Voting to Persuade

Tsz-Ning Wong Lily Ling Yang Xin Zhao University of Barcelona University of Mannheim UIBE

August 31, 2023

- Advisory committees are often involved in making important decisions
 - Examples: Federal Advisory Council, Investor Advisory Committee, FDA advisory committees, etc.
- Advisory committees are different from decision-making committees
 - Decision rules in advisory committees are endogenous
 - Cheap talk

In a continuous signal model, we provide

- **1** Necessary and sufficient condition for successful *information transmission*
- 2 Necessary and sufficient condition for full *information aggregation* when the committee size is large

The conditions are closely related to the unanimity rule

- \blacksquare Players: $\mathcal N\text{-}\mathsf{person}$ committee and DM
- State of the world: $\theta \in \{y, n\}$
- Prior belief: $\Pr(\theta = y) = p$
- DM's action: $D \in \{Y, N\}$
- Committee members' signals: s_i is independently distributed on $(a, b) \subseteq \mathbb{R}$ according to continuous distributions F(.) in state y and G(.) in state n

Payoff tables:

$$\begin{array}{cccc} & & DM \\ y & n & y & n \\ Y & 1/2 & -1/2 & Y & 1-\alpha & -\alpha \\ N & 0 & 0 & N & 0 & 0 \end{array}$$

DM is more conservative: $\frac{1}{2} < \alpha$

- Voting strategy: $m_i : (a, b) \rightarrow [0, 1]$
- Decision rule: $d : \{Y, N\}^{\mathcal{N}} \to \{Y, N\}$

Committee members observe their private signals and then vote simultaneously
The DM observes vote share and vote identity (full transparency)
The DM chooses between policy change Y and status quo N

- Advisory committee
 - Wolinsky (2002), Levit and Malenko (2011), Battaglini (2017), Gradwohl and Feddersen (2018)
- Decision-making committee
 - Feddersen and Pesendorfer (1998), Duggan and Martinelli (2001), Martinelli (2002)

Assumption 1 (MLRP) $\frac{f(s)}{g(s)}$ is strictly increasing in *s*. Assumption 2 $\lim_{s\downarrow a} \frac{f(s)}{g(s)} < \frac{1-p}{p} < \lim_{s\uparrow b} \frac{f(s)}{g(s)}$. Assumption 3 (Increasing hazard ratio property, IHRP) $\frac{h_F(s)}{h_G(s)}$ is strictly increasing in *s*, where $h_F(s) := \frac{f(s)}{1-F(s)}$ and $h_G(s) := \frac{g(s)}{1-G(s)}$.

- First introduced: Kalashnikov and Rachev (1986)
- Decision-making committees: Duggan and Martinelli (2001)
- Information cascade: Herrera and Hörner (2011, 2013)
- Most distributions commonly used in economics satisfy IHRP
 - e.g., normal distributions, power distributions, gamma distributions, chi distributions, chi-squared distributions

Definition

A decision rule d is a k-rule if there exists $k \in \{1, 2, ..., N\}$ s.t. d(v) = Y iff $|v| \ge k$.

Definition

A decision rule *d* is a weighted voting rule if there exists $(w_1, w_2, ..., w_N) \in \mathbb{R}^N_+$ and $Q \in \mathbb{R}_+$ such that d(v) = Y iff $\sum_{i=1}^N w_i \mathbf{1}_{\{v_i = Y\}} \ge Q$, where **1** is the indicator function.

