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Abstract

We consider a model of collective persuasion, in which members of an advisory committee

with private continuous signals vote on a policy change. A decision maker then decides

whether to adopt the change upon observing each vote. Information transmission between

the committee and the decision maker is possible if and only if there exists an informative

equilibrium in which the decision maker only adopts the policy change after a unanimous vote.

Similarly, full information aggregation is achievable if and only if such an equilibrium exists

when the size of the committee is large enough. We further discuss why our continuous-signal

model produces results di¤erent from discrete-signal models.

1 Introduction

In this paper we study a model of information transmission between an advisory committee and

a decision maker (DM) who cannot commit to a decision rule. Each member of the committee

receives a private continuous signal about an unknown binary state of the world and then votes
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over two policy options, to maintain the status quo or to adopt a policy change. The DM makes

the decision upon observing all votes of the committee. Both the committee and the DM want

to match the decision with the state, but the DM is more conservative towards making the

policy change. Therefore, unless persuaded by the committee�s votes to do otherwise, the DM

would choose to maintain the status quo. We study the conditions under which the DM can be

persuaded to adopt the policy change, i.e., information is successfully transmitted between the

two parties in equilibrium.

Previous versions of this problem have been studied by Wolinsky (2002), Levit and Malenko

(2011), Battaglini (2017), and Gradwohl and Feddersen (2018), who assume that the committee

members receive discrete signals about the underlying state. A key insight of this literature

is that information transmission is impossible if the con�ict of interest between the committee

and the DM is large enough, regardless of the committee size. Our contribution consists in

studying the e¤ect of an alternative assumption on the structure of signals, i.e., the signals of

the members are continuous. Di¤erent from the discrete-signal models, we are able to derive

the exact condition under which information transmission is possible, i.e., an equilibrium with

information transmission exists if and only if the DM can be persuaded to adopt the policy

change in an equilibrium where she adopts the unanimity rule. Since we can pinpoint the most

conservative DM that can be persuaded in equilibrium with the unanimity rule, we check the

existence of informative equilibria by simply looking at the level of conservativeness of the DM.

Our �nding also suggests that when the decision rule is endogenous, the unanimity rule could

be the only decision rule that allows information transmission when the DM is very conservative.

Our result thus o¤ers a new rationale, from the perspective of information transmission, why the

unanimity rule is so prevailing in decision-making processes, even though it has shown to have

poor property in aggregating information in models with exogenous decision rule (Feddersen and

Pesendorfer 1998).

In deriving our main result, we also �nd that when restricting the decision rule of the DM to

k-rules, i.e., the DM requires at least k a¢ rmative votes to adopt the policy change, information

transmission is more likely to happen in equilibrium where the DM chooses a higher k-rule. Even

though this result is seemingly very intuitive, it does not hold in discrete-signal models (Battaglini
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2017; Gradwohl and Feddersen 2018). In Section 4, we explore the di¤erence between the two

models and o¤er an explanation why this is the case.

When information can be transmitted, another concern is whether information of the com-

mittee members can be fully aggregated, i.e, whether the probability of making a mistake in the

DM�s decision vanishes when the size of the committee becomes large. The problem of information

aggregation when the decision rule is exogenously given has been studied by Feddersen and Pe-

sendorfer (1997, 1998), Duggan and Martinelli (2001) and Martinelli (2002). In a discrete-signal

model, Feddersen and Pesendorfer (1998) show that information is not fully aggregated under the

unanimity rule. Duggan and Martinelli (2001) and Martinelli (2002) consider continuous-signal

models and prove that the unanimity rule can also lead to full information aggregation if the

likelihood ratio of each committee member�s signal is unbounded. In our model, the decision rule

is endogenous. When the likelihood ratio is unbounded, given our characterization of equilibria

with information transmission, full information aggregation follows directly from Duggan and

Martinelli (2001). When the likelihood ratio is bounded, we show that full information aggrega-

tion is achievable as long as information transmission is possible in equilibrium, a result similar

to what Battaglini (2017) derives in a discrete-signal model of persuasion.

2 Model

A committee of N homogeneous members advises a decision maker (DM) on the choice of two

policy options, status quo N (or nay) and alternative Y (or yay). Each member i (he) receives a

private signal si about the state � 2 fy; ng of the world, then votes simultaneously over the two

options. The DM (she) makes the �nal decision D 2 fY;Ng after observing each member�s vote.

