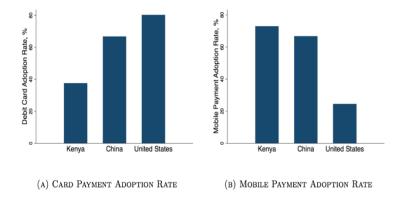
Technology Adoption and Leapfrogging: Racing for Mobile Payments

Pengfei Han^a and Zhu Wang^b


^{*a*}Peking University ^{*b*}Federal Reserve Bank of Richmond

August 30, 2023

Technology Adoption and Leapfrogging:, Racing for Mobile Payments

Motivation

• The U.S. has fallen behind in adopting mobile payments.

Technology Adoption and Leapfrogging:, Racing for Mobile Payments

Research & Policy Questions

- How have mobile payments been adopted in other countries?
- Why did some developing countries leapfrog in adopting mobile payments?
- Have advanced economies lost their leadership in payments?
- What government policies should be considered to facilitate mobile payment development?

Analysis and Findings

- We compile a novel dataset to compare cross-country adoption patterns of card and mobile payments.
 - Leapfrogging in mobile payment adoption is a common pattern.
 - Unlike card, mobile payment adoption shows a non-monotonic relationship with per capita income.
 - Advanced economies favor mobile payments complementary to cards, while developing countries favor those substituting cards.

Analysis and Findings (Cont'd)

- We construct a theory to explain cross-country adoption patterns.
 - Payment technologies (cash, card, mobile) arrive sequentially.
 - Newer payment technologies lower variable costs of conducting payment transactions, but they require a fixed cost to adopt.
 - Rich consumers (countries) enjoy adopting card payments early on, but their sunk investment on card hinders mobile adoption.
 - Card-intensive (cash-intensive) countries favor mobile payments complementing (substituting) cards.

Analysis and Findings (Cont'd)

- Our estimated model matches cross-country adoption patterns of card and mobile payments well, and yields welfare and policy implications.
 - Falling behind in mobile payment adoption does not necessarily mean falling behind in overall payment efficiency.
 - Lagging adoption in rich countries is because the incremental benefit of switching from card to mobile is not large enough.
 - Greater technological advances are needed for advanced economies to catch up in the mobile payment race.
 - Policy interventions require prudent social cost-benefit analysis.

Introduction

Conclusion

Related Literature

- IO theories on payments system
- Empirical studies on payment adoption
- Rise of digital payment and fintechs
- Technology diffusion and financial development

Conclusion

Introduction

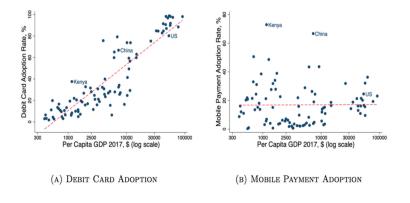
- Background and stylized facts
- An estimated model
- Welfare and policy analysis
- Further discussions
- Conclusion

• **Definition**: A mobile payment is a money payment through a mobile phone, regardless of whether the phone actually accesses the mobile network to make the payment (Crowe et al. 2010).

10 / 35

Two Mobile Payment Technologies

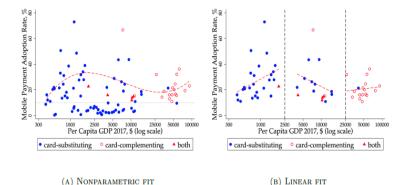
- Card-substituting mobile payment (e.g., M-PESA)
 - Relies on a network of agents to bypass the banking system.
 - Uses SMS/USSD text messages to transfer money.
 - Mostly used in developing countries.
- Card-complementing mobile payment (e.g., Apple Pay)
 - Connects credit cards, debit cards, and bank accounts to mobile devices to send and receive money.
 - Uses NFC to communicate with the POS terminal.
 - Mostly used in advanced economies.