Proposition

It is without loss of generality to assume that an equilibrium (m,d) of our model is such that

- **1** m_i is a cutoff strategy or a partisan strategy;
- 2 The DM's decision rule d is a weighted voting rule.
- In a symmetric equilibrium, the decision rule is a k-rule
- In an asymmetric equilibrium, the decision rule is a weighted voting rule
- Proof: Additivity of log-likelihood ratio

Given a k-rule, the equilibrium cutoff s^* of a symmetric equilibrium is given by

• The DM is willing to follow the *k*-rule iff

$$\frac{p}{1-p}\left(\frac{1-F\left(s^{*}\right)}{1-G\left(s^{*}\right)}\right)^{k-1}\left(\frac{F\left(s^{*}\right)}{G\left(s^{*}\right)}\right)^{\mathcal{N}-k+1} < \frac{\alpha}{1-\alpha}$$

and

$$\frac{\alpha}{1-\alpha} \leq \frac{p}{1-p} \left(\frac{1-F\left(s^{*}\right)}{1-G\left(s^{*}\right)}\right)^{k} \left(\frac{F\left(s^{*}\right)}{G\left(s^{*}\right)}\right)^{\mathcal{N}-k}$$

which become

$$\frac{g\left(s^{*}\right)}{f\left(s^{*}\right)}\frac{F\left(s^{*}\right)}{G\left(s^{*}\right)} < \frac{\alpha}{1-\alpha} \leq \frac{g\left(s^{*}\right)}{f\left(s^{*}\right)}\frac{1-F\left(s^{*}\right)}{1-G\left(s^{*}\right)}$$

• The likelihood ratio of k yay votes and $\mathcal{N} - k$ nay votes is

$$\frac{p}{1-p} \left(\frac{1-F\left(s^{*}\right)}{1-G\left(s^{*}\right)}\right)^{k} \left(\frac{F\left(s^{*}\right)}{G\left(s^{*}\right)}\right)^{\mathcal{N}-k} = \underbrace{\frac{g\left(s^{*}\right)}{f\left(s^{*}\right)}}_{\text{a signal } s^{-}} \times \underbrace{\frac{1-F\left(s^{*}\right)}{1-G\left(s^{*}\right)}}_{\text{a vote for } Y}$$

- When k increases, the equilibrium cutoff s^* is lower
 - 1 The likelihood ratio of the signal s^- , $\frac{g(s^*)}{f(s^*)}$, is higher 2 The likelihood ratio of the yay vote, $\frac{1-F(s^*)}{1-G(s^*)}$, is lower
- By IHRP, the first effect dominates

Definition

Let $\boldsymbol{\alpha}(k, \mathcal{N})$ be the unique solution to

$$\frac{\alpha}{1-\alpha} = \frac{g\left(s^{*}\left(k,\mathcal{N}\right)\right)}{f\left(s^{*}\left(k,\mathcal{N}\right)\right)} \frac{1-F\left(s^{*}\left(k,\mathcal{N}\right)\right)}{1-G\left(s^{*}\left(k,\mathcal{N}\right)\right)}.$$

k-rules

Corollary

For all k' > k, there exists an informative equilibrium with k'-rule if there exists an informative equilibrium with k-rule.

- An informative equilibrium with the unanimity rule exists for the largest range of parameter
- The unanimity rule is the most "robust" decision rule

- So far consider only k-rules and symmetric equilibria
- True also if include asymmetric equilibria with other decision rules

Proposition

There exists an informative equilibrium if and only if $\alpha \leq \alpha$ (\mathcal{N}, \mathcal{N}).

- The existence of informative equilibrium implies the existence of a informative equilibrium with the unanimity rule
- IHRP is important

- Our result recovers the intuitive idea that the unanimity is the most persuasive
- If DM cannot be persuaded by unanimity, she can never be persuaded
- Not true for the discrete model

- What about information aggregation?
- The unanimity rule may not aggregate information, but all other q-rules do (Feddersen and Pesendorfer 1998; Duggan and Martinelli 2001)

Proposition

There exists a sequence of equilibria along which the probabilities of the DM choosing Y in state y and N in state n approach 1 as $\mathcal{N} \to \infty$ if and only if $\alpha < \lim_{\mathcal{N} \to \infty} \alpha(\mathcal{N}, \mathcal{N})$.

k-rules

• $\alpha(k, \mathcal{N})$ is not increasing

- We provide necessary and sufficient conditions for information transmission and aggregation in a model of advisory committees
- Intuition: If DM cannot be persuaded by unanimity, she can never be persuaded
- Our results does not hold for discrete models