; 2) with endogenous state veri�cation, Zhao (2018) shows that, in the sender-

preferred equilibrium, the lowest types and the highest types pool. Moreover, Zhao (2018) shows

that the receiver never chooses the sender-preferred action without veri�cation, otherwise every

type would lie. In equilibrium, the low types never bene�t from lying. The fewer the lying low

types, the higher the state veri�cation e¤ort, because the purpose of state veri�cation is to �nd

out the high types.

In contrast, an information designer can always truthfully reveal the lowest types and the

optimal information structure does so. Hence, the receiver would chooses the sender-preferred

action without veri�cation for moderate types, which is the key di¤erence between the commu-

nication strategy with and without commitment power. The lowest types are revealed to induce

the sender to choose the sender-preferred action even without successful state veri�cation, and

the moderate types are further revealed to persuade the receiver to choose the sender-preferred

action without going through the costly state veri�cation. In other words, the better the lying

moderate types, the lower the state veri�cation e¤ort, because the purpose of state veri�cation

is to �nd out the low types.
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7 Appendix

Proof of Lemma 2. Our information design problem can be formulated as

max
x0(�);x1(�)2[0;1]

Z R

0
[x0 (�) + x1 (�) (1� q)] f (�) d� +

Z 1

R
(x0 (�) + x1 (�)) f (�) d�
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s.t.

Z 1

0
(� �R)x0 (�) f (�) d� � 0, (A0)Z 1

0
(� �R)x1 (�) f (�) d� � 0, (A1)

C

Z 1

R
x0 (�) f (�) d� +

Z R

0
(� �R+ C)x0 (�) f (�) d� � 0, (C0)

8� 2 [0; 1] , 1� x0 (�)� x1 (�) � 0, (TP)

where x0 (�) and x1 (�) are probabilities that m0 and m1 are sent, respectively, and the last

inequality follows from the law of total probability, i.e., the probabilities that m�, m0 and m1 are

sent must sum up to 1. Let �0, �1, � and � (�) be the Lagrange multipliers corresponding to the

constraints (A0), (A1), (C0) and (TP ), respectively, and x�0 (�) and x
�
1 (�) be the maximizers.

The Euler�Lagrange equations are given by

8� > R,
�0 (� �R) + 1 + �C � �̂ (�) > 0) x�0 (�) = 1;

�0 (� �R) + 1 + �C � �̂ (�) < 0) x�0 (�) = 0;
(5)

8� > R,
�1 (� �R) + 1� �̂ (�) > 0) x�1 (�) = 1;

�1 (� �R) + 1� �̂ (�) < 0) x�1 (�) = 0;
(6)

8� < R,
(�0 + �) (� �R) + 1 + �C � �̂ (�) > 0) x�0 (�) = 1;

(�0 + �) (� �R) + 1 + �C � �̂ (�) < 0) x�0 (�) = 0:
(7)

8� < R,
�1 (� �R) + 1� q � �̂ (�) > 0) x�1 (�) = 1;

�1 (� �R) + 1� q � �̂ (�) < 0) x�1 (�) = 0;
(8)

where �̂ (�) := � (�) =f (�). For � > R, de�ne the marginal bene�ts of sending messages m0 and

m1, B0 (�) and B1 (�), by

B0 (�) : = �0 (� �R) + 1 + �C;

B1 (�) : = �1 (� �R) + 1:
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For all � > R, B0 (�) ; B1 (�) > 0. This means that we cannot have x�0 (�) + x
�
1 (�) < 1. This is

because, in that case, (5) and (6) imply �̂ (�) � max
�
B0 (�) ; B1 (�)

	
> 0, which in turn implies

that (TP ) is binding. Thus, m� is not sent for any � > R.

Similarly, for � < R, de�ne the marginal bene�ts of sending messages m0 and m1, B0 (�) and

B1 (�), by

B0 (�) : = (�0 + �) (� �R) + 1 + �C;

B1 (�) : = �1 (� �R) + 1� q:

De�ne

�� := max

�
min

�
R� 1� q

�1
; R� 1 + �C

�0 + �

�
; 0

�
.

For all � < ��, we must have x�0 (�) = x�1 (�) = 0 and m� is sent with probability 1. This is

because, by construction, �� > 0 implies that for all � < ��, B0 (�) ; B1 (�) < 0. Since �̂ (�) � 0,

(7) and (8) imply that x�0 (�) = x
�
1 (�) = 0. For all � 2 (��; R), at least one of B0 (�) and B1 (�)

is strictly larger than 0. Suppose B0 (�) > 0. We must have x�0 (�) = 1 or �̂ (�) � B0 (�) > 0.