- We compile a novel dataset on card and mobile payment adoption in 94 countries.
 - The adoption of card-substituting mobile payments in 2017 from the Global Findex Database of the World Bank (76 countries).
 - The adoption of card-complementing mobile payments around 2017 from eMarketer (23 countries).
 - The adoption of debit cards in 2017 from the Global Findex Database of the World Bank.

Introduction

Cross-Country Patterns


• Card adoption increases with per capita GDP, while mobile payment adoption shows no clear relationship with income.

Introduction

Cross-Country Patterns (Cont'd)

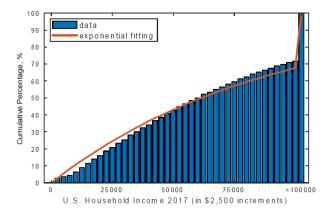
• A pattern starts to emerge as we delve further into the data.

Technology Adoption and Leapfrogging:, Racing for Mobile Payments

Four Stylized Facts

- I Positive relationship between per capita income and card adoption.
- Non-monotonic relationship between per capita income and mobile payment adoption.
- Some low-income countries overtake high-income countries in adopting mobile payments.
- Low- and middle-income countries favor card-substituting mobile payments; high-income countries favor card-complementing ones.

Model Setup


- Three payment technologies arrive sequentially, in the order of cash, card, and mobile.
- Cash is accessible to everyone in an economy, with a variable cost τ_h per dollar of transaction.
- Card and mobile require a fixed cost of adoption but lower variable costs of doing transactions comparing with cash.
 - *k_d* and *k_m*: one-time fixed adoption costs for card and mobile.
 - τ_d and τ_m : variable payment costs for using card and mobile.
 - Technology progress between cash, card, and mobile is captured by $\tau_h > \tau_d > \tau_m$ and $k_d > k_m$.

Model Setup (Cont'd)

- Time is discrete with an infinite horizon.
- We consider an endowment economy, where an agent receives an exogenous income *I*_t at time *t*.
- Income I_t follows an exponential distribution across the population in the economy, with the cdf function $G_t(I_t) = 1 \exp(-I_t/\lambda_t)$.
- Each agent's income I_t grows at a constant rate g, i.e., $I_{t+1} = I_t(1+g)$, so does the mean income of the economy, i.e., $\lambda_{t+1} = \lambda_t(1+g)$.
- An agent has a linear utility u = c, where *c* is her consumption.
- Payment and merchant services are provided by competitive markets, so a consumer always uses her favorite payment method at social cost.

Exponential Income Distribution

• Exponential distribution fits income data well.

Technology Adoption and Leapfrogging:, Racing for Mobile Payments

Model Equilibrium – Cash

- Only cash is available before electronic payments arrive.
- The value function *V_h* of an agent depends on her income *I_t*:

$$V_h(I_t) = (1 - \tau_h)I_t + \beta V_h(I_{t+1}),$$

where

$$I_{t+1} = I_t(1+g),$$

and β is the discount rate.

• Therefore,

$$V_h(I_t)=rac{\left(1- au_h
ight)I_t}{1-eta(1+g)}.$$

Model Equilibrium – Card

- Card technology arrives as an exogenous shock at time *T*_d.
- The value functions of an agent who has adopted card or not:

$$V_d(I_t) = (1 - \tau_d)I_t + \beta V_d(I_{t+1}),$$

$$V_h(I_t) = (1 - \tau_h)I_t + \beta \max\{V_h(I_{t+1}), V_d(I_{t+1}) - k_d\}.$$

• These pin down an income threshold *I*_d for card adoption:

$$I_t \ge I_d = \frac{(1-\beta)k_d}{(\tau_h - \tau_d)}.$$

i.e., the flow benefit $(\tau_h - \tau_d)I_t \ge$ the flow cost $(1 - \beta)k_d$.

