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Why do we care about VOT and commuting?

Allocation of time to tasks

Commuting and congestion

Wage vs residential amenities trade-off

Infrastructure

⇒ Need to know VOT distribution

Traffic jam in the US.

US President Biden signs $1 trillion
infrastructure bill.
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This paper: Express Lanes (ELs) in Minneapolis

Time savings vs toll trade-off

Toll changes every 3 minutes

Identification: tolling function

”Lexus Lanes”?

Express Lane on highway I-394 in Minnesota.

Andrea Mattia University of Chicago Introduction 2 / 18



Analysis in three parts and preview of results

RDD: travel time savings that EL users exchange for $0.25 toll increase.

VOT is 66.56 $/hour saved, conditional on using the EL.

VOT distribution for all drivers that rationalizes EL traffic share,
VOT as random coefficient:

Median: $17.42;
75th percentile: $34.97;
95th percentile: $166.05.

Structural model of when to commute + EL choice:
Converting the EL into a standard lane increases per-driver welfare by

$25.68 per year: 52% of drivers spend less on the EL over a whole year.
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Outline of the paper

1 Setting and data

2 Step 1: RD analysis of mean VOT among EL drivers

3 Step 2: estimation of VOT distribution among all drivers

4 Step 3: structural model of departure time and EL choice

5 Counterfactuals and distribution of welfare effects
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Toll function creates 32 cutoffs

Toll changes every 3 minutes as function of traffic density (vehicles per
mile) on the EL in the previous 6 minutes: toll = 0.045 · density1.1, then
rounded to the nearest $0.25.
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Panel dataset of EL usage and highway traffic

1 EL panel dataset from MnPASS:

45,421 distinct EL users, 2017 - 2018, over 3M observations.
Includes entry and exit location and time at the seconds level.
Identified by transponder tag ID, only observed if on EL.

2 Highway traffic dataset from Minnesota DOT:

Covers both ELs and free lanes, measurements every 30 seconds.
Includes aggregate traffic density (in vehicles per mile), traffic
volume (in vehicles per hour) and speed.

Descriptive plots Map of Minnesota Express Lanes Facts about commuting in Minnesota and the US
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RD identifies reduced-form time saved effect

Toll $0.25 ↑ =⇒ Demand Pit for EL ↓ =⇒ Time saved τit ↑:

τit = TTGL
it − TTEL

it︸ ︷︷ ︸
Travel times on

general lanes and EL

= φ(

increases︷ ︸︸ ︷
I −

I∑
i=1

PEL
it )− φ(

decreases︷ ︸︸ ︷
I∑

i=1

PEL
it )︸ ︷︷ ︸

increases by ∆τ to be estimated

Number of drivers on the road is smooth at cutoff No selection on observables More details

The RD correctly identifies ∆τ , the average time saved increase that
EL users trade off for a $0.25 toll increase:

E[τ1
it − τ0

it |R = c] = ∆τ
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RDD results (toll and time saved)

RDD-estimated VOT is $66.56 per hour saved conditional on using the EL.
2.5x the hourly wage in Minnesota in 2018 ($28.52, US BLS).
5x the US government VOT for personal travel ($13.60, US DOT).
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RDD results (speed and density differentials)

Drivers reallocate to normal lanes.
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RDD results (speed and density differentials)

Drivers reallocate to normal lanes. EL flows faster.

Heterogeneity in RDD results
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Outline of the paper

1 Setting and data

2 Step 1: RD analysis of mean VOT among EL drivers

3 Step 2: estimation of VOT distribution among all drivers

4 Step 3: structural model of departure time and EL choice

5 Counterfactuals and distribution of welfare effects
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VOT distribution and EL choice probability

Aggregate EL choice probability in market j (Fox et al. (2011)):

sELj =
M∑

m=1

θmsELj ,m =
M∑

m=1

θm
exp

(
δEL+βm,VOT ·τj−πj

s

)
1 + exp

(
δEL+βm,VOT ·τj−πj

s

)

To use exogenous variation at cutoff, focus on ∆sELj = sEL,1j − sEL,0j .