Payo¤s. The payo¤s of the committee members and the DM depend on the DM�s decision

D and the state �. We normalize the payo¤s of both parties under D = N to 0 in both states.

Their payo¤s under D = Y vary with �: For the committee members, the payo¤ is �1=2 if � = n

and is 1=2 if � = y; for the DM, the payo¤ is �� if � = n and is 1� � if � = y. The parameter

� 2 (1=2; 1) measures the con�ict of interest between the DM and the committee members. With

complete information about the state, all players have the same preference, i.e., they all strictly

prefer Y in state y and N in state n. With incomplete information, the DM�s expected payo¤
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of choosing Y is lower than that of the committee members. Let p 2 (0; 1) be the common prior

probability of the state being y. We assume that the optimal uninformed decision of the DM is

N , i.e., � > p.1

Information. Each member i receives a private signal si that is identically and independently

distributed on (a; b) conditional on the true state, with distribution F and continuous density f

if � = y and distribution G and continuous density g if � = n, where a; b 2 R[f�1;+1g.2

Strategies. A voting strategy of member i is a (measurable) function mi : (a; b)! [0; 1] that

maps his signal into the probability of voting for Y . We say that a voting strategy mi is partisan

if Pr (mi (si) = 1) = 1 or Pr (mi (si) = 0) = 1. Otherwise, mi is nonpartisan. A voting strategy

mi is increasing if mi (si) � mi (s
0
i) for all si � s0i. A voting strategy mi is a cuto¤ strategy if

there exists s�i 2 (a; b) such that mi (si) = I for all si > s�i and mi (si) = J for all si < s�i , where

I; J 2 f0; 1g and I 6= J . Denote the strategy pro�le of the committee by m := (m1;m2; : : : ;mN ).

A decision rule of the DM is a function d : fY;NgN !fY;Ng that maps a vote pro�le

v := (v1; : : : ; vN ) 2 fY;NgN of the committee, with vi being the vote of member i, into one

of the two options. We assume that the DM uses a pure strategy. Allowing mixed strategies

for the DM would not a¤ect our main results.3 We introduce here two types of decision rules

that are important for our analysis. Let jvj denote the number of yay votes in v. A decision

rule d is a k-rule if there exists a threshold k 2 f1; 2; :::;Ng such that for all v 2 fY;NgN ,

d (v) = Y if and only if jvj � k. A decision rule d is a weighted voting rule if there exists a

weight pro�le w = (w1; w2; :::w N ) 2 RN+ and a quota Q 2 R+ such that d (v) = Y if and only

if
PN
i=1wi1fvi=Y g � Q, where 1 is the indicator function. A k-rule corresponds to a weighted

voting rule in which w1 = ::: = wN = 1 and Q = k.

Equilibrium. We use perfect Bayesian equilibrium (PBE) as the solution concept. A PBE

consists of a voting strategy pro�lem, a decision rule d, and a system of belief � : fY;NgN ![0; 1]

that speci�es the DM�s posterior belief of the state being y for each vote pro�le. We as-

sume that the DM always chooses Y when indi¤erent. An equilibrium is informative if the

1This assumption is inessential for our results. If � < p, the DM will choose Y instead of N in an uninformative
equilibrium. Our characterizations for informative equilibria remain valid.

2Given a function of si, if its limit at si = a; b exists in R[f�1;+1g, we take it as the value at si = a; b. For
example, if limsi!b f(si)=g(si) =1, we write f(b)=g(b) =1.

3The detailed proofs are available in the working paper version of this paper.
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DM chooses both options with positive probabilities in equilibrium. We say that a DM can

be persuaded if there exists an informative equilibrium. Two equilibria with strategy pro-

�les (m; d) and (m0; d0) are outcome-equivalent if for all signal pro�les (s1; s2; ::; sN ) 2 (a; b)N ,

Pr (d (v) = Y j (s1; s2; ::; sN ) ;m) = Pr (d0 (v) = Y j (s1; s2; ::; sN ) ;m0).

For the purpose of our analysis, we impose the following assumptions on F and G. Let

hF (s) := f (s) =(1�F (s)) and hG (s) := g (s) =(1�G (s)) be the hazard functions of distributions

F and G, respectively. De�ne the hazard ratio at signal s as hF (s) =hG(s).

