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Abstract

Wealth surveys tend to underestimate wealth concentration at the top due to

the ”missing rich” problem. I propose a new way of improving the credibility of

wealth surveys by making them consistent with tabulated income tax data. This is

possible with the harmonized triannual Household Finance and Consumption Sur-

vey (HFCS), which collects data on both income and wealth. I achieve consistency

by calibrating survey weights using the income part of HFCS. I apply the calibra-

tion method of Blanchet, Flores and Morgan (2022) in a new context and propose

a new, intuitive way to determine the merging point where the calibration starts.

I then use the calibrated weights with HFCS wealth values. Tested on Austria,

calibration aligns the survey totals closer to the National Accounts, with wealth

inequality increasing in the second and third survey waves. I also find a strong

downward bias in the Austrian HFCS income distribution. Following the calibra-

tion, I test other top tail adjustments: replacing the survey top tail with a Pareto

distribution and combining the data with a magazine rich list.
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1 Introduction

Wealth inequality is a challenge for countries worldwide, yet its exact level can only be estimated.

As opposed to income, household wealth is typically not taxed and therefore not recorded. One

way to estimate wealth inequality is by using wealth surveys, but those suffer from the ”missing

rich” problem (Lustig, 2019). Since wealth distribution is highly skewed to the right, the richest

households may not be adequately represented in the survey. They are less likely to participate

(Kennickell, 2019) and even if they do, they may underreport their true wealth more often or

leave sensitive questions unanswered.

I propose a novel method that increases the credibility of wealth surveys by making their

income distribution consistent with income tax data. This is possible thanks to the triannual

Household Finance and Consumption Survey (HFCS), which covers 23 European countries in

its last wave and collects data on both income and wealth. I achieve consistency by applying the

calibration method of Blanchet et al. (2022b) to the income part of the survey. As only survey

weights are adjusted, they can then be used together with the wealth data to estimate wealth

inequality. Within the calibration framework, I propose a new method to determine where

the merging should start, which is based on a visual comparison of survey and tax income

distributions.

A large body of literature aims to mitigate the missing rich problem in wealth surveys

(see e.g., Kennickell et al., 2022, for an overview). One stream combines wealth surveys with

external data sources: Vermeulen (2014, 2018) replaces the survey’s top tail with a Pareto

distribution estimated from survey observations combined with the Forbes World’s Billionaires

List (the Pareto distribution may also be estimated using survey data alone, without the rich

list [Eckerstorfer et al., 2016; Hlasny and Verme, 2018]). Subsequent research extends this work

by using more detailed national rich lists (Bach et al., 2019), by scaling up different asset classes

to match the National Accounts totals (Vermeulen, 2016; Waltl, 2022), by exploring different

estimators of the Pareto coefficient (Waltl and Chakraborty, 2022), by using a more flexible

Generalized Pareto distribution (Disslbacher et al., 2020; Kennickell, 2021), or by determining

a non-arbitrary lower bound of the Pareto distribution (Brzeziński et al., 2020; Eckerstorfer

et al., 2016).

However, there is no consensus on the optimal approach. The quality of magazine rich lists

with opaque methodology may be contested, as may be the choice of the Pareto estimation

technique. Results can be sensitive to both these factors (Kennickell et al., 2022). Perhaps

also due to such limitations, the World Inequality Database prefers the income capitalization

method as a starting point for their wealth inequality estimates (Alvaredo et al., 2021).1

My method improves the representation of high-income households in a wealth survey, in-

sofar as their income is recorded in the tax statistics. It makes use of a high-quality external

source, income tax data, and does not depend on arbitrary assumptions. It also results in a

1The income capitalization method uses more reliable tax data on capital income. It scales each
category up to match the aggregate value of the corresponding asset class in the National Accounts’
household balance sheet. Assets that do not generate taxable income flows may then be imputed from
surveys (e.g., Garbinti et al., 2021). The income capitalization method requires income tax microdata
and assumes a constant rate of return for each asset class across wealth groups.

1



data set of identical shape as the original, with only the weight column changed. Any analysis

performed on the original HFCS data can thus be extended to the calibrated sample without

complication. In addition, calibration has the potential to mitigate the problem that different

countries use different (if any) strategies for oversampling of the rich in HFCS, which hinders

their comparability. If the oversampling is of high quality and leads to a representative sample

at the top of the income and wealth distributions, the impact of calibration will be minimal.

In contrast, a significant effect can be expected if no oversampling strategy whatsoever has

been implemented. Calibration also preserves the main socio-demographic characteristics of

the survey.

I test the method on Austrian data and find that calibration aligns the survey totals closer

to the official macroeconomic statistics. Top 1 % wealth shares increase from 26 % to 37 %

in 2014 and from 23 % to 27 % in 2017. In 2011, even though calibration increases the net

worth of the top 1 %, the denominator (i.e., total wealth) increases even more, leading to a

slightly negative impact. An oversampling strategy was employed in the 2011 wave, which

led to a smaller discrepancy between the survey and tax income distributions. At the same

time, calibration highlights the issue of insufficient coverage at the top, where only a few survey

observations determine the top wealth shares. This leads to large standard errors of survey

estimates both before and after calibration. As part of my merging point algorithm, I find a

large downward bias in the Austrian HFCS income distribution, which starts as early as before

the 80th percentile. This bias is much larger than in the EU Statistics on Income and Living

Conditions (EU-SILC) data, which I also show.

After calibration, I combine my adjustment with those in the literature. I replace the survey

top tail with a Pareto distribution and combine the data with a magazine rich list. The inclusion

of the rich list in the Pareto estimation has the largest impact. The top 1 % share increases to

around 40 % in all three years and the impact of survey weight calibration is negligible. This is

because the rich list ”dominates” the objective function of the Ordinary Least Squares (OLS)

Pareto estimator and its quality is therefore crucial. If the rich list is incorrect, so will be the

top shares. Fitting a Pareto tail using only survey data, without the rich list, produces erratic

results. They have very large standard errors and are sensitive to the choice of the estimation

method as well as the lower bound of the Pareto distribution. Calibration is suitable especially

when the rich list is considered unreliable and when it is desirable to preserve all properties of

the survey dataset for subsequent analysis.

The drawback of the presented wealth survey calibration method is shared with most exist-

ing adjustments: its limited theoretical foundation. It cannot be guaranteed that ”fixing” the

income distribution will also correct the entire bias in the wealth distribution. In the Austrian

context, the ”fixing” relates mainly to households with high labor and self-employment income,

since this income is well captured in the income tax statistics. The rich with low taxable in-

come or with capital income taxed at source remain missing even after calibration, just like

when applying the income capitalization method. Standard errors remain high, which can only

be mitigated by increasing the number of surveyed rich households. The proposed method is

thus another exercise in ”the art of the possible” (Sen, 1997). Ideally, a similar exercise would
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be incorporated directly into the survey design: high-income households would be oversampled

based on income tax records and their survey weights computed to ensure their representat-

iveness of the high-income strata. This would not only ensure consistency of survey and tax

income distributions, but also increase the absolute number of surveyed rich households. An

approach along these lines has recently been applied to the fourth wave of the Italian HFCS

(Barcaroli et al., 2021).

In addition to proposing a new method for improving wealth surveys, I make one contribu-

tion to the income calibration framework of Blanchet et al. (2022b, hereafter BFM). I construct

a new method to determine the merging point, which is the optimal percentile from which calib-

ration should start. While I share the aim of BFM to preserve the continuity of the new income

density, my approach relies on a (perhaps more intuitive and informative) graphical comparison

of survey and tax income distributions. In the context of the HFCS, such comparison is an

interesting external check of the survey’s quality. In contrast to BFM, my method may also

lead to more than one candidate merging point, giving researchers more flexibility. In a Monte

Carlo simulation, my method performs comparably or better, depending on the specification.

Moreover, it does not rely on the assumption of a monotonically decreasing survey to tax density

ratio and is not sensitive to the choice of the lower bound from which the tax data are considered

reliable. However, my method is more computationally demanding and less suitable when the

merging point should be above the 99th percentile. The latter disadvantage can nevertheless be

mitigated by using more granular income brackets.

The remainder of the paper is organized as follows. Section 2 introduces the data that I

use to apply the method: wealth surveys, income tax data and rich lists. I also discuss the

main income and wealth concepts. The methodological Section 3 describes the survey weight

calibration and the adjustments to the top of the wealth distribution. In Section 4, I report

the results, including those of a Monte Carlo simulation that evaluates the new merging point

algorithm. Section 5 concludes.