• Card adoption rate, *F*_{*d*,*t*}, increases in per capita income.

$$F_{d,t} = 1 - G_t(I_d) = \exp\left(-\frac{(1-\beta)k_d}{(\tau_h - \tau_d)\lambda_t}\right).$$

Model Equilibrium – Mobile

- Card-substituting mobile payment arrives at a time *T_m*, offering lower variable cost *τ_m* < *τ_d* < *τ_h* and a lower fixed cost *k_m* < *k_d*.
- An income threshold $I_m(< I_d)$ for cash users to adopt mobile:

$$I_t \ge I_m = \frac{(1-\beta)k_m}{(\tau_h - \tau_m)}$$

• Another income threshold $I_{m'} (\geq I_d)$ for card users to adopt mobile:

$$I_t \ge I'_m = \frac{(1-\beta)k_m}{(\tau_d - \tau_m)}$$

• Mobile adoption rate, *F_{m,t}*, is non-monotonic in per capita income.

$$F_{m,t} = F_{h \to m,t} + F_{d \to m,t} = \exp\left(-\frac{I_m}{\lambda_t}\right) - \exp\left(-\frac{I_d}{\lambda_{T_m-1}}\right) + \exp\left(-\frac{I'_m}{\lambda_t}\right)$$

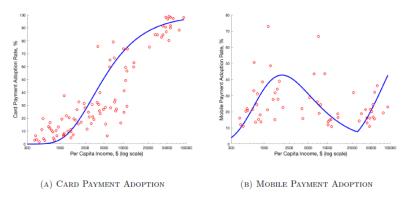
Model Equilibrium – Mobile (Cont'd)

- Card-complementing mobile payment also arrives at *T_m*, allowing card users to pay *k^a_m* (< *k_m*) to add mobile feature (i.e., *τ_m* < *τ_d* < *τ_h*).
- Card users would prefer the card-complementing technology because *k*^a_m < *k*_m, while cash users would prefer the card-substituting one because *k*_m < *k*_d + *k*^a_m.
- The decision rule for cash users stays unchanged, but there is a new income threshold I^a_m (< I'_m) for card users to adopt mobile.

$$I_t \ge I_m^a = \frac{(1-\beta)k_m^a}{(\tau_d - \tau_m)}.$$

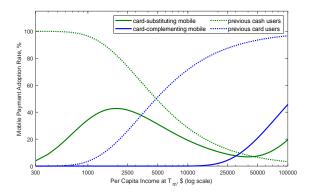
• Mobile adoption, $F_{m,t}$, again is non-monotonic in per capita income.

$$F_{m,t} = F_{h \to m,t} + F_{d \to m,t} = \exp\left(-\frac{I_m}{\lambda_t}\right) - \exp\left(-\frac{I_d}{\lambda_{T_m-1}}\right) + \exp\left(-\frac{I_m^a}{\lambda_t}\right)$$

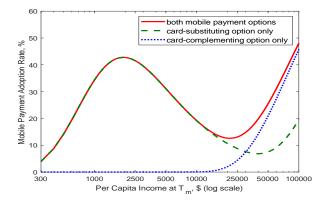

Parameter Estimation

Panel A: Parameters based on a priori information					
Discount factor	Income growth	Cash var. cost	Card var. cost		
β	8	$ au_h$	$ au_d$		
0.95	2%	2.3%	1.4%		
Panel B: Parameters based on estimation					

Card fixed cost	Mobile var. cost	Mobile fixed cost	Mobile add-on cost
k_d	$ au_m$	k_m	k_m^a
589.83	1.395%	175.76	78.17
(238.82)	(0.143%)	(94.33)	(39.09)

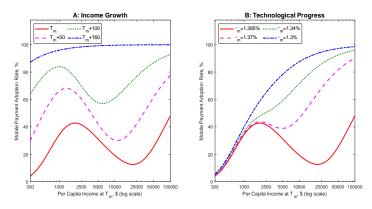

Data Fitting

 Match three stylized facts: (1) Positive income effect on card adoption;
 (2) Non-monotonic income effect on mobile payment adoption; (3) Overtaking in mobile payment adoption.


Data Fitting

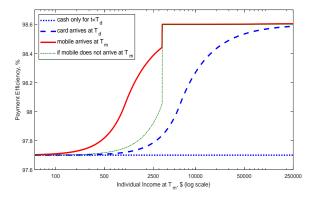
• Also match the fourth fact: (4) Advanced (developing) countries prefer card-complementing (card-substituting) mobile solutions.