In both cases, (TP ) is binding. Similarly, (TP ) must be binding when B1 (�) > 0. Thus, for all

� 2 (��; R), m� is not sent.

Proof of Theorem 1. By Lemma 2, our information design problem can be re-formulated as

max
x0(�)2[0;1]
��2[0;R]

Z R

��
[x0 (�) + (1� x0 (�)) (1� q)] f (�) d� +

Z 1

R
f (�) d�

s.t.

Z 1

��
(� �R)x0 (�) f (�) d� � 0; (A0)Z 1

��
(� �R) (1� x0 (�)) f (�) d� � 0; (A1)

C

Z 1

R
x0 (�) f (�) d� +

Z R

��
(� �R+ C)x0 (�) f (�) d� � 0; (C0)

Let �0, �1 and � be the Lagrange multipliers corresponding to the constraints (A0), (A1), and
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(C0), respectively, and let x�0 (�) be the maximizer. The Euler�Lagrange equations are given by

8� > R,
(�0 � �1) (� �R) + �C > 0) x�0 (�) = 1;

(�0 � �1) (� �R) + �C < 0) x�0 (�) = 0;
(9)

8� < R,
(�0 � �1 + �) (� �R) + q + �C > 0) x�0 (�) = 1;

(�0 � �1 + �) (� �R) + q + �C < 0) x�0 (�) = 0:
(10)

Moreover, the optimality of �� implies

[x�0 (�) + (1� x�0 (�)) (1� q)] + [�0x�0 (�) + �1 (1� x�0 (�))] (�� �R)

+� (�� �R+ C)x�0 (�) = 0
if �� > 0,

[x�0 (�) + (1� x�0 (�)) (1� q)] + [�0x�0 (�) + �1 (1� x�0 (�))] (�� �R)

+� (�� �R+ C)x�0 (�) � 0
if �� = 0.

(11)

Suppose �rst �0 > �1. (9) implies that x�0 (�) = 1 for all � > R. (A1) then implies that

x�0 (�) = 1 for all � > ��. Similarly, if �0 = �1 and � > 0, then x�0 (�) = 1 for all � > R. As a

result, x�0 (�) = 1 for all � > �
�.

If �0 � �1 and � = 0, then x�0 (�) = 1 for all � 2 (��; R). Since m1 is not sent below R, if m1

is sent for a positive measure of � above R, then (C1) is violated and Receiver would not verify

the state. This means that x�0 (�) = 1 for all � > R as well.

Next, suppose �0 < �1 and � > 0. Consider

� := R+
�C

�1 � �0
.

If � � 1, then m1 is not sent with positive probability above R. (A1) then implies m1 is not

sent with positive probability. If � < 1, then x�0 (�) = 1 for all � 2
�
R; �

�
and x�0 (�) = 0 for all

� 2 (�; 1]. Since � > 0, (A1) implies x�0 (�) = 0 for some � 2 (��; R). Since q > 0, (10) implies

that x�0 (�) = 1 for � smaller than but close enough to R. Moreover, by (10), in order to have

x�0 (�) = 0 for some � < R, we must have �0 � �1 + � > 0. De�ne

� := R� q + �C

�0 � �1 + �
.

32



In this case, x�0 (�) = 1 for all � 2 (�;R) and x�0 (�) = 0 for all � 2 (��; �).

In all cases, m (�) satis�es the descriptions in Theorem 1.

Proof of Lemma 3. From the proof of Theorem 1, the only case in which m1 is sent with

positive probability in the optimal information structure is when �0 < �1 and � > 0. Since � > 0,

(C0) is binding.

Proof of Proposition 3. Consider
p
2C < R < 1 � 4C. By Proposition 2, the optimal

information structure is not a no-disclosure mechanism. This means that one of (A0) and (C0)

must bind. Otherwise, Sender can send more m0 and increase his payo¤. By Lemma 3, if (C0) is

not binding, then � = 1 under the optimal information structure. But since 1 > R+4C, we have

�C0 (1) � �A0 (1). Therefore, under the optimal information structure, (C0) must be binding

and � 2 [R+ 4C; 1]. We would like to identify conditions under which � 6= 1 under the optimal

information structure. To do so, we �rst write down Sender�s problem as an optimization problem

over � and show the �rst order condition at � = 1 is not satis�ed under the stated conditions.

Then, we show the �rst order condition is necessary and su¢ cient for � = 1 to be the maximizer.

De�ne

��A1
�
�; �
�
:= R�

q
(R� �)2 + (1�R)2 �

�
� �R

�2
.

If �� = ��A1
�
�; �
�
, then �� is the solution to

�
1� �

��1 + �
2

�R
�
= (� � �)

�
R� � + �

2

�
;

which means that (A1) binds. Thus, given � and �, ��A1
�
�; �
�
identi�es �� under the assumption

that (A1) binds.