2 Data and main concepts

2.1 Wealth surveys

The wealth surveys to be corrected come from the triannual Eurosystem Household Finance and

Consumption Survey (HFCS), which is harmonized and coordinated by the European Central

Bank (ECB). While the first wave in 2010 covered 15 euro area countries, the fourth wave will

include all 19 euro area countries as well as Croatia, Hungary, Poland, and for the first time

also the Czech Republic. Questions regarding assets, liabilities, consumption and savings are

collected at the household level, which is the main unit of analysis. The HFCS also collects

data on seven main categories of income, three at the individual level (wages, pensions and self-

employment income) and four at the household level (real estate income, income from financial

investment [i.e., interest and dividends from publicly traded companies], income from private

business, and other income [which includes capital gains]). Income is recorded as gross, including
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taxes and contributions to social insurance paid by employees. The income tax data have to

be carefully matched with these concepts to ensure accurate calibration. For wealth inequality

measurement, I use the net wealth concept of the HFCS: For each household, it is the sum of their

real assets (real estate, vehicles, valuables and self-employment businesses) and financial assets

(e.g., deposits, mutual funds, bonds and shares; excluding public and occupational pension

plans) minus its liabilities.

The main issue with wealth (as well as income) surveys is that they may not capture well

the top of the distribution. Lustig (2019) calls this the ”missing rich problem”, while BFM refer

to the ”non-sampling error”. First and foremost, it has been observed that when approached

by the interviewer, wealthier households are more likely to refuse to participate (Kennickell,

2019; Kennickell and Woodburn, 1999). One obvious reason is the opportunity costs: While

the median interview length in HFCS countries is rarely below 40 minutes (in Austria, for

example, it is 55 minutes), the reward is mostly symbolic (for example, the Czech Statistical

Office rewards participating households with commemorative coins with a total face value of

approximately 5 euro). Second, the rich may not answer questions regarding asset classes or

income types they consider sensitive. In this case their value is imputed five times, leading

to five dataset replicates for each HFCS wave. A third source of bias arises if the rich are

more prone to underreport wealth, which may happen especially in the case of offshore wealth

that is strongly concentrated at the top (Alstadsæter et al., 2019). In addition, surveys may

be plagued with ”sampling error” (Blanchet et al., 2022a), meaning that the number of rich

households in the survey is too small to produce accurate results (as demonstrated, for example,

by Eckerstorfer et al., 2016).

To mitigate the missing rich problem, most HFCS countries oversample the wealthy. The

most precise oversampling method would utilize individual data from tax registers to determine

the ”rich” strata in the population. Alternatively, oversampling can be based on income in

a given geographic area, street address, dwelling characteristics or even electricity consump-

tion. Austria, the country analyzed in this paper, oversampled Vienna in the first wave, but

did not record any oversampling strategy in waves 2 and 3. Vermeulen (2018) finds a correl-

ation between the oversampling strategy and the number of wealthy respondents in the net

sample: ”In practice, successful oversampling leads to many wealthy households in the sample,

all with relatively low survey weights” (Vermeulen, 2018, p. 362). Consequently, I note that

oversampling reduces the bias of wealth inequality estimates not so much because the richest

are sampled more (this mainly reduces the variance, although small sample bias may also be an

issue [Taleb and Douady, 2015]), but because the rich strata are more accurately defined and

the adjustment of survey weights for non-response can be more specific.

Figure 1 reports two survey statistics that serve as a proxy for survey quality: the over-

sampling rate and the (net) sample size relative to the total population. The oversampling rate

is based on the number of survey households in the top 10 % of the survey wealth distribution.

In a simple random sample all weights would be equal, the number of such households would

be 10 % and the oversampling rate 0 %. In HFCS countries other than Austria the median

oversampling rate is 46 % in the third wave. This means that the top 10 % of the wealth

4



distribution consists of 14.6 % survey households, indicating the existence of a meaningful over-

sampling strategy. In contrast, Austria only records a small and positive oversampling rate

in the first survey wave (when Vienna was oversampled), after which the statistic even turns

negative. The number of survey households that constitutes the top 10 % is only 8.5 % in the

third wave.
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Figure 1. Oversampling rate and net sample size relative to the population in HFCS. Values for Austria
are compared with the median of the remaining HFCS countries that participated in all three survey
waves. Values are averaged over implicates.

While the oversampling rate indicates a decline in the quality of the Austrian HFCS, the

relative sample size gives the opposite impression. It increases by 23 % (0.015 p.p.) between

the first and second waves, and grows slightly even in the third wave. One can thus expect

lower variance of the inequality measures in the second and third waves. However, the sample

size still remains smaller than the median of the remaining HFCS countries.

Calibration must also take into account the potentially different time periods for which

income and wealth data was collected. In the Austrian case, as in most other countries, the

reference period for wealth information was the time of interview. Survey fieldwork could span

a period of two calendar years, in which case I assign wealth data to the year in which fieldwork

predominantly took place. In contrast, data on income was collected for a preceding calendar

year. As a result, the first HFCS wave in Austria contains income data for 2009 and wealth data

for 2011. For the second wave the income data is for 2013 and wealth data for 2014, and for the

third wave the respective years are 2016 and 2017. To assess the quality of the HFCS income

distribution, I compare it with the EU Statistics on Income and Living Conditions (EU-SILC)

data for the respective reference years.
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2.2 Tax data

Data from income tax returns represents the ”true” income distribution in the weight calibra-

tion process. It is not perfect and may be incomplete due to tax evasion, tax exemptions or

withholding of certain taxes at source. For the income types that are included in the tax re-

turns, this data nonetheless represents the best available information about their distribution.

Tax data are typically published in a tabulated form: The population that files tax returns

is divided into income brackets, and each bracket lists information on the number of people

and their total or average income. A complete income distribution can be obtained using the

Generalized Pareto interpolation method of Blanchet et al. (2022c).

For Austria, tabulated tax data are published annually in the Integrierte Statistik der Lohn-

und Einkommensteuer (Statistics Austria, 2016). However, taxes from capital investment in-

come, including capital gains, are withheld at source and typically not recorded in tax returns.2

Based on the documentation, I match tax data with wages, pensions, self-employment income,

real estate income and public transfers in the survey. As the tax unit in Austria is the individual,

I split real estate income and public transfers in the survey (recorded at the household level)

equally between adult household members aged 20 and over. In addition, tax data are reported

net of social contributions (Jestl and List, 2020), which are part of the gross income concept in

the survey. Following Blanchet et al. (2022a), I estimate and deduct social contributions from

survey data where appropriate, based on rates recorded by the OECD.3

2.3 Rich lists

Rich lists provide information about the very top of a country’s wealth distribution. By suitably

combining them with wealth survey data, one can ”anchor” (Vermeulen, 2018) the top of the

distribution and estimate the wealth of those ”too poor to be in the rankings, but too rich to

be in the survey” (Blanchet, 2016). Austrian rich lists are compiled by Trend magazine. They

have 100 entries, but an exact wealth estimate is assigned only to the first 60 of them. I follow

Eckerstorfer et al. (2016), Appendix III and adjust the rich list so that each entry represents

one household rather than a family or clan. For example, the top entry in all studied years lists

the Piëch and Porsche families, which Eckerstorfer et al. (2016) divide into seven households.

3 Methodology

The core of the presented method lies in adjusting survey weights to impose consistency of the

survey’s income distribution with the tax data. I follow the reweighting approach of BFM, but

propose a new method to determine the merging point – the percentile from which consistency

2Exceptions exist for foreign capital income or for realized capital gains offset with realized capital
losses in the same period; however, this is likely to be a small part of total capital gains income.

3For wages, I use rates recorded in the annual OECD Taxing Wages publication, for pensions I use
the OECD Pensions at a Glance publication and for self-employment income the OECD Tax Statistics.
In addition, I set the limit for maximum social security contributions from self-employment (17,793 euro
in 2016) as the limit for the total contributions of an individual.
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is imposed. The new weights are then used with sampled households’ wealth to estimate top

shares.

3.1 Income distribution calibration

3.1.1 The calibration formula

Survey weight calibration, as applied by BFM, consists of several steps. First, the tax data are

divided into many brackets based on fractiles: From 0 to 0.99, from 0.99 to 0.999, from 0.999

to 0.9999 and from 0.9999 to 0.99999. Survey observations are then matched to these brackets.

The tax data usually cover only part of the population, in which case the lowest bracket starts

at a higher percentile than 0 and the left-bounded interval where the tax data are reliable is

referred to as the trustable span. In simple terms, the goal of calibration is that weights of

survey observations that are matched to a bracket sum up to the tax population size of that

bracket. BFM describe it as a ”histogram approximation”; it is essentially a scaling up (or

down) of histogram bins of survey data to match their tax counterpart. As it is generally not

desirable to approximate the entire tax distribution, only brackets above the predefined merging

point are calibrated. I discuss the choice of the merging point in Section 3.1.2.