Mobile Payment Options

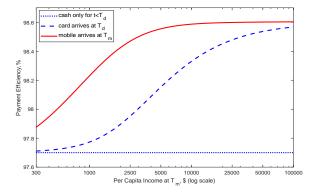

• Mobile adoption patterns under alternative technology options

Technology Adoption and Leapfrogging:, Racing for Mobile Payments

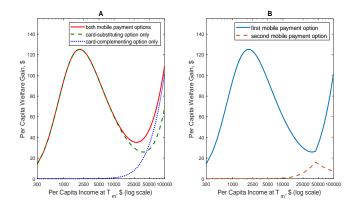
Income Growth and Technological Progress


• Income growth or technological progress pushes up mobile payment adoption.

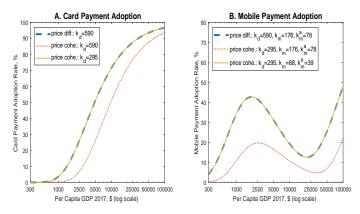
Introduction


Payment Efficiency: Individual Agents

• Individual-agent payment efficiency: $x_t(I) = \omega_t(I) / (\frac{I}{1 - \beta(1 + g)})$.

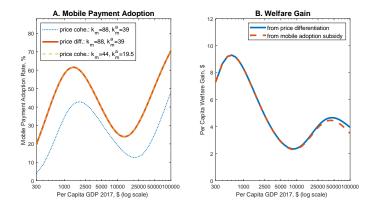

Payment Efficiency: Aggregate Economies

• Economy-wide payment efficiency: $X_t = W_t / (\frac{\lambda_t}{1 - \beta(1 + g)})$.


Social Benefits of Mobile Payments

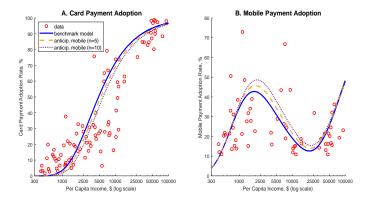
• Quantify the social benefit of introducing mobile payments.

Two-Sided Market Externalities


• In a two-sided payment market, merchants typically charge consumers the same retail price no matter how they pay. Consequently, consumers do not internalize the payment externalities they generate.

Conclusion

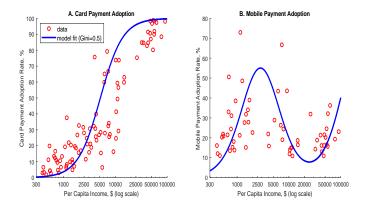
Two-Sided Market Externalities


 Given two-sided market externalities, subsidizing mobile payment adoption is socially beneficial.

Introduction

Anticipation for Mobile Payments

• Anticipating mobile payments would postpone card adoption and boost mobile payment adoption, but the quantitative impact is small.

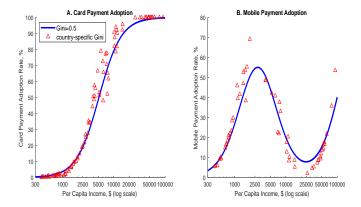


Further Discussions

Conclusion

Alternative Income Distribution

• Re-simulate the model with a log-logistic income distribution and Gini=0.5.


Technology Adoption and Leapfrogging:, Racing for Mobile Payments

Further Discussions

Conclusion

Alternative Income Distribution

• Re-simulate the model with a log-logistic income distribution and country-specific Gini coefficients.

Technology Adoption and Leapfrogging:, Racing for Mobile Payments

Conclusion

- We compile a novel dataset to compare cross-country adoption patterns of card and mobile payments.
- We construct a dynamic model with sequential payment innovations to explain the stylized facts.
- Our estimated model matches the data well and also explains why countries favor different mobile payment solutions.
- Based on the model, we conduct welfare and policy analysis.

Technology Adoption and Leapfrogging:, Racing for Mobile Payments