Assumption 1 (MLRP) F and G satisfy the strict monotone likelihood ratio property (MLRP),

i.e., f(s)=g(s) is strictly increasing in s.

Assumption 2 The likelihood ratio of the members�signals satis�es f(a)
g(a) <

1�p
p < f(b)

g(b) .

Assumption 3 (IHRP) F and G satisfy the strict increasing hazard ratio property (IHRP),

i.e., hF (s) =hG(s) is strictly increasing in s.

Assumption 1 is standard in the literature and ensures that a higher signal is more indicative

of the state being y. It is well known that MLRP implies that (i) (1 � F (s))=(1 � G(s)) and

F (s)=G(s) are strictly increasing in s, (ii) F (s)=G(s) < f(s)=g(s) < (1 � F (s))=(1 � G(s)) for

all s 2 (a; b), and (iii) F (s) < G(s) for all s 2 (a; b). See Appendix B of Krishna (2009) for the

proofs.

Assumption 2 is employed by Duggan and Martinelli (2001). It ensures that a committee

member who behaves �naively�, i.e., as if his vote alone determines the outcome, will vote for N

(Y ) after receiving a signal that is low (high) enough.

Assumption 3 is a regularity assumption that has been studied by Duggan and Martinelli

(2001) in the context of a decision-making committee. It was also shown to be an important

condition in observational learning models (Herrera and Hörner 2011, 2013). Most but not all

distributions commonly used in economics and political science satisfy IHRP.4 For example, if

both F and G are normal distributions that satisfy MLRP, then they satisfy IHRP.

4See Herrera and Hörner (2011) for a discussion and a list of distributions that satisfy IHRP. A notable case
that fails IHRP is the exponential distribution, whose hazard ratio is a constant (Duggan and Martinelli 2001;
Herrera and Hörner 2011). It is thus a knife edge case.
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3 Equilibrium analysis

In this section, we �rst establish, for each k 2 f1; ::;Ng, the necessary and su¢ cient condition for

the existence of an informative equilibrium with the corresponding k-rule (Proposition 2). Then,

we show that there exists an informative equilibrium if and only if there exists an informative

equilibrium with the unanimity rule (Proposition 3). By considering the asymptotic version of the

latter condition, we derive the necessary and su¢ cient condition for full information aggregation

in a large committee (Proposition 4).

We begin our analysis by showing that it is without loss to focus on equilibria in which the

committee members use either cuto¤ strategies or partisan strategies and the DM uses a weighted

voting rule. This greatly reduces the space of equilibrium strategies we need to consider.

Proposition 1 For any equilibrium, there exists an outcome-equivalent equilibrium, in which (i)

each member�s voting strategy is either an increasing cuto¤ strategy or a partisan strategy, and

(ii) the DM�s decision rule d is a weighted voting rule.

In this model, there always exists an uninformative equilibrium in which the DM maintains

the status quo and ignores the committee�s votes. We focus instead on informative equilibria in

the rest of the paper.

3.1 Informative equilibria

We �rst consider symmetric informative equilibria in which the DM�s decision rule is a k-rule. In

such an equilibrium, the committee members must use a cuto¤ strategy. A committee member

with the cuto¤ signal s� must be indi¤erent between voting for Y and N conditional on being

pivotal, i.e., jv�ij = k � 1. Thus, the cuto¤ signal s� solves the equation

p

1� p

�
1� F (s)
1�G (s)

�k�1�F (s)
G (s)

�N�k f (s)
g (s)

= 1: (1)

To understand (1), note that p=(1 � p) is the prior likelihood ratio of the state (state y versus

state n), (1�F (s))=(1�G (s)) is the likelihood ratio of a yay vote, F (s) =G (s) is the likelihood

ratio of a nay vote, and f (s) =g (s) is the likelihood ratio of signal s. By Bayes�rule, the product
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of these terms on the left-hand side of (1) is the posterior likelihood ratio of the state conditional

on a committee member receiving a signal s, knowing that the other members cast k � 1 yay

votes and N �k nay votes. For a member with the cuto¤ signal s�, this posterior likelihood ratio

must equal 1, so that he is indi¤erent between N and Y .

By MLRP, the left-hand side of (1) is strictly increasing in s. Combined with Assumption

2, this implies that (1) has a unique solution. Denote the unique solution by s (k;N ). In a

symmetric equilibrium with k-rule, the DM optimally chooses Y if jvj � k, and N if jvj < k.