After matching survey observations to fractile-based brackets, I merge brackets where the

number of corresponding survey observations is below x. In this case, calibration would either

not be possible at all (if the number of matched observations is 0) or the weight adjustment

would be too large. For similar reasons, brackets are merged if the ratio of survey to tax

frequencies is below 1/y or above y. BFM choose x = y = 5, which I follow. These parameters

reflect a trade-off between calibration accuracy and survey distortion. The new weights that

satisfy the defined conditions are obtained by solving the linear calibration problem:

min
w1,...wn

n∑
i=1

(wi − di)
2

di
s.t.

n∑
i=1

wixi = t, (1)

where di is the original weight and wi the new weight of individual i; n is the number

of surveyed individuals. xi is a k-dimensional vector characterizing individual i and t is a

k-dimensional vector of corresponding population totals from an external source. For ex-

ample, assume k is the number of fractile brackets obtained in the previous step and x1i is

a dummy variable denoting whether individual i belongs to the highest bracket. The condition∑n
i=1wix1i = t1 means that the calibrated weights of individuals in the highest bracket will sum

up to the population total from the tax data, t1. The remaining k−1 conditions are constructed

accordingly.

Thanks to the flexibility of linear calibration, other conditions can be imposed on the cal-

ibrated weights by expanding the vectors xi∀i and t. Like BFM, I preserve the main socio-

demographic characteristics of the survey population: age, gender and household size distri-

bution, as well as total population size. An infinity of solutions will generally satisfy these

conditions, and Equation 1 is solved by one which minimizes the χ2 distance between the ori-

ginal and new weights. As long as all the constraints are neither incompatible nor perfectly

7



collinear, Equation 1 has a closed-form solution (BFM, equation 5). In addition, no new weight

should be lower than 1, which I enforce with a simple algorithm.4

One specific problem arises in the presented application: While income is recorded at the

individual level in surveys and in Austrian tax data, wealth is only recorded at the household

level. Original HFCS weights are the same for the household as well as for each household

member, but that will no longer be the case once individual weights are calibrated to the tax

data. One solution would be to use individual members’ average weight as the household weight,

but if I then move back from household to individual weights assuming the same weight for each

household member, tax and survey income distributions will no longer be consistent. Instead,

I add m − 1 additional linear constraints for each m-member household so that the difference

between each pair of household members’ weights is equal to zero.

3.1.2 Optimal merging point

The merging point is the fractile from which merging of the survey and tax data begins. It is,

in principle, possible to start the calibration as soon as the tax data are available. However, as

BFM argue, this would unnecessarily distort the survey, which should be corrected only once the

bias at the top starts. BFM propose a new approach to determine the merging point with the

aim of preserving the continuity of the density function. Their method is based on a theoretical

framework and applied by comparing the ratio of survey and tax densities with the ratio of

survey and tax cumulative distribution functions. They assume that the ratio of survey to tax

density is monotonically decreasing, presumably to avoid multiple solutions to their algorithm.

I propose a new way of choosing the merging point while also aiming to preserve the con-

tinuity of the calibrated density function. The starting point is a visual comparison of tax and

survey frequencies at different percentile-based brackets, illustrated in Figure 2 using Austrian

third-wave HFCS data. As the income intervals are computed using tax data, the tax frequency

is constant and equal to 1 % of the population. In contrast, survey observations are matched to

these brackets and the frequency may thus be higher than 1 % (if a bracket is overrepresented

in the survey) or lower (if it is underrepresented). In what follows, I work with an adaptive

kernel estimator of the survey density (Cowell and Flachaire, 2015) with a Gaussian kernel and

extended to incorporate survey weights (Buskirk, 1998). I integrate it over each bracket’s in-

come interval and multiply the integral by the population total, obtaining a smoother frequency

estimate for each bracket.5

I search for the best rather than optimal merging point: I test each percentile and observe

whether the new, calibrated survey distribution can be considered continuous. The test statistic

is the absolute distance between the frequency where merging begins (equal, by construction, to

4If the linear calibration leads to some weights lower than one, I repeat the process but add conditions
that these weights must be equal to one. If the problem remains, meaning that some other observations
now have a weight lower than 1, I correct weights from the first iteration directly by setting them to one
and adjusting (i.e., slightly decreasing) all other weights to keep the population total constant. BFM
instead use an iterative method described in Singh and Mohl (1996).

5To produce informative results, this integration requires the tax distribution to be reasonably smooth
as well. This will be the case if the tabulated income tax data are interpolated using the Generalized
Pareto interpolation method of Blanchet et al. (2022c).
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Figure 2. Tax and survey frequencies.

the tax frequency) and the frequency at the neighboring bracket which was not calibrated. The

latter frequency, however, is not simply equal to the original survey frequency, but is adjusted

so that the population total remains the same. This adjustment is assumed to be uniform for

all brackets below the merging point.

A straightforward choice for the merging point would be the percentile for which the test

statistic, that is, the distance between the two neighboring frequencies, is lowest. This is indeed

correct if the ratio of survey to tax density is monotonically decreasing (as assumed by BFM)

and the frequencies thus cross only once. However, if the relationship between the densities is

more complex, there may be more merging points leading to a visually continuous density.

I propose the following algorithm for choosing candidate merging points: Consider all per-

centiles for which the test statistic is lower than 3% of the tax frequency – in this case, the new

density can be considered visually continuous. Consider also all percentiles with test statistic

lower than 130 % of the minimum value – this condition guarantees at least one candidate

merging point if no percentile satisfies the first condition. Finally, disregard percentiles where

a neighboring percentile has a lower test statistic – in this case, that neighboring percentile is

clearly preferred. If the first condition does not identify any merging point, it is a warning sign

that there might be an issue with the data.6 The algorithm should always be accompanied by

a visual inspection of tax and survey frequencies, which is informative on its own.

I illustrate the merging point choice in Figure 3, using the same data as in Figure 2. Setting

the trustable span to start at the 30th percentile, the algorithm identified two candidate merging

6For example, concepts in tax and survey data may not be correctly matched. Or tax data may only
cover a fraction of the population (at the top) that is too small. In the latter case, BFM extrapolate the
ratio of survey to tax density for percentiles not covered.
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Figure 3. Choosing the optimal merging point. 0.56 and 0.74 are two candidate merging points, each
leading to a visually continuous density after calibration. I choose 0.74 as the optimal one as it is the
highest. Same dataset as in Figure 2.

points: percentiles 0.56 and 0.74; both with the test statistic below 3 % of the tax frequency. In

general, all candidate merging points should be considered. For example, a graphical comparison

may reveal uneven oversampling at the top where the top 2-5 % is overrepresented but the top

2 % underrepresented. In that case, one may want to correct also the overrepresentation of

the top 2-5 %. But my general recommendation, which I also apply, is to choose the highest

candidate merging point; in the illustrative case this will be percentile 0.74. This corresponds

to the goal of correcting the survey distribution only once the downward bias at the top starts.

Comparing my optimal merging point method to the algorithm of BFM, I argue that my

method should be considered due to its intuitiveness and simplicity. It avoids the assumption of a

monotonically decreasing survey to tax density ratio and, furthermore, allows for an informative

visual comparison of frequencies. It is also more flexible thanks to the possibility of more

candidate merging points. On the other hand, the method of BFM allows for the merging

point to be above the 99th percentile. If the frequency comparison suggests this could be the

case, my method can be easily extended to more granular frequency brackets (e.g., 1/2 or 1/4

of a percent). I describe and illustrate this extension in Appendix A, where I also note that

the BFM merging point can be sensitive to the choice of the trustable span, which is arguably

undesirable.
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As the aim of the two methods is the same (i.e., preserving the continuity of the density

function), they can lead to similar results. That is also the case with the Austrian data used

to illustrate my method in Figures 2 and 3: My method leads to a merging point at the 74th

percentile, just like the method of BFM. An additional comparison based on simulated datasets

is provided in Section 4.1.

3.1.3 HFCS-specific adjustments

As the HFCS data are provided in five dataset replicates due to the imputation of missing values,

my method must be adjusted to take this into account. Rather than estimating a potentially

different optimal merging point for each replicate, I estimate one merging point based on the

average test statistic of each percentile.7 A further issue concerns surveyed individuals who are

young but exhibit relatively high incomes. When top wealth or income shares are reported in

the literature, the unit of analysis is usually adult individuals, frequently defined as aged 20

or over (Alvaredo et al., 2021). However, if a survey records younger high-income individuals,

excluding them will not lead to an accurate comparison of tax and survey distributions (as they

likely also file tax returns). On the other hand, constructing the fractile-based brackets from

the entire population will unnecesarily widen these brackets. I therefore choose to treat young

individuals with income above the threshold of 10,000 euro as adults. This does not lead to any

conceptual issues as I study the inequality of wealth, which is reported at the household level.

