Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000	0	00		00

Learning from News

Luis Herrera^{*a,b*}, Jesús Vázquez^{*b*}

Université catholique de Louvain^a & University of the Basque Country^b

ESEM 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
● 00		00	000000000000	00

Combining two approaches

- This paper builds on the expectation-driven business cycle hypothesis (Pigou, 1927)
- The idea has been recently modeled in DSGE frameworks by using alternative approaches: news shocks and bounded rationality (adaptive learning, AL)
- This paper combines these two approaches by relaxing the rational expectation (RE) assumption through AL in analying the effects of news shocks

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
0●0	0	00		00
Why is	this importa	nt?		

- In reality, the effects of news on the economy are hard to predict. So, agents have to learn their effects and this learning process affects their transmission mechanism (inducing higher persistence)
- News shocks affect the macroeconomy through the expectations channel. Hence, expectations formation may impact the transmission mechanism of news shocks
- RE models might be seriously misspecified in the expectation-formation side and learning may help to reconcile the model with the data (e.g. Slobodyan and Wouters, 2012; Cole and Milani, 2019)

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000				

Why do we consider a financial sector?

- Financial variables are crucial in assessing the role of **TFP** news shocks in **VAR frameworks** (Beaudry and Portier, 2006)
- Görtz and Tsoukalas (2017), Görtz, Tsoukalas and Zanetti (2022), and Herrera and Vázquez (2023) highlight the importance of considering a financial sector for identifying TFP news shocks in DSGE models
- Financial markets may often overreact to news in reality. This may be viewed as a major deviation from the RE assumption (Shiller, 2015; Barberis and Thaler, 2003)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• We focus on news affecting only the **nonstationary** component of **TFP**. Why?

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000	•	00		00
-				

Empirical strategy

- We estimate a canonical DSGE model augmented with financial frictions:
 - Smets and Wouters (2007)
 - Gertler and Karadi (2011)
 - Non-stationary TFP news shocks
- Two alternative expectation hypothesis:
 - Rational expectations: Model-consistent expectations
 - Adaptive learning based on the MSV representation: Constant gain learning $y_t^f = \beta_{t-1} X_{t-1} + u_t$

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000	0	●0		00
Estimat	ion - Data			

• We estimate the model through Bayesian techniques considering 9 observables for the period 1987q1-2018q4

Output Consumption Investment Hours worked Inflation Wage

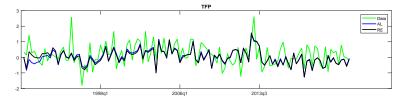
Smets and Wouters (2007)

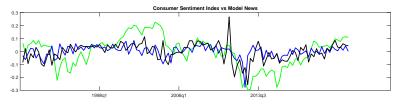
 $\begin{array}{ll} \rightarrow & \textit{Wu and Xia} \ (2016) \\ \rightarrow & \textit{Gilchrist} - \textit{Zakrajsek} \ (2012) \ \textit{spread} \\ \rightarrow & \textit{Total equity capital GT} \ (2017) \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000		00	000000000000	00

Model fit

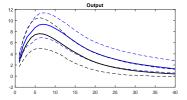

- Marginal Data Density (MDD)
- Root Mean Square Errors (RMSE)
- Second-moments matching
- Actual and model-based measures of TFP
- Estimated TFP news and the Consumer Sentiment Index

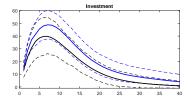

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

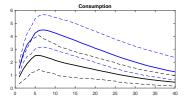
Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000	0	00		00
Model fi	't			

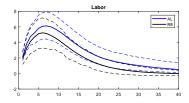
MDD		RE -856.37	AL -837.35			
	RMS	E to actu	ual data	Standa	rd devi	ation
	RE	AL	SPF	Actual	RE	AL
Output growth	0.46	0.43		0.59	0.80	0.69
Consumption growth	0.36	0.27	0.49	0.55	0.72	0.64
Investment growth	0.85	0.84	1.49	1.86	3.20	2.94
Hours	0.34	0.28		4.44	2.53	2.29
Wage growth	0.90	0.88		0.90	0.98	0.93
Inflation	0.15	0.15	0.21	0.21	0.24	0.24
Spread	0.13	0.12		0.26	0.41	0.38
Interest rate	0.07	0.06		0.68	0.33	0.28
Net worth growth	1.96	2.52		1.57	7.73	6.57

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000	0	00		00

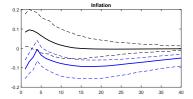

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000	0	00	00●0000000000	00

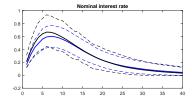

Transmission mechanism of news shocks

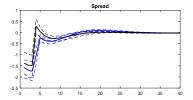

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

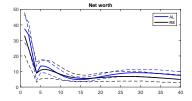

Motivation 000	Empirical strategy 0	Estimation - Data 00	Model fit - Estimation results	Conclusions

Results - Transmission mechanism (i)






◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで


Motivation 000	Empirical strategy O	Estimation - Data 00	Model fit - Estimation results	Conclusions

Results - Transmission mechanism (ii)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000	0	00		00

Transmission mechanism of news shocks

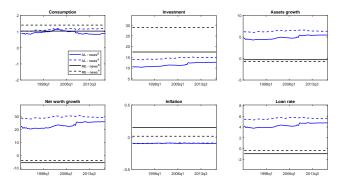
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Consumption: Stronger, more persistent response
- Credit spread: Smoother, more persistent response
- Deflationary response