Given the voting cuto¤ s� = s (k;N ), this implies that

p

1� p

�
1� F (s�)
1�G (s�)

�k�1�F (s�)
G (s�)

�N�k+1
<

�

1� � �
p

1� p

�
1� F (s�)
1�G (s�)

�k �F (s�)
G (s�)

�N�k
; (2)

where the lower bound is the posterior likelihood ratio of the state when jvj = k � 1, the upper

bound is the posterior likelihood ratio when jvj = k, and the term �=(1 � �) is the posterior

likelihood ratio that makes the DM indi¤erent between Y and N . Since s� = s (k;N ) solves

equation (1), condition (2) can be reformulated as

F (s�)

G (s�)

g (s�)

f (s�)
<

�

1� � �
(1� F (s�))
(1�G (s�))

g (s�)

f (s�)
: (3)

By MLRP, F (s�)=G(s�) < f(s�)=g(s�), so the left inequality of (3) always holds for � > 1=2.

Therefore, for a given k, the right inequality in (3) is necessary and su¢ cient for the existence of

a symmetric informative equilibrium with the corresponding k-rule. The following proposition

shows that this condition applies more generally without the symmetry restriction.

Proposition 2 For each k 2 f1; 2; :::;Ng, an informative equilibrium with k-rule exists if and

only if � � � (k;N ), where � (k;N ) is the unique solution to

�

1� � =
hG (s (k;N ))
hF (s (k;N ))

:

The idea behind the proof of Proposition 2 is that in an asymmetric informative equilibrium

with k-rule, among all the vote pro�les with k yay votes, some induce a lower posterior belief

of the state being y than others. IHRP ensures that at least one of these vote pro�les is less
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indicative of the state being y than k yay votes under the symmetric informative equilibrium

with k-rule. As a result, � <�(k;N ). Thus, the value �(k;N ) represents the most conservative

DM that may adopt k-rule in any informative equilibrium when the committee size is N .

Next, we consider the e¤ect of varying k. When the DM adopts a higher k rule, the members

cast yay votes more often in the symmetric informative equilibrium. This means that s(k;N )

is strictly decreasing in k. IHRP then implies that � (k;N ) is strictly increasing in k. It then

follows from Proposition 2 that a higher k-rule can sustain information transmission for a larger

set of �.

Corollary 1 For all k0 > k, there exists an informative equilibrium with k0-rule if there exists

an informative equilibrium with k-rule, but the converse is in general not true.

Corollary 1 thus rationalizes the pressure for a higher level of consensus in many institutions.

To understand Corollary 1, note that, for k-rules, when the threshold k increases, there are two

opposite e¤ects on � (k;N ). One is a direct consensus e¤ect. An increase in k means that the DM

asks for a higher consensus level among the members to choose Y . Fixing the voting strategies

of the committee members, a higher consensus level is more indicative of the state being y. The

other is an indirect strategic e¤ect. Because the members cast yay votes more often, each yay

vote is now less indicative of the state being y. IHRP implies that the consensus e¤ect dominates

the strategic e¤ect. As a result, �(k;N ) is strictly increasing in k.

Corollary 1 implies that the unanimity rule can sustain information transmission for a larger

set of � than any other k-rules. Our next result shows that the latter fact is in fact true not only

for k-rules, but for all decision rules.

Proposition 3 There exists an informative equilibrium if and only if � � � (N ;N ).

Proposition 3 provides a simple way to check, for a committee of any size, if information

transmission is possible. The basic idea underlying this result is that in an equilibrium with

asymmetric voting, IHRP ensures that among all the vote pro�les that induce the DM to choose

Y , we can �nd one that leads to a lower posterior belief of the state being y than a unanimous

vote in the symmetric informative equilibrium with the unanimity rule.

8



Proposition 3 also provides a tight upper bound for the degree of con�ict of interest between

the DM and the committee members that allows information transmission. The upper bound

� (N ;N ) is achievable only by the unanimity rule. Gradwohl and Feddersen (2018) also derive an

upper bound in a binary-signal model, but their upper bound is not achievable by the unanimity

rule. In a general discrete-signal Poisson game, Battaglini (2017) proves the existence of an upper

bound, but does not explicitly characterize it. In Section 4, we discuss the di¤erences between

the continuous-signal model and discrete-signal models in more detail.