However, if one was interested in income inequality estimates of adult individuals, ”young rich”

people should be removed from the adult population after calibration, as they would be if one

had perfect tax microdata.

3.2 Existing wealth survey adjustments: The Pareto tail

3.2.1 Fitting a Pareto tail

One approach to mitigate the ”missing rich” error is to replace the top of the survey wealth

distribution with a Pareto distribution. Monte Carlo simulations have shown that this approach

can decrease or even eliminate bias caused by the more likely non-response of the wealthy

(Vermeulen, 2018) as well as decrease error resulting from a small sample size (Eckerstorfer

et al., 2016). In brief, the method consists of setting a wealth threshold, estimating a Pareto

coefficient from survey observations above that threshold (optionally including individuals from

a rich list) and replacing the population these observations represent with a Pareto distribution.

For a more exhaustive overview of wealth survey adjustment methods, see Kennickell et al.

(2022).

7Another possibility is to apply the maxi-min criterion (Eckerstorfer et al., 2016; Wald, 1945), which
in this context means choosing the percentile for which the maximum (i.e., worst) test statistic across
five implicates is the lowest.
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Pareto coefficient α

The Pareto distribution is characterized by the following complementary cumulative distribution

function (ccdf) and density:

P (X > w) =
(wmin

w

)α
(2)

f(w) =

(
αwα

min

wα+1

)
, (3)

where wmin is the threshold at which the Pareto distribution starts and α is the Pareto

coefficient, α > 0. Vermeulen (2018) shows how to extend estimators of the α parameter from

simple random samples to surveys where observations are weighted and not i.i.d. The maximum

likelihood estimator of α that takes into account complex survey weights can be defined as

α̂MLE =
n− 1

n

[
n∑

i=1

Ni

N
ln

(
wi

wmin

)]−1

, (4)

where n is the number of survey respondents with wealth above threshold wmin, Ni is the

survey weight of respondent i, wi their wealth and N =
∑n

i=1Ni is the top tail population

to be replaced.8 Note that if all weights are equal to 1, the estimator becomes a maximum

likelihood estimator that is minimum-variance unbiased in a simple random sample and when

wmin is known (Rytgaard, 1990). The extension means that observations that represent more

households have a larger impact on the estimate.

The second approach to estimating Pareto coefficient α exploits the property that a Pareto

distributed sample approximately follows a straight line on a log-rank log-wealth graph. The

relationship can be derived by replacing the complementary cumulative distribution (Equation

2) by its empirical counterpart and manipulating it:

N(wi)

N
≈

(
wmin

wi

)α

(5)

ln

(
N(wi)

N

)
≈ −α ln

(
wi

wmin

)
, (6)

where N(wi) is the population (i.e., the sum of survey respondents’ weights) with wealth at

or above wi.

An estimate of α can be obtained from Equation 6 with a linear regression, but it will be

biased. Intuitively, the source of this bias is that for a continuous distribution P (X > w) =

P (X ≥ w). The empirical ccdf can thus be represented by both N(wi)
N and N∗(wi)

N , where

N∗(wi) is the population with wealth strictly above wi. Gabaix and Ibragimov (2011) show

that in a simple random sample (i.e., when all weights are one and all observations i.i.d), bias

can be removed by subtracting 1/2 from an observation’s rank, which in the present notation

8Vermeulen (2018) calls this the pseudo-maximum likelihood estimator. He presents the formula with
min
1...n

wi in the denominator rather than wmin, but based on my replication of his results, I believe that

he uses the formula as presented here.
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corresponds to taking the average of N(wi)
N and N∗(wi)

N . Wildauer and Kapeller (2019) propose to

keep this correction also in the complex survey setting, which I do as well. A similar correction is

applied by Vermeulen (2018), but the difference is that the correction of Wildauer and Kapeller

(2019) allows estimating α without the intercept. This improves the fit of the Pareto line to

the data because the intercept does not enter the estimated Pareto distribution. I denote this

estimator α̂OLS .

Vermeulen (2018) shows in a Monte Carlo simulation that with survey data alone, the

maximum likelihood estimator generally performs better than the OLS estimator: Its estimates

of α tend to be closer to the truth and with a slightly lower variance, especially in the presence

of oversampling. On the other hand, the weighted maximum likelihood estimator is insensitive

to adding a rich list to the survey data, since each rich list entry has a weight of only 1. Pareto

coefficients based on survey data combined with a rich list are therefore estimated only using

α̂OLS .

Wealth threshold wmin

There is a trade-off in setting wmin, the threshold where the Pareto tail starts. By setting

it too low, there is a risk of dealing with observations that are not high enough to be well

approximated by a Pareto distribution. By setting wmin too high, the sample size is decreased,

leading to higher variance of α̂. One way to determine the threshold is a visual inspection of the

data, by observing where the log-rank log-wealth relationship appears to be linear (e.g., Cowell,

2011a) or where van der Wijk’s law appears to hold (e.g., Bach et al., 2019).9 Vermeulen (2018)

sets three thresholds at 0.5, 1 and 2 million euro and reports results for all three values.

A non-arbitrary method to determine wmin was proposed by Clauset et al. (2009) and applied

to HFCS data by Eckerstorfer et al. (2016) and Brzeziński et al. (2020). It consists of estimating

a Pareto coefficient for many thresholds and selecting the one where the data provide the best

fit to the estimated Pareto distribution. Clauset et al. (2009) choose the Kolgomorov-Smirnov

(KS) goodness-of-fit test: The KS test statistic is the maximum absolute distance between the

empirical and estimated cumulative distribution functions (or, equivalently, the complementary

cumulative distribution functions). The threshold for which the KS statistic is lowest is then

chosen as wmin. Eckerstorfer et al. (2016) use a conceptually similar Cramér–von Mises test.

I considered applying the KS statistic to determine wmin for the benchmark results but

found that it fails to identify obvious deviations from a Pareto tail at the very top of the

distribution. I show this in Figure 4 using the first implicate of Austrian 2011 data. The

application of the KS method to this dataset leads to a very low optimal threshold at 275,000

euro, covering the top 25 % of Austrian households. However, a visual inspection of the log-

rank log-wealth relationship reveals a visible break from the Pareto straight line at around 1.5

million euro (corresponding to the top 4 % of households). The KS test misses the break due

to the graph’s logarithmic scale, which I illustrate in Figure 4 on the first and fifth largest

survey observations. The difference between the largest observation’s empirical complementary

9Van der Wijk’s law is a property of the Pareto distribution that average wealth above any wealth
threshold is a constant multiple of that threshold (Cowell, 2011b).
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cumulative distribution function and the one fitted at wmin = 275, 000 is only 0.0027. I compare

this with the value for the fifth largest observation, which is visibly closer to the Pareto line but

has a higher difference between ccdfs of 0.0045. The maximum difference between the two ccdfs

at this threshold, which is the KS statistic, occurs much lower in the distribution. Therefore,

observations at the top would not influence the KS statistic for the 275,000 threshold even if

they were further away from the Pareto line.

Due to deviations from the straight line even above 1,500,000 euro, the KS statistic at this

threshold is still larger than at 275,000 euro. This is because the ccdfs for the KS test are

computed only from the top tail population, i.e., the ccdf at the threshold is always 1. For this

reason, Figure 4 is only illustrative; the included values relate to the difference of ccdfs of the

entire population.

Figure 4. Estimating the Pareto distribution at different thresholds. 275,000 euro is the optimal
threshold according to the Kolgomorov-Smirnov test. The blue and green lines illustrate how the KS
statistic is evaluated for two observations at the top. Because of the logarithmic scale, visual deviations
from the Pareto line at the top are not accounted for sufficiently in the KS test. Data: HFCS, Austria
2011, first implicate, calibrated weights.

I experimented with adjusting the setup of the KS test but it did not produce reliable results.

First, I tried comparing the logarithms of ccdfs in the KS test, which corresponds more closely

the graphical comparison in Figure 4. Second, I compared ccdfs at the top computed from the

entire population rather than just from the top tail. Each of these adjustments (as well as both

in combination) led to implausibly high estimates of optimal thresholds, always near the top of

the range of tested values, even if only a small number of survey observations were left.