Motivation	Empirical strategy	Estimation - Data

Model fit - Estimation results

Results - Parameter estimates

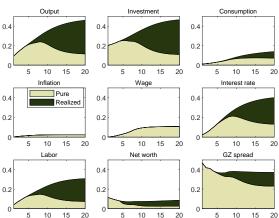

Parameter	Prior c	listribution	Posterie	Posterior Mean	
Farameter	Туре	Mean/Std	RE	AL	
Investment adjustment cost	Normal	4/1.5	1.87 [0.92,2.81]	1.71 [1.13, 2.42]	
Habit formation	Normal	0.7/0.1	0.62 [0.50,0.75]	0.59 [0.52,0.66]	
Calvo probability for wages	Beta	0.5/0.1	0.81 [0.76,0.89]	0.82 [0.78,0.82]	
Calvo probability for prices	Beta	0.5/0.1	0.94 [0.93,0.95]	0.95 [0.94,0.95]	
Indexation of past inflation in wages	Beta	0.5/0.15	0.39 [0.16,0.61]	0.26 [0.09,0.44]	
Indexation of past inflation in inflation	Beta	0.5/0.15	0.19 [0.07,0.31]	0.18 [0.07,0.30]	
Utilization adjustment cost	Gamma	0.5/0.15	0.86 [0.77,0.95]	0.89 [0.83,0.96]	
Fixed cost in production	Normal	1.25/0.125	1.59 [1.44,1.74]	1.57 [1.42,1.71]	
Capital share in production	Normal	0.3/0.05	0.16 [0.12,0.19]	0.14 [0.11,0.16]	
Constant gain learning	Gamma	0.05/0.03	-	0.016 [0.01,0.03	
Interest rate smoother	Beta	0.75/0.1	0.77 [0.73,0.82]	0.78 [0.73,0.82]	
Response to inflation	Normal	1.5/0.25	1.21 [1.00,1.44]	1.002 [1,1.01]	
Response to output	Normal	0.125/0.05	0.09 [0.07,0.11]	0.08 [0.06,0.09]	
Response to output growth	Normal	0.125/0.05	0.23 [0.12,0.30]	0.19 [0.12,0.27	
Persistence of TFP	Beta	0.5/0.2	0.92 [0.89, 0.96]	0.94 [0.92 , 0.97	
Std of unanticipated TFP shock	Gamma	0.1/2	0.06 [0.05, 0.08]	0.05 0.04 , 0.00	
Std of TFP news shock - 4 quarter ahead	Gamma	0.1/2	0.05 [0.03, 0.06]	0.04 [0.03 , 0.05	
Std of TFP news shock - 8 quarter ahead	Gamma	0.1/2	0.08 [0.06, 0.09]	0.06 [0.04 , 0.0	

Motivation 000	Empirical strategy 0	Estimation - Data 00	Model fit - Estimation results	Conclusions

Results - Beliefs

 Policy function coefficients associated with (4 and 8 periods anticipated) news shocks for different forward-looking variables

$$y_t^f = \beta_{t-1} X_{t-1} + u_t$$

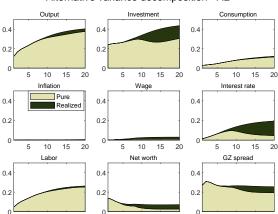


Motivation 000	Empirical strategy 0	Estimation - Data 00	Model fit - Estimation results	Conclusions

Variance Decomposition - Pure vs. Realized news

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
			0000000000000	

RE - Decomposition: Pure vs Realized News shocks (i)



Alternative variance decomposition - RE

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
			0000000000000	

AL - Decomposition: Pure vs Realized News shocks (ii)

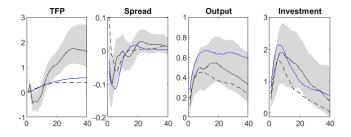
10 15 20

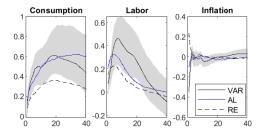
5

5 10 15 20

5 10 15 20

Alternative variance decomposition - AL


▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで


Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000	O	00	00000000000000	00
VAR res	sults			

- We use a 7-variable VAR approach to recover the IRFs of a TFP news shock from the data
- Observables: TFP, spread, output, investment, consumption, labor and inflation
- Francis et al. (2014) identification (Max Share): zero impact restriction and maximize the variance of TFP at a specific long but finite horizon
- We estimate the model using actual data and 500 simulated data from each model

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000	0	00	00000000000●	00

VAR results

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000	0	00		●0
Conclus	ions			

- We find that relaxing the RE assumption via AL improves model performance
- Structural parameters are fairly robust under the two expectation hypotheses
- Differences in transmission mechanism are mainly due to the expectation channel:
 - ^o Consumption responses are more persistent under AL
 - ^o Credit spread dynamics are smoother under AL
 - $^{\rm o}\,$ The effects of news shocks on inflation are reversed.
- The importance of *pure* news increases under AL
- Responses of consumption, inflation and the spread to news shocks under AL are more in line with the VAR evidence

Motivation	Empirical strategy	Estimation - Data	Model fit - Estimation results	Conclusions
000	0	00		O

Thank you!

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)