Proposition 3 also indicates that the existence of an informative equilibrium depends on

the size of the committee. Because � (N ;N ) strictly increases with N , for all N 0 > N , if an

informative equilibrium exists for a size-N committee, an informative equilibrium exists for a

size-N 0 committee, but the converse is in general not true. For large committee, we have

Corollary 2 There exists an informative equilibrium when the committee size is su¢ ciently large

if and only if � < ��, where

�� := lim
N!1

�(N ;N ) = g(a)=f(a)

1 + g(a)=f(a)
: (4)

The corollary follows from the fact that s(N ;N ) converges to a as N goes to in�nity. From

(4), we can see that if the committee members�signals induce an unbounded likelihood ratio at

a, i.e., g(a)=f(a) =1, then �� = 1, which means that any DM can be persuaded by a committee

that is su¢ ciently large. If g(a)=f(a) < 1, then �� < 1. As a result, a DM with � 2 [ ��; 1) can

never be persuaded no matter how large the committee is.

3.2 Information aggregation

Corollary 2 provides the exact condition under which an informative equilibrium exists when the

size of the committee is large. However, the existence of an informative equilibrium does not

guarantee full aggregation of the committee members�private information in the DM�s decision

in equilibrium. Indeed, if we restrict to the informative equilibrium with the unanimity rule,

when g(a)=f(a) <1, full information aggregation is not achievable as the size of the committee
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becomes in�nitely large (Duggan and Martinelli 2001, Theorem 4).5 However, if we consider

informative equilibria with non-unanimity rules, full information aggregation is always achievable

as long as informative equilibria exist for a su¢ ciently large committee.

Proposition 4 There exists a sequence of equilibria along which the probabilities of the DM

choosing Y in state y and N in state n approach 1 as N !1 if and only if � < ��.

Proposition 4 states that the condition � < �� is necessary and su¢ cient for full information

aggregation. The necessity follows directly from Corollary 2, since uninformative equilibria can

never aggregate information. To establish the su¢ ciency, for � < ��, we show in the proof that

for any � < ��, we can �nd q 2 (0; 1) such that � < limN!1� (qN ;N ) < ��. By Proposition

2, an informative equilibrium with qN -rule exists when N is large enough. By Theorem 5 of

Duggan and Martinelli (2001), full information aggregation is achieved as N ! 1. Thus, even

though the mistake probabilities do not go to 0 under the unanimity rule, when � < ��, we can

always �nd a sequence of k-rules that are close enough to the unanimity rule, along which the

mistake probabilities converge to 0 as N !1.

4 Discrete signals

In this section, we study an alternative model in which the committee members receive dis-

crete signals instead of continuous signals and illustrate why our characterizations apply to the

continuous-signal model but not to the discrete-signal model.6

Suppose each member i receives a private signal si 2 ft1; t2; :::tMg, whereM � 2 is the number

of possible signal realizations. Let rF (tm) and rG (tm) be the probabilities that si = tm when the

state is y and n, respectively. De�ne the hazard functions as hF (tm) := rF (tm) =
PM
l=m rF (tl)

and hG (tm) := rG (tm) =
PM
l=m rG (tl). The assumptions of MLRP and IHRP become:

Assumption 4 (MLRP) F and G satisfy the strict monotone likelihood ratio property (MLRP),

i.e., rF (tm) =rG (tm) is strictly increasing in m.
5Following Battaglini (2017), we say that full information aggregation is achievable if there exists a sequence of

equilibria such the probability that the DM makes mistakes converges to 0 as the committee size goes to in�nity.
6Battaglini (2017) adopts a very similar information structure in a Poisson voting game. However, he does not

investigate how the existence condition of the symmetric informative equilibrium with k-rule changes with k, which
is mainly discussed in this section.

10



Assumption 5 (IHRP) F and G satisfy the strict increasing hazard ratio property (IHRP),

i.e., hF (tm) =hG (tm) is strictly increasing in m.

We focus on symmetric voting. In this case, the equilibrium decision rule in an informative

equilibrium must be a k-rule. De�ne �M (k;N ) as the solution to �
1�� =

Pr(jvj=kj�=y)
Pr(jvj=kj�=n) . Thus,

�M (k;N ) is the upper bound of � such that a symmetric informative equilibrium with k-rule

exists.

In proving Corollary 1, we show that � (k;N ) is strictly increasing in k. This is, however, not

true for �M (k;N ). As a result, Propositions 3 and 4 do not apply to the discrete-signal model.