Suppose that (C0) is binding and �� = 0, the sender�s objective function becomes

Pr (a = 1) = 1� �C0
�
�
�
+ (1� q) �C0

�
�
�
= 1� q

�
R� C �

q
2C
�
� �R

�
+ C2

�
,

which is strictly increasing in �.

33



Next, suppose (A1) and (C0) are binding and �� > 0, the sender�s objective function becomes

Pr (a = 1)

= Pr (� � R) + Pr (� < R) [Pr (m = m0j� < R) + (1� q) Pr (m = m1j� < R)]

= 1�R+R� �C0
�
�
�
+ (1� q)

�
�C0

�
�
�
� ��A1

�
�; �C0

�
�
���

= 1�R+
�
C +

q
2C
�
� �R

�
+ C2

�
+(1� q)

�
R� C �

q
2C
�
� �R

�
+ C2 �

�
R�

q
(R� �)2 + (1�R)2 �

�
� �R

�2��
= 1�R+ q

�
C +

q
2C
�
� �R

�
+ C2

�

+(1� q)

0@s�C +q2C �� �R�+ C2�2 + (1�R)2 � �� �R�2
1A .

Di¤erentiating the objective function yields

dPr (a = 1)

d�
=

qC + (1� q)
q
2C(��R)+C2(C+R��)+C2r�

C+
q
2C(��R)+C2

�2
+(1�R)2�(��R)

2q
2C
�
� �R

�
+ C2

.

Suppose q = 1. Then, dPr(a=1)
d�

> 0, which implies that � = 1 is optimal. The optimal information

structure would never recommend state veri�cation.

Consider next q 2 (0; 1). Let A := 1
1�q . We have

dPr(a=1)

d�
j�=1 < 0

, (A� 1)C
�
C +

p
2C (1�R) + C2

�
+
p
2C (1�R) + C2 (C +R� 1) + C2 < 0

, AC2 �
p
2C (1�R) + C2 (1�R�AC) < 0

If R + AC � 1, then dPr(a=1)

d�
j�=1 > 0. Thus, to identify the condition for

dPr(a=1)

d�
j�=1 < 0, we
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only need to focus on the case when R+AC < 1. Thus,

dPr(a=1)

d�
j�=1 < 0

, A2C4 �
�
2C (1�R) + C2

�
(1�R�AC)2 < 0

, �C (1�R)
�
2A (A� 1)C2 � (1�R) (4A� 1)C + 2R2 � 4R+ 2

�
< 0

, 2A (A� 1)C2 � (1�R) (4A� 1)C + 2R2 � 4R+ 2 > 0

Let

H (R) := 2A (A� 1)C2 � (1�R) (4A� 1)C + 2R2 � 4R+ 2.

The function H (:) is quadratic and H (1) = H (�1) =1. Moreover,

H (1�AC) = �AC2 < 0

and for R 2 (0; 1�AC) and q 2 (0; 1),

H 0 (R) = (4A� 1)C + 4R� 4 < (4A� 1)C � 4AC = �C < 0.

Thus, there is at most one root of H (:) on [0; 1�AC] and it is given by

R� (C) = 1� 4A (A� 1)
4A� 1�

p
8A+ 1

C.

Thus, dPr(a=1)
d�

j�=1 < 0 if and only if R < R� (C).

Finally, we show that the �rst order condition is su¢ cient. Let



�
�
�
:=

q
2C
�
� �R

�
+ C2

�
C +R� �

�
+ C2s�

C +
q
2C
�
� �R

�
+ C2

�2
+ (1�R)2 �

�
� �R

�2 .

Note that dPr(a=1)
d�

7 0 if and only if 

�
�
�
7 � qC

1�q . The �rst order condition is su¢ cient if for
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all � 2 [R+ 4C; 1], 
0
�
�
�
< 0.


0
�
�
�

= � Cq
2C
�
� �R

�
+ C2

 �
C +

q
2C
�
� �R

�
+ C2

�2
+ (1�R)2 �

�
� �R

�2! 3
2

�f2C3 +
�
� �R

� �
6C2 � 3CR+ 3C� + 2R2 + 2R� � 6R� �2 + 3

�
+2C

q
2C
�
� �R

�
+ C2

�
C + 2

�
� �R

��
g.

which is negative if

�
�
�; C

�
= 6C2 � 3CR+ 3C� + 2R2 + 2R� � 6R� �2 + 3 > 0.

We have

d�
�
�; C

�
d�

= 3C + 2R� 2� < 3C + 2R� 2 (R+ 4C) = �5C < 0,

d�
�
�; C

�
dC

= 12C + 3
�
� �R

�
> 0.