As neither the approach used by Clauset et al. (2009) nor any subsequent adjustments

produced estimates of the Pareto threshold that would be consistent with the log-rank log-

wealth graph, I resort to setting wmin based on a visual examination of the distribution. As
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a result, the benchmark estimates for all three years are based on a threshold of 1.5 million

euro and I also report the sensitivity of results to setting the threshold at 1 and 2 million

euro. Clauset et al. (2009) recommend that the number of observations from which the Pareto

distribution is estimated be at least 50, otherwise the sampling error may be too high. This is

satisfied in Austrian data for 2011 and 2017, but not for 2014, with only 39 to 45 observations

above the 1.5 million euro threshold, depending on the implicate. However, given the visual

fit to the data, I proceed with this threshold nonetheless and report results under alternative

thresholds in Appendix C.

Finally, I note that judging the Pareto tail based on its fit to the data may be problematic in

principle. If one believes that the data are biased due to differential non-response, it is difficult

to justify that the best Pareto tail is the one that fits these biased data. The same argument

applies to methods evaluating whether the Pareto distribution is the right distribution to fit.

As I explain in Section 3.2.2, the rationale for combining survey data with rich lists is that the

latter ”anchors” the Pareto distribution which would otherwise be biased due to differential

non-response in the former. In the context of Figure 4, there is a possibility that the break from

the Pareto line is due to biased survey data and that the Pareto distribution estimated at the

275,000 euro threshold would in fact fix the bias rather than create it. However, as I estimate

the Pareto tail using data that have been (at least partially) corrected by calibration, I consider

my approach justified.

3.2.2 Adding rich lists

Estimating the Pareto distribution from the combination of survey data and lists of wealthiest

individuals is conceptually simple: The rich list observations are appended to the survey with a

weight of 1.10 α̂MLE is not a suitable estimator of the Pareto coefficient because of how it weighs

the observations: The rich list entries’ weight of 1 means that their influence on the estimate is

minimal. In contrast, in α̂OLS survey weights are only accounted for indirectly, in the rank of

observations, and each observation enters the OLS minimization problem with equal relevance.

Moreover, since rich list wealth values are extremely large, they will ”dominate” the objective

function which OLS minimizes (even though they are evaluated as logarithms). I illustrate this

point in Figure 5 on the same Austria 2011 dataset as in Figure 4: The Pareto line estimated at

the 1.5 million euro threshold is now aligned with the Pareto line estimated at wmin = 275, 000,

even though survey observations above 1.5 million euro are not.

Consequently, the quality of rich lists is fundamental for the reliability of wealth inequality

estimates. If the rich list is incorrect, so will be the wealth inequality estimates even if there

was no bias in the survey data.

3.2.3 The Pareto population

Once the Pareto distribution at the top is fully characterized (with or without utilizing the rich

list in the estimation), the final question is how to draw the population that it represents. One

10To preserve the original population size, I also decrease the weight of each survey observation by a
small constant. This has no impact on the results.
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Figure 5. Estimating the Pareto distribution from survey data combined with a rich list. Once the rich
list is included in the estimation, it becomes the main determinant of the slope of the Pareto line. Data:
HFCS, Austria 2011, First implicate, calibrated weights.

can obtain top tail wealth directly, using the expected value times the population size at the

top. When only part of the top tail belongs to the population of interest (e.g., the top 1 %),

conditional expected values may be used. I believe that this approach is used by Vermeulen

(2018) because I obtain identical results for Austrian first wave data which are also analyzed in

his work.

In this paper, I apply a different approach: I construct a new, synthetic survey population

consistent with the Pareto distribution. This approach is used in some form by Bach et al.

(2019) and Brzeziński et al. (2020). In addition to being intuitive, it is also less sensitive

to extreme values because as the Pareto coefficient tends to one, the expected value tends

to infinity. In general, however, the results achieved using either of the two methods will be

very similar, since resampling is essentially numerical integration (Dalitz, 2016). I construct

a synthetic population which has an empirical ccdf identical to the Pareto one. Synthetic

population’s size follows from the survey: It is the sum of weights of survey observations with

wealth above the Pareto threshold. When a Kolgomorov-Smirnov goodness-of-fit test is applied

to this population, the resulting statistic is 0, the lowest possible.

As a final step of drawing the Pareto population, I replace observations at the very top

with corresponding values from the rich list when it is used in the Pareto estimation. This

can further prevent implausibly large values at the top but contains a small complication: The

largest non-replaced synthetic household may have higher wealth than the poorest household

on a rich list. The difference is generally not very large (if this problem is present at all) and I

disregard it, implicitly assuming that the journalists may have omitted some households when

compiling the rich list.
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3.2.4 Variance estimation

To estimate the sampling error component of variance, replicate bootstrap weights are provided

in the HFCS dataset. The bootstrap procedure involves sampling with replacement from dif-

ferent population strata and adjusting replicate weights in the same manner as in the original

survey (European Central Bank, 2020). The problem in the present context is that these weights

are not suitable for variance estimation if I use the new, calibrated weights. There is not enough

information to replicate the bootstrap procedure; mainly it is unknown how to divide survey

observations into population strata. I therefore replicate it only partially, using the same Rao-

Wu rescaled bootstrap (European Central Bank, 2020, Section 7.2) but working with the entire

population as the only stratum and not performing any additional adjustments. I create 500

new bootstrap weights for each set of weights. For the non-calibrated weights, I can compare

the standard errors of top 1 % share estimates based on the provided weights with those based

on my replication. In all studied years, the difference is less than 2 % (0.2 percentage points)

when the top share is computed using survey data alone and less than 9 % (1.1 percentage

point) when a Pareto tail is fitted using α̂MLE .

In addition to sampling error, total variance must take into account variance due to missing

values, which are imputed five times. For this, I apply the formula by European Central Bank

(2020, Section 7.3).

4 Results

4.1 Monte Carlo simulation: The optimal merging point

In Section 3.1.2, I developed a new method to determine the merging point, i.e., the percentile

where the calibration of survey and income tax data starts. I presented a different framework

than BFM but with the same aim of preserving the continuity of the new, calibrated density

function. Because the goal is the same, the two methods can lead to the same or similar results,

as was the case for the illustrative dataset in Section 3.1.2. Here I present a more systematic

comparison using simulated Monte Carlo data.

The setup of the Monte Carlo simulation largely, but not entirely, follows BFM. A population

of 9 million is obtained by taking the exponent of a draw from standard normal distribution

(which corresponds to a lognormal distribution). In each iteration, 1 % of the population is

sampled. The probability of response is 50 % until the 90th percentile and then decreases

linearly with rank until nearly reaching 0 %. The probability of misreporting is 20 % until

the 95th percentile and then increases linearly with rank until almost 100 %. The distribution

of misreported income is again lognormal but independent of the true income. In addition,

the true income distribution is recorded in the income tax data and available in an aggregated

tabulated form.11

11Defining the income brackets of the tabulated tax data introduces a degree of arbitrariness into the
simulation. I define reasonably fine brackets of size 0.2 from income values 0 to 2, of size 0.4 from income
values 2 to 6.2, complemented by 5 brackets at the top with lower bounds at income values 7, 8, 10, 12,
and 15.
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The deviation from the setup of BFM lies in the tax data quality. The tabulated tax data

in my setup are accurate for the entire distribution, while BFM assume accuracy only from the

90th percentile onward and a downward bias until that point. I discuss the sensitivity of results

to this change later in this Section.

I perform 1,000 iterations of the setup and apply both merging point approaches to the

simulated data. My approach is applied in two variants which differ in handling situations with

more than one candidate merging point. The first variant, denoted K, is the one I describe

in Section 3.1.2 and apply in the empirical part: I determine candidate merging points, i.e.,

percentiles for which the test statistic is considered low, and, if there are more than one, I

choose the highest candidate merging point. In the second variant, denoted Kdirect, I proceed

directly with the percentile which has the lowest test statistic.

Table 1 reports the results. Had the non-response profile of the population been publicly

known, the hypothetical researcher should set the merging point at the 90th percentile. Such

merging point would correct the bias at the top in its entirety while minimizing the survey

distortion below this point. The benchmark method K generally identifies the merging point

closer to the 90th percentile. In 43.5 % of simulations, the K optimal merging point was between

percentiles 0.89 and 0.91, while the estimator of BFM, denoted BFM, was within this range in

29 % of simulations. On the other hand, my method located the merging point at percentile

0.92 in two iterations of the simulation, in which case it did not correct the entire bias.

Table 1. Distribution of optimal merging point estimates.

MP method 0-0.79 0.80-0.88 0.89-0.91 0.92-1 Total

BFM 32.1 38.9 29.0 0.0 100
K 15.4 40.9 43.5 0.2 100
K direct 85.9 11.2 2.9 0.0 100

Note: Table 1 reports the share of merging point estimates which fall within each range. The bias is set
to start at percentile 0.9 in the Monte Carlo simulation.