To see that, consider a symmetric informative equilibrium with k-rule. Suppose the committee

members are indi¤erent after receiving tm. Then, the posterior likelihood ratio given jvj = k is

given by

Pr (jvj = kj� = y)
Pr (jvj = kj� = n) =

rG (tm)

rF (tm)| {z }
anti-signal t�m

�
rF (tm) �m (k;N ) +

PM
l=m+1 rF (tl)

rG (tm) �m (k;N ) +
PM
l=m+1 rG (tl)| {z }

a yay vote

; (5)

where �m (k;N ) is the probability that a member votes for Y after receiving the indi¤erent

signal tm. Given signal tm, consider a hypothetical signal t�m such that rF (t�m) =rG (t
�
m) =

rG (tm) =rF (tm), that is, the signal t�m cancels the signal tm exactly. We call t�m the anti-signal

of signal tm. As indicated in (5), the the posterior likelihood ratio of vote pro�le v with jvj = k

is equal to the product of the likelihood ratios of the anti-signal t�m and a yay vote.

As k increases, intuitively the committee members vote for Y more often in equilibrium. The

increase in the probability of a yay vote could be associated with an increase in �m (k;N ) with

the same indi¤erent signal or a lower indi¤erent signal.7 These two changes potentially have

7For illustrative purposes, we focus on situations where the committee members are indi¤erent between Y and
N after receiving some signal. When the committee members are never indi¤erent, (5) does not apply and the
behavior of �M (k;N ) is less regular. However, suppose the committee members strictly prefer to vote for Y after
receiving signal tm but strictly prefer to vote for N after receiving signal tm�1. Then, the posterior likelihood ratio
is bounded below by the inverse of the hazard ratio, i.e.,

Pr (jvj = kj� = y)
Pr (jvj = kj� = n) �

rG (tm)

rF (tm)

PM
l=m rF (tl)PM
l=m rG (tl)

=
hG (tm)

hF (tm)
:

By IHRP, hG (tm) =hF (tm) is strictly decreasing in m. This suggests that, as k increases and the cuto¤ signal tm
decreases, this lower bound rises and �M (k;N ) could exhibit an upward trend as in the continuous-signal case,
even when the committee members are not indi¤erent at any signal (see Figure 1).
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opposing e¤ects on the likelihood ratio Pr(jvj=kj�=y)
Pr(jvj=kj�=n) . When the indi¤erent signal tm is unchanged

as k increases, �m (k;N ) increases. By MLRP, the likelihood ratio of a yay vote in (5) decreases,

so the value of �M (k;N ) decreases. If the indi¤erent signal tm decreases, the likelihood ratio of

the anti-signal t�m in (5) increases according to MLRP while the likelihood ratio of a yay vote

decreases. The overall e¤ect on �M (k;N ) is ambiguous.

In contrast, when the signals are continuous, as k increases, the indi¤erent/cuto¤ signal

always decreases and IHRP makes sure that the increase in the likelihood ratio of the anti-

signal dominates the decrease in the likelihood ratio of a yay vote, resulting in an increase in

� (k;N ). The discrete analogue of IHRP, however, is insu¢ cient to determine the overall e¤ect

on �M (k;N ).

2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75
Indifferent signal = t1

Indifferent signal = t2
Indifferent signal = t3

Indifferent signal = t4

Figure 1: The function �M (k;N ).

Parameters: p = 1=2, N = 21, rF = (1=8; 3=16; 1=4; 7=16), rF = (1=4; 1=4; 1=4; 1=4).

Figure 1 illustrates these two e¤ects graphically. Notice �rst that since �M (21; 21) <

�M (19; 21), a symmetric informative equilibrium with other k-rules could exist even when the

symmetric informative equilibrium with the unanimity rule does not. Consider next 8 � k � 12.

For these values of k, the committee members mix at signal t3 and, as a result, only the e¤ect

of decreasing �m (k; 21) is present and �M (k; 21) decreases with k. However, if we compare

k = 12, k = 17, and k = 21, we have �M (12; 21) < �M (17; 21) < �M (21; 21). Since the

committee members are mixing at di¤erent signals, both e¤ects are present. In this comparison,

the e¤ect of the decreasing indi¤erent signal dominates, and �M (k; 21) increases with k, similar

to the continuous-signal case. If we consider a sequence of signal structures converging to a

12



continuous-signal structure that satis�es Assumptions 1�3, �M (k;N ) would be increasing in k

in the limit.
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Appendix

Proof of Proposition 2. We have already shown in the main text that a symmetric informative

equilibrium with k-rule exists if and only if � � � (k;N ). To complete the proof, we only need

to show that if an asymmetric informative equilibrium with k-rule exists, then a symmetric

informative equilibrium with k-rule exists.