Thus, �
�
�; C

�
is minimized at

�
�; C

�
= (1; 0). Since

� (1; 0) = 2 (1�R)2 > 0,

for all � 2 [R+ 4C; 1], �
�
�; C

�
> 0.

Proof of Proposition 4. Suppose q = 1. Then by Proposition 3, there are at most two

messages that sent with positive probability in the optimal information structure. One induces

acceptance without veri�cation, and one induces rejection without veri�cation. The seller chooses

both the information available and price. The maximization problem becomes

max
R;�2[0;1]

R (1� �)
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s.t.

� � 2R� 1, (12)

� � R� c�
p
2c (1�R) + c2; (13)

where the inequality (12) follows from (A0) and (13) follows from (C0).

We use R� and �� to denote the maximizers. The maximization problem can be decomposed

into two steps: step 1, given any R, choose the optimal ��; step 2, given �� (R), choose the

optimal R�.

Consider step 1. When R < 1
2 and R <

p
2c (white region of Figure 7), the right-hand sides

of the two constraints (12) and (13) are less than 0. It is thus optimal to set �� = 0. Suppose

next R � 1
2 or R �

p
2c. Since the objective is decreasing in �, one of the constraints must bind

in this case. Comparing (12) and (13), we �nd that when R � 1 � 4c (light yellow region of

Figure 7), (12) is binding; when R � 1� 4c (dark yellow region of Figure 7), (13) binds.

Consider next step 2. Given c, since the objective function is increasing in R and the two

constraints do not bind in the white region, the most pro�table price of this region lies in the

upper boundary. Consider next the light yellow region, where (12) is binding. Ignore (13) and

use (12) to eliminate �, the maximization problem becomes

max
R2[0;1]

2R (1�R) :

The unconstrained problem has the maximizer R� = 1
2 . Thus, the most pro�table price of this

region must lie in the lower boundary.

Finally, consider the dark yellow region, where (13) is binding. Ignore (12) and use (13) to

eliminate �, the maximization problem becomes

max
R2[0;1]

R
�
1�R+ c+

p
2c (1�R) + c2

�
:
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The F.O.C. is given by

c� 2R+ 1 + 1p
2c (1�R) + c2

�
2c� 3Rc+ c2

�
= 0,

which has solution

R�C0 =
1

2
+
3

16
c+

1

16

p
c (9c+ 16).

Notice that the objective is strictly concave in R.

@2

@R2

�
R
�
1�R+ c+

p
2c (1�R) + c2

��
= �2� c2

(2c (1�R) + c2)
3
2

(2c� 3R+ 4)

� �2� c2

(2c (1�R) + c2)
3
2

(2c+ 1)

< 0,

where we have used the fact that R � 1 in the �rst inequality. As a result, the most pro�table

price of this region is the price closest to R�C0. Note also that when c <
1
10 , R

�
C0 lies in the dark

yellow region, i.e., R�C0 2 (
p
2C; 1 � 4C). Putting the results for di¤erent regions together, we

�nd that R� is given by (3). To see that �� is given by (4), note �rst that, by Proposition 2,

if c � 1
8 and R

� = 1
2 , then �

� = 0. When 1
10 < c < 1

8 and R
� = 1 � 4c, (12) is binding and

thus �� = 1 � 8c. When c � 1
10 and R

� = 1
2 +

3
16c +

1
16

p
c (9c+ 16), (13) is binding and thus

�� = R� � c�
p
2c (1�R�) + c2.

Proof of Proposition 5. When Receiver can choose unlimited rounds of state veri�cation,

the information design problem reduces to

max
x0(�)2[0;1]

Z 1

0
x0 (�) f (�) d�

38



s.t.

Z 1

0
(� �R)x0 (�) f (�) d� � 0, (A0)

C

Z 1

R
x0 (�) f (�) d� +

Z R

0
(� �R+ C)x0 (�) f (�) d� � 0. (C0)

Let �0 and � be the Lagrange multipliers corresponding to the constraints (A0) and (C0), re-

spectively and let x�0 (�) be the maximizer. The Euler�Lagrange equations are given by

8� > R,
�0 (� �R) + 1 + �C > 0) x�0 (�) = 1,

�0 (� �R) + 1 + �C < 0) x�0 (�) = 0,
(14)

8� < R,
(�0 + �) (� �R) + 1 + �C > 0) x�0 (�) = 1;

(�0 + �) (� �R) + 1 + �C < 0) x�0 (�) = 0:
(15)

Since �0; � � 0, (14) and (15) imply immediately that there exists �� 2 [0; R) such that m0 is

sent for � > �� and m� is sent for � < ��.
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