The Kdirect method, which directly chooses the percentile with the lowest test statistic,

performed poorly. Intuitively, this is due to the the simulation’s setup in which there is no

differential bias in the survey nor in the tax data below the 90th percentile. Consequently, the

two densities could cross multiple times due to sampling error in the survey, leading to many

candidate merging points. This result highlights the need to consider all candidate merging

points, as discussed in Section 3.1.2.

Figure 6 illustrates the results by plotting different optimal merging point approaches against

each other. The BFM and K methods are visually similar, with the exception of several cases

where the BFM merging point lies around the 15th percentile. One potential explanation is that

the tabulated (and subsequently interpolated) income tax data are not accurate at the bottom

of the distribution. In any case, the K method is not sensitive to such an issue. Comparing the

K and K direct methods, it is apparent that the K direct method serves as a lower bound to

the K merging point. This follows from the definition of the two approaches, where K direct is

defined as the candidate merging point with the lowest test statistic, and the K merging point

is the largest candidate merging point.
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Figure 6. The correlation of optimal merging point approaches. For visualization purposes, only 300
simulations are shown.

Merging point choice only impacts income inequality estimates to a small degree: The

correlation coefficient between the top 1 % shares based on K and BFM merging points is

0.999. For the Gini coefficient the figure is slightly lower (0.953) because Gini considers the entire

distribution. This merging point irrelevance is due to assumptions that the tax distribution is

accurate everywhere and that the survey is not systematically biased below the 90th percentile.

These assumptions may not hold in real life and I still consider it desirable to aim for as low a

survey distortion as possible, which in this setup means a merging point at the 90th percentile.

Finally, it was already established by BFM that the estimates themselves are significantly closer

to the true value and with less variance than the original survey estimates.

In this simulation, I assume that the tabulated tax data accurately represent the entire

distribution. BFM instead assume that they are downward biased up until the top 10 %.

Under this assumption, the K and BFM methods perform comparably. However, I consider

this assumption quite extreme because it implies that the unbiasedness of survey and tax data

overlaps at precisely one point, the 90th percentile. When the survey and tax data are unbiased

over a larger interval, say from the 70th to the 90th percentile, my method will again tend to

estimate the merging point closer to the optimal value, which is the 90th percentile. Detailed

results of Monte Carlo simulations under these alternative assumptions are provided in Appendix

B.

4.2 Empirical data

4.2.1 Survey and tax income distributions

The merging point approach developed in this paper allows for an intuitive visual comparison

of survey and tax distributions. This is shown in Figure 7, where I also include the income

distribution of the EU-SILC survey. While the main aim of HFCS is to record the distribution

of wealth, EU-SILC is the benchmark EU survey for income. The comparison of Austrian EU-
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SILC and HFCS income distributions is nevertheless striking: EU-SILC fits the tax data quite

well (albeit not perfectly as it appears to overrepresent several percentiles near the top). In

contrast, the downward bias in HFCS is observable as early as before the 80th percentile.

Figure 7. A comparison of survey (EU-SILC, HFCS) and tax distributions. Percentile-based brackets
are computed using the HFCS adult population size. Reference years for income and wealth differ in
HFCS. HFCS data are averaged over implicates.

Austria is a country with no recorded oversampling strategy in the second and third waves

and with a basic oversampling of Vienna in the first wave. Indeed, the first-wave survey ap-

pears to have the best fit to the income tax data, although the EU-SILC distribution remains

superior. Another important difference is the sample size. The HFCS distribution is based on

4,140, 5,074 and 5,223 adult individuals in the first, second and third waves, respectively. The

corresponding sample sizes in the Austrian EU-SILC data are more than twice as large, between

10,500 and 11,000.12 EU-SILC also takes labor, pension and unemployment income data from

public registers (Heuberger et al., 2013), which eliminates the bias arising from the untruthful

reporting of these variables.

The comparison of survey and tax densities, which is part of my optimal merging point

approach, constitutes an informative external check of HFCS data quality. The main aim of

HFCS is to measure wealth and not income, but if the wealth distribution is captured correctly

(which cannot be checked externally), then the income distribution should be as well. Figure 7

strongly suggests that this is not the case with Austrian HFCS data.

12As explained in Section 3.1.3, the sample size referred to in this paragraph consists of individuals
aged 20 or over, as well as younger individuals with income over the threshold of 10,000 euro.
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4.2.2 Coverage ratios

Coverage ratios express the aggregate value of a wealth or income concept in a survey as a

percentage of the corresponding total in the official macroeconomic statistics, the National

Accounts. Totals in the National Accounts are obtained by combining various administrative

and other data sources, and are thus perceived to be of higher quality than totals in the survey.

However, the net wealth concept in the HFCS does not have a highly comparable counterpart

in the National Accounts.13 I compute coverage ratios for Austria using two wealth concepts

adopted from EG-LMM (2020). The narrow financial wealth concept consists of deposits, bonds,

listed shares, mutual funds, minus liabilities. These are assessed by EG-LMM (2020) to have

high conceptual comparability. The adjusted broad wealth concept additionally includes unlisted

shares, dwellings, or the value of self-employment businesses, but the conceptual comparability

between the survey and the National Accounts is lower.

Figure 8 shows coverage ratios in the Austrian HFCS before and after calibration (without

any Pareto adjustment). Calibrating survey weights generally puts the survey total closer to

the National Accounts. The impact of calibration is the smallest in the first wave, when the

coverage ratio of the broad wealth concept increases from 88 % to 102 %. This suggests that

the oversampling of Vienna in the first wave has helped to achieve a more representative survey

sample, at least in terms of total wealth. In contrast, the largest impact occurs in the second

wave, when the calibrated survey even exceeds its National Accounts counterpart: the coverage

ratio of the broad wealth concept rises from 79 % to 122 %. The difference from the ideal

ratio of 100 % thus remains approximately constant in absolute terms. Calibration increases

the coverage ratio also of the narrow financial wealth concept, although it still remains notably

undercovered. Overall, the results support the claim that calibration can improve the reliability

of wealth surveys.

4.2.3 New wealth inequality estimates

Figure 9 illustrates the impact of calibration on the wealth distribution, which is the smallest

in the first Austrian survey from 2011, when Vienna was oversampled. In that first wave, the

downward bias of the survey income distribution is the smallest, as shown in Figure 7 in Section

4.2.1. In addition, there appears to be a weak correlation between top income holders in the

survey (whose weights have been increased) and top wealth holders in 2011. In contrast, income

calibration visibly increases survey weights of wealthy families in 2014 and 2017, as would be

expected given the hypothesised underrepresentation of the rich. The distribution shifts to

the right, meaning that estimated wealth is larger for each rank at the top (for example, 10−3,

which corresponds to a household in the top 0.1 %). Figure 9 also reveals the issue of insufficient

coverage at the top, where only a few survey observations represent the wealthiest households.

The impact of calibration on the Pareto tail estimation is highlighted in Figure 10 using

Austrian 2017 data. The Pareto line estimated using calibrated weights is shifted to the right,

implying larger inequality. In addition, the Pareto line for the calibrated weights starts at a

13The most problematic components are dwellings and land, parts of non-listed business wealth, and
consumer durables (see e.g. Waltl, 2022, Appendix A).
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Figure 8. Coverage ratios before and after calibration. Coverage ratios compare the survey totals
with those in the National Accounts. Wealth concepts are adopted from EG-LMM (2020). Values are
averaged over implicates.

lower rank than for the original weights, even though the wmin threshold is the same. This

is because calibration has increased the population size above the threshold, meaning that the

tail to be replaced is larger. This is encouraging because if the probability of response starts

to decline below the Pareto threshold, the size of the top tail will originally be underestimated,

biasing the results (Westermeier, 2016). When the list of the wealthiest individuals is included,

the difference in the slope of the Pareto tail becomes negligible: the rich list ”dominates” the

OLS objective function, as explained in Section 3.2.2.

Table 2 presents a systematic comparison of the top 1 % wealth share estimates based

on different weights and methods. As reported in the first column, survey weight calibration

increases the top 1 % wealth share from 25.5 % to 36.6 % in 2014 and from 22.8 % to 27.3 % in

2017. In 2011, even though calibration increases the net worth of the top 1 %, the denominator

(i.e., total wealth) increases even more, leading to a decrease in the top 1 % share from 23.2 % to

21.5 %. All these values, especially the top share in 2014 with calibrated weights, are associated

with a high level of uncertainty quantified by the bootstrap standard errors. In general, the

precision of survey estimates depends on survey design: whether the sample size is sufficiently

large and whether the wealthy are among the respondents in adequate numbers. Consequently,

the observed drop in inequality between 2014 and 2017 could be due to measurement issues. A

similar decrease is found in the German HFCS data, with the Deutsche Bundesbank suggesting

such an explanation.14

14”In the wave 2017 it appears, in particular, that business assets in the top tail of the distribution
were under-recorded. In addition, fewer very wealthy households participated in the survey compared
with the survey waves in 2010 and 2014” (Albers et al., 2022; Deutsche Bundesbank, 2019).
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Figure 9. Wealth distribution (complementary cumulative distribution function) based on original and
calibrated weights. Data: HFCS, average over implicates. Figures for all five implicates are provided in
Appendix D.