By Proposition 1, it is without loss to assume that each member�s voting strategy is either

an increasing cuto¤ strategy or a partisan strategy. If a member uses a partisan strategy, it

e¤ectively changes the committee size to N � 1 and the decision rule to either (k � 1)-rule or

k-rule. Thus, it is without loss to assume that all committee members use increasing cuto¤

strategies in equilibrium. (If k � 0 or k > N , then the equilibrium is not informative.)

Consider an asymmetric informative equilibrium (s�; d), where d is a k-rule. If for all j 2

f1; 2; ::;Ng, s�j � s (k;N ), then by MLRP, for all v 2 fY;Ng
N such that jvj = k,

�

1� � �
p

1� p
Pr (vj� = y)
Pr (vj� = n) �

p

1� p

�
1� F (s (k;N ))
1�G (s (k;N ))

�k �F (s (k;N ))
G (s (k;N ))

�N�k
:

Thus, a symmetric informative equilibrium with k-rule exists.

Suppose that for some member i, s�i > s (k;N ). Since for every v�i 2 fY;Ng
N�1 such that

jv�ij = k � 1, the pro�le (Y; v�i) induces the DM to choose Y in equilibrium, we have, for all

v�i 2 fY;NgN�1 such that jv�ij = k � 1,

�

1� � �
p

1� p
Pr (v�ij� = y) (1� F (s�i ))
Pr (v�ij� = n) (1�G(s�i ))

:

The optimality of cuto¤ s�i implies that there exists v�i 2 fY;Ng
N�1 such that jv�ij = k�1 and

p

1� p
Pr (v�ij� = y)
Pr (v�ij� = n)

� g(s�i )

f(s�i )
:

Therefore,
�

1� � �
g(s�i )(1� F (s�i ))
f(s�i )(1�G(s�i ))

<
g (s (k;N )) (1� F (s (k;N )))
f (s (k;N )) (1�G (s (k;N ))) ;

where the last inequality follows from IHRP and the fact that s�i > s (k;N ). This implies that a
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symmetric informative equilibrium with k-rule exists.

Proof of Corollary 1. As discussed in the main text, we only need to show that s (k;N ) is

strictly decreasing in k. For all s 2 (a; b), we have

(1� F (s))k�1 F (s)N�k

(1�G (s))k�1G (s)N�k
=
(1� F (s))k F (s)N�(k+1)

(1�G (s))kG (s)N�(k+1)
(1�G (s))F (s)
(1� F (s))G (s)

<
(1� F (s))k F (s)N�(k+1)

(1�G (s))kG (s)N�(k+1)
;

where the inequality follows from MLRP, so the left-hand side of (1) is strictly increasing in k.

Also by MLRP, the left-hand side of (1) is strictly increasing in s. Thus, to satisfy (1), it must

be the case that s (k + 1;N ) < s (k;N ).

Proof of Proposition 3. To prove this proposition, we only need to show that the existence

of an asymmetric informative equilibrium implies the existence of an informative symmetric

equilibrium with the unanimity rule. Consider an asymmetric informative equilibrium. By

Proposition 1, it is without loss to assume that every committee member uses either an increasing

cuto¤ strategy or a partisan strategy. Consider �rst that no committee member uses a partisan

strategy. The equilibrium in this case is characterized by the pair (s�; d) alone, where s� 2 (a; b)N

is a cuto¤ pro�le and d is a weighted voting rule.

In an asymmetric equilibrium (s�; d), if for all j 2 f1; 2; ::;Ng, s�j � s (N ;N ), then by MLRP,

for all v 2 fY;NgN , we have

�

1� � �
p

1� p
Pr (vj� = y)
Pr (vj� = n) �

p

1� p

�
1� F (s (N ;N ))
1�G (s (N ;N ))

� N
:

Thus, a symmetric informative equilibrium with the unanimity rule exists.