Figure 10. Pareto distribution estimation. Data: HFCS, Austria 2017, average over implicates.
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Fitting a Pareto tail using survey data alone, without the rich list, leads to erratic results.

They are sensitive to the choice of the estimation method and have large standard errors, likely

due to the small number of wealthy households in the Austrian HFCS survey. As I report in

Appendix C, the results are also sensitive to the choice of the estimation threshold wmin. Using

the α̂MLE estimator, the impact of Pareto tail estimation is visible mainly in 2011 and in 2014

with calibrated weights. In 2014 with original weights and in 2017, the impact is smaller and

there is even a slight decrease in the estimated top 1 % wealth share. The small sensitivity of

estimates to the Pareto tail without a rich list is not unique to Austria, as reported in Vermeulen

(2018, Table A3).15 Including the rich list in the Pareto estimation confirms what is apparent

in Figure 10: The top 1 % share increases and variance is almost eliminated. The increase is

quite large, even compared to results based on calibrated weights. The only exception is the

year 2014, where the survey with calibrated weights leads to similar results as the Pareto tail

with a rich list. The drop in variance is optimistic but only to the extent that the rich list can

be trusted. As explained in Section 3.2.2, if the rich list is not reliable, it will bias the results

even if the survey data were accurate.

Table 2. Top 1 % share estimates.

Survey Pareto Pareto Pareto
+ Survey + Survey + Survey

MLE OLS + Rich list

2011, original weights 23.2 32.1 29.2 41.3
(7.3) (18.5) (16.5) (1.3)

2011, calibrated weights 21.5 29.3 26.9 39.6
(7.2) (17.8) (16.2) (0.9)

2014, original weights 25.5 24.1 28.7 39.9
(8.0) (12.8) (15.8) (1.2)

2014, calibrated weights 36.6 47.6 53.8 38.4
(14.9) (29.2) (32.6) (1.3)

2017, original weights 22.8 20.8 23.7 44.0
(5.8) (5.1) (7.1) (0.9)

2017, calibrated weights 27.3 26.4 29.3 43.0
(6.8) (12.0) (12.0) (0.8)

Note: Pareto threshold 1.5 million euro. Bootstrap standard errors in parentheses. Results for different
thresholds are provided in Appendix C

In Table 3, I present calculations of the Gini coefficient, which are broadly in line with the

top 1 % shares. The impact of survey calibration is again positive in 2014 and 2017 and small

15For completeness, I list reasons why my Pareto estimates may differ from those in Vermeulen (2018)
even when non-calibrated weights are used and the wmin threshold is the same. First, after estimating
the Pareto tail, I create synthetic households for the top tail rather than working with (conditional)
expected values – see Section 3.2.3. Second, α̂OLS is estimated using a regression without intercept,
which provides a better fit in the log-rank log-wealth graph. Third, due to calibration, I must work with
my own bootstrap weights rather than those provided by HFCS – see Section 3.2.4.
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and negative in 2011. The impact of Pareto fitting does not change either since it is the same

Pareto tail that is being fitted. The Gini coefficient is a more robust measure than the top 1 %

share and the differences between methods are generally lower, as are the standard errors. In

Appendix C, I provide the top 1 % share estimates for different thresholds, namely 1 million

euro and 2 million euro. The sensitivity of Pareto estimates to the threshold choice is quite

high, the only exception again being the inclusion of the rich list.

Table 3. Gini coefficient estimates.

Survey Pareto Pareto Pareto
+ Survey + Survey + Survey

MLE OLS + Rich list

2011, original weights 76.2 78.7 77.7 81.9
(4.0) (6.8) (6.3) (1.9)

2011, calibrated weights 75.0 77.2 76.4 81.0
(4.3) (7.0) (6.6) (1.9)

2014, original weights 73.1 72.6 74.3 78.4
(3.0) (4.7) (5.8) (0.9)

2014, calibrated weights 76.7 80.9 83.2 77.6
(6.0) (11.0) (12.2) (1.2)

2017, original weights 73.0 72.3 73.4 80.6
(2.2) (2.0) (2.7) (0.8)

2017, calibrated weights 74.8 74.7 75.8 80.7
(2.7) (4.6) (4.5) (0.9)

Note: Pareto threshold 1.5 million euro. Bootstrap standard errors in parentheses.

Estimates based on calibrated weights tend to exhibit larger standard errors than those based

on original weights. This is because calibration includes one additional source of uncertainty:

imputed missing values in the income part of the survey. Variance in the original estimates, on

the other hand, is only due to sampling and due to imputed wealth values. It is a positive sign

that standard errors tend to decrease with each HFCS wave, suggesting that imputed missing

values are becoming less of a concern. In Appendix D, I provide the log-rank log-wealth graphs

for all five implicates, in which the only difference is the imputed missing values.

5 Conclusion

The problem of the missing rich in wealth surveys prevents their use for reliable wealth inequal-

ity estimates. This paper contributes to the existing body of literature that seeks to improve

surveys using external sources and statistical adjustments. I develop a new approach that makes

wealth surveys consistent with income tax data, a high-quality external source. The method

avoids arbitrary assumptions to the extent possible, preserves the main socio-demographic char-

acteristics and keeps the survey structure intact.
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I apply the new method to three waves of the Austrian Household Finance and Consumption

Survey, combined with the tabulated tax data. Calibration increases wealth inequality estimates

in the second and third waves of the survey: the top 1 % wealth share rises from 26 % to 37

% in 2014 and from 23 % to 27 % in 2017. The effect is small and negative in the first wave,

where the top 1 % share declines from 23 to 22 %. A potential explanation for this small effect

is the existence of an (albeit basic) oversampling strategy in the first wave, which should reduce

the missing rich problem. In contrast, there was no oversampling strategy recorded in the

subsequent two waves. My merging point algorithm also reveals a strong bias in the Austrian

HFCS income data when compared with the tax distribution and even with another survey,

EU-SILC.

Combining my method with other estimation techniques, I find that fitting a Pareto tail

produces results that are sensitive to the estimation method and the Pareto lower bound. While

including a rich list eliminates these issues, this is because the rich list overshadows the survey

data and ”dominates” the estimation of the Pareto coefficient. Any errors in the rich list thus

have direct consequences for the inequality estimates.

Application of the presented calibration method consists of three main steps. First, income

tax data must be carefully matched with the income concepts in the survey. This involves

considering the definition of the tax unit, the types of income included in the tax data, or

whether taxes or social security contributions have been deducted. Adjustment may also be

made to the tax data themselves, but they should remain continuous, as will be the case if

interpolation is applied to tabulated data. Once the income concepts are harmonized, the

second step is to apply the calibration method of BFM to the survey’s income distribution.

This only changes survey weights, not the reported income, and makes the income distribution

in the survey consistent with the tax data. I use my own algorithm to determine the optimal

merging point from which calibration should start. This algorithm includes an intuitive visual

comparison of the survey and tax income distributions. Finally, the newly calibrated weights

can be used along with the recorded wealth data to estimate wealth inequality.

The presented method can be useful for researchers who work with surveys to study the top

of the wealth distribution (e.g., Garbinti et al., 2021; Palomino et al., 2021). In my optimal

merging point algorithm, I also propose a visual comparison of survey and tax income densities

that can be utilized in research on how these distributions differ (e.g., Bartels and Metzing,

2019; Yonzan et al., 2022). A key prerequisite for the successful application of my method is

the availability of reliable income tax data and the correct matching of this data to income

concepts in the survey.
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Appendix A: Extension of the merging point algorithm

to more granular frequency brackets

In some cases, especially when the merging point is presumed to be near the top of the income

distribution, it may be desirable to use narrower frequency brackets than those based on per-

centiles. I illustrate such extension using Austrian EU-SILC data from the 2016 wave. Figure

11 introduces the dataset. The survey kernel density follows the tax density quite closely until

around the 90th percentile, after which it starts to appear ”bumpy” as the income intervals un-

derlying each bracket become larger. Although the survey and tax distributions cross at around

the 97th-98th percentile, my optimal merging point algorithm does not identify any candidate

merging points there. This is because while the algorithm aims to preserve the continuity of

the density function, the distribution was not visually continuous even before the calibration.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
Percentile

0

20,000

40,000

60,000

80,000

100,000

120,000

Fr
eq

ue
nc

y

Tax
Survey
Survey Kernel

Figure 11. Tax and survey frequencies. Gaps in the survey kernel distribution suggest more granular
frequency brackets are desirable.

Figure 12 shows how to make the comparison of survey and tax distributions more inform-

ative and suitable for my optimal merging point algorithm. I apply the Generalized Pareto

interpolation to the tax data again, creating finer brackets of the size 1/4 of a percent. All

the other steps of the merging point method, including the algorithm for choosing candidate

merging points, remain the same as in the original setup. Narrowing the bracket size solves

the problem of the survey kernel density’s ”bumpiness”. The merging point algorithm now

identifies a candidate merging point at the 98th percentile, more specifically at its first quartile.

In contrast, the largest candidate merging point using the standard bracket size was the 94th

percentile, in addition to the 90th and 75th percentiles. Researchers wishing to calibrate this
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Figure 12. Comparing tax and survey distributions using more granular frequency brackets. Y-axis
scale in the bottom graph is 4 times lower than in the top graph. Same dataset as in Figure 11. Small
random noise is added to the survey distribution in the bottom graph to ensure confidentiality.

illustrative dataset can thus choose between four candidate merging points, all of which lead to

a visually continuous density after calibration.

When the approach of BFM is applied to this dataset, it exhibits sensitivity to the choice of

the trustable span, i.e., the left-bounded interval on which the tax data are considered reliable.16

My method does not suffer from this issue (of course, the trustable span must remain large

enough to include the candidate merging point), which is another reason why it should be

considered an alternative to the merging point algorithm of BFM.

16For example, if the trustable span (ts) starts at percentile 0.4, the optimal merging point (omp) is
the percentile 0.42. If ts starts at 0.5, omp is 0.76; if ts starts at 0.6, omp is 0.97.

32



Appendix B: Monte Carlo simulation: Alternative scen-

arios

In my benchmark simulation in Section 4.1, I have deviated from the setup of BFM by assuming

that the tabulated tax data accurately represent the entire distribution. Here I report results of

two Monte Carlo simulations which assume that the tax data are biased. These two simulations

are conducted using the population size of 1 million due to computational demands associated

with using the benchmark 9 million population. I report the sensitivity to the population size

in the third simulation.

For the first specification, bias is introduced by multiplying each tax bracket by a coefficient

that is 0 until the 50th percentile and then increases linearly with rank until the 90th percentile,

at which it reaches and sustains the value of 1. This is in line with the simulation in BFM and

the results are reported in Table 4. The difference between the three optimal merging point

approaches, BFM, K and K direct, is minimal.

Table 4. Distribution of optimal merging point estimates: Tax data biased until the 90th percentile

MP method 0-0.79 0.80-0.88 0.89-0.91 0.92-1 Total

BFM 0.0 0.0 86.8 13.2 100
K 0.0 0.0 85.5 14.5 100
K direct 0.0 0.0 85.6 14.4 100

Note: Table 4 reports the share of merging point estimates which fall within each range. This scenario
reflects the assumption of BFM whereby there is a downward bias in the tax data up until the 90th

percentile.

The second setup instead assumes that the bias exists only until the 70th percentile (the

bias is modeled analogously to the previous simulation). Table 5 reports the results. Once

there is a larger interval on which the survey and tax data have no systematic bias, the results

become in line with my benchmark specification: The K method identifies the merging point

near the optimal value, the 90th percentile, more often than the BFM method. The K direct

method again performs the worst.

Table 5. Distribution of optimal merging point estimates: Tax data biased until the 70th percentile

MP method 0-0.79 0.80-0.88 0.89-0.91 0.92-1 Total

BFM 16.9 41.3 37.9 3.9 100
K 6.1 42.2 45.2 6.5 100
K direct 43.3 43.7 11.9 1.1 100

Note: Table 5 reports the share of merging point estimates which fall within each range. This scenario
assumes that the tax data are biased until the 70th percentile and accurate afterwards.

Finally, I report the sensitivity of results to the population size. The Monte Carlo simulations

in this Appendix are computed using a population of 1 million, which is much less than the 9

million population in BFM. Population size determines the gross sample size, which is 1 % of the

total. The smaller population was chosen due to computational demands of my method, which

relies on integrating the survey’s adaptive kernel density over each percentile-based bracket.
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Using the benchmark setup (i.e., with unbiased tax data), I run two new simulations with

population size of 1 and 2 million, respectively. Results are compared in Table 6. When

the population size is increased, the performance of both methods generally tends to improve,

but the K method remains superior. This suggests that the results are not sensitive to the

population size.

Table 6. Distribution of optimal merging point estimates: Changing the population size

MP method 0-0.79 0.80-0.88 0.89-0.91 0.92-1 Total

BFM 1 mil. 59.6 26.4 13.5 0.5 100
K 1 mil. 6.0 42.5 45.1 6.4 100
K direct 1 mil. 86.7 10.1 3.2 0.0 100

BFM 2 mil. 52.1 27.1 20.6 0.2 100
K 2 mil. 6.0 39.1 51.1 3.8 100
K direct 2 mil. 88.0 9.5 2.2 0.3 100

BFM 9 mil. 32.1 38.9 29.0 0.0 100
K 9 mil. 15.4 40.9 43.5 0.2 100
K direct 9 mil. 85.9 11.2 2.9 0.0 100

Note: Table 6 reports the share of merging point estimates which fall within each range. Three
scenarios are compared, differing only in the population size. All simulations assume unbiased tax data.
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Appendix C: Top 1 % wealth share estimates with

different Pareto thresholds.

Table 7. Top 1 % shares with different thresholds, Pareto MLE estimates.

Survey 1 mil. 1.5 mil. 2 mil.

2011, original weights 23.2 37.9 32.1 30.3
(7.3) (22.3) (18.5) (16.8)

2011, calibrated weights 21.5 39.3 29.3 29.3
(7.2) (24.6) (17.8) (17.4)

2014, original weights 25.5 22.3 24.1 31.2
(8.0) (7.4) (12.8) (23.4)

2014, calibrated weights 36.6 33.5 47.6 64.4
(14.9) (18.8) (29.2) (39.1)

2017, original weights 22.8 21.9 20.8 23.1
(5.8) (4.1) (5.1) (9.2)

2017, calibrated weights 27.3 28.3 26.4 30.1
(6.8) (9.9) (12.0) (17.7)

Note: Bootstrap standard errors in parentheses.

Table 8. Top 1 % shares with different thresholds, Pareto OLS estimates.

Survey 1 mil. 1.5 mil. 2 mil.

2011, original weights 23.2 33.3 29.2 27.8
(7.3) (19.8) (16.5) (15.2)

2011, calibrated weights 21.5 32.7 26.9 26.0
(7.2) (21.4) (16.2) (15.7)

2014, original weights 25.5 25.1 28.7 34.7
(8.0) (9.6) (15.8) (23.9)

2014, calibrated weights 36.6 36.8 53.8 66.9
(14.9) (20.6) (32.6) (41.4)

2017, original weights 22.8 23.0 23.7 25.6
(5.8) (5.1) (7.1) (10.7)

2017, calibrated weights 27.3 29.3 29.3 32.6
(6.8) (10.1) (12.0) (16.3)

Note: Bootstrap standard errors in parentheses.
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Table 9. Top 1 % shares with different thresholds, OLS + rich list estimates.

Survey 1 mil. 1.5 mil. 2 mil.

2011, original weights 23.2 41.2 41.3 40.8
(7.3) (1.0) (1.3) (1.9)

2011, calibrated weights 21.5 39.3 39.6 38.9
(7.2) (0.8) (0.9) (1.6)

2014, original weights 25.5 41.5 39.9 38.0
(8.0) (0.6) (1.2) (2.3)

2014, calibrated weights 36.6 39.5 38.4 37.6
(14.9) (0.7) (1.3) (2.2)

2017, original weights 22.8 44.8 44 41.8
(5.8) (0.6) (0.9) (1.5)

2017, calibrated weights 27.3 43.1 43 41.9
(6.8) (0.6) (0.8) (1.5)

Note: Bootstrap standard errors in parentheses.
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Appendix D: Differences between implicates

Figure 13. Wealth distribution (complementary cumulative distribution function) based on original
and calibrated weights. Data: HFCS, First wave.
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Figure 14. Wealth distribution (complementary cumulative distribution function) based on original
and calibrated weights. Data: HFCS, Second wave.
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Figure 15. Wealth distribution (complementary cumulative distribution function) based on original
and calibrated weights. Data: HFCS, Third wave.
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