Suppose that there exists a member i with s�i > s (N ;N ). In equilibrium, since for every

v�i 2 pivi, the pro�le (Y; v�i) induces the DM to choose Y , we have that for all v�i 2 pivi,

�

1� � �
p

1� p
Pr (v�ij� = y) (1� F (s�i ))
Pr (v�ij� = n) (1�G(s�i ))

:
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The optimality of the cuto¤ s�i implies that there exists v�i 2 pivi,

p

1� p
Pr (v�ij� = y)
Pr (v�ij� = n)

� g(s�i )

f(s�i )
:

Therefore,
�

1� � �
g(s�i )(1� F (s�i ))
f(s�i )(1�G(s�i ))

<
g (s (N ;N )) (1� F (s (N ;N )))
f (s (N ;N )) (1�G (s (N ;N ))) ;

where the last inequality follows from IHRP and the fact that s�i > s (N ;N ). This implies that

a symmetric informative equilibrium with the unanimity rule exists.

Finally, suppose in equilibrium some committee members use partisan strategies. For these

members, their votes do not depend on the signals received. The other members and the DM

behave as if the partisan voters are absent. Hence, dropping the partisan members out of the

committee could generate the same equilibrium outcome. This means that the existence of

partisan committee members e¤ectively reduces the committee size. Thus, to complete the proof,

we only need to show that �(N ;N ) is strictly increasing in N .

From the de�nition of s (N ;N ), we have

p

1� p

�
1� F (s (N ;N ))
1�G (s (N ;N ))

�N�1
=
g (s (N ;N ))
f (s (N ;N )) : (6)

MLRP implies that s (N ;N ) is strictly decreasing in N . By IHRP, � (N ;N ) is strictly increasing

in N .

Proof of Corollary 2. We �rst show limN!1 s (N ;N ) = a. Since s (N ;N ) is strictly decreas-

ing inN , limN!1 s (N ;N ) exists. Let limN!1 s (N ;N ) := s. If s > a, then limN!1 g(s(N ;N ))
f(s(N ;N )) =

g(s)
f(s) <

g(a)
f(a) � 1, and

lim
N!1

�
1� F (s (N ;N ))
1�G (s (N ;N ))

�N�1
= lim
N!1

�
1� F (s)
1�G (s)

�N�1
=1;

which violates (6). Therefore, limN!1 s (N ;N ) = a. Then, we have,

lim
N!1

hG (s (N ;N ))
hF (s (N ;N ))

= lim
s!a

hG (s)

hF (s)
= lim
s!a

g (s)

f (s)

1� F (s)
1�G (s) =

g (a)

f (a)
;
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This implies � (N ;N )! �� := g(a)
f(a)=

�
1 + g(a)

f(a)

�
as N !1.

Proof of Proposition 4. As discussed in the main text, we only need to show that

lim
q!1

lim
N!1

� (qN ;N ) = ��;

which would imply that we can always �nd q 2 (0; 1) such that � < limN!1� (qN ;N ) whenever

� < ��. To simplify the discussion, we follow Duggan and Martinelli (2001) and consider only

combinations of q and N so that qN is an integer. Let s1 (q) := limN!1 s (qN ;N ). Since the

hazard ratio hG(s)
hF (s)

is continuous in s, it su¢ ces to show that limq!1 s1 (q) = a. For all q 2 (0; 1)

and s 2 (a; b), de�ne

L (q; s) :=

�
1� F (s)
1�G (s)

�q �F (s)
G (s)

�1�q
:

Duggan and Martinelli (2001) show that for all q 2 (0; 1), s1 (q) is the solution to L (q; s) = 1.

By MLRP, for all q 2 (0; 1), L (q; s) is strictly increasing in q and s. For all q 2 (0; 1), s1 (q) is

strictly decreasing in q. Thus, limq!1 s1 (q) exists. Suppose limq!1 s1 (q) > a. Then,

lim
q!1

L (q; s1 (q)) =
1� F (limq!1 s1 (q))
1�G (limq!1 s1 (q))

> 1,

which is a contradiction.

For any � < ��, the proof above implies that we can �nd a su¢ ciently large q 2 (0; 1) and an

N̂ such that for any N > N̂ , �(qN ;N ) > �. By Proposition 2, for any N > N̂ , an informative

equilibrium with qN -rule exists. By Theorem 5 of Duggan and Martinelli (2001), full information

aggregation is achieved in the limit as N !1.
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