Each market j is a day and cutoff in the sample.

I estimate:
∆̂s

EL

j =
∑
m

θm ·∆sELj ,m + ζj

Data support for this estimation More details
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Estimated VOT distribution

Median $17.42; 75th percentile: $34.97; 95th percentile: $166.05.
RDD result $66.56 is close to the 85th percentile.

Alternative estimation for frequent EL users
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Outline of the paper

1 Setting and data

2 Step 1: RD analysis of mean VOT among EL drivers

3 Step 2: estimation of VOT distribution among all drivers

4 Step 3: structural model of departure time and EL choice

5 Counterfactuals and distribution of welfare effects
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Model intuition and setup

People can respond to congestion (and congestion policy) by
adjusting what time of day they choose to commute.

Drivers want to minimize travel time. Heterogeneity: individual VOT.

In the first stage, drivers choose entry time on the highway.
Preference for entry times are population averages.

In the second stage, conditional on entry time, drivers choose EL or
normal lane, in GE framework.

More details Model equations
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Outline of the paper

1 Setting and data

2 Step 1: RD analysis of mean VOT among EL drivers

3 Step 2: estimation of VOT distribution among all drivers

4 Step 3: structural model of departure time and EL choice

5 Counterfactuals and distribution of welfare effects

1 EL is converted into a standard lane. Graphical intuition

2 More low-VOT drivers. Graphical intuition

3 Lower or higher toll.
4 Ignore VOT heterogeneity. Graphical intuition
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EL converted to free lane: result
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EL converted to free lane: distribution of effects

Gains are concentrated among low-VOT commuters.

Road-specific distributional effects
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More low-VOT drivers: result
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More low-VOT drivers: distribution of effects

Gains are concentrated among high-VOT commuters.

Road-specific distributional effects
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Changes in toll: 0.1x to 2x original toll
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Ignore VOT heterogeneity: result
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What if we rebated toll revenues to drivers?
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Concluding remarks

Estimate full VOT distribution of a policy-relevant population using
new data: wide heterogeneity in individual VOT.

The EL maximizes drivers’ welfare when the underlying VOT
distribution produces a separating equilibrium.

The VOT distribution is essential to design targeted congestion policy
and assess inequality concerns.
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Thank you for your attention!
amattia@uchicago.edu



Contributions of this paper and literature review

1 Value of time literature: Deacon and Sonstelie (1985), Chui and McFarland

(1987), Small et al. (2005), Small et al. (2006), Bento et al. (2017), Nevo and Wong

(2019), Hall (2020), Kreindler (2021), Goldszmidt et al. (2021).

My contribution: full VOT distribution using new data.

2 Welfare effects of congestion policies: Vickrey (1969), Arnott et al.

(1993) and (1994), Braid (1996), Small and Verhoef (2007), van den Berg and Verhoef

(2011), Hall (2018), Yang et al. (2020), Anderson and Davis (2020).

My contribution: distributional and welfare effects.

3 Distribution of individual valuation of non-transferable good.
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Map of Express Lanes location

Back
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Toll and time saved observations in the data

(a) Absolute toll levels (b) Time saved by toll level

Mean toll: $1.69
Mean toll per mile: $0.34

Mean time saved: 1.11 minutes
Max time saved: 24.92 minutes

Distribution of toll paid per mile Distribution of time saved Back
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Data: toll is hard to predict and EL goes faster

(a) Toll variation every 3 minutes (b) Average speeds every 3 minutes

Back
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Data: Lexus Lanes, very few high-frequency users

(a) Yearly number of EL uses per driver (b) Yearly toll payments per driver

Median: 18
Mean: 52.84
Max: 450

Median: $23.50
Mean: $81.89
Max: $2004.50

Back
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Facts about commuting in Minnesota and the US

75% drove alone to work in 2019 (76% in the US).

Average one-way commute in 2019: 25.6 minutes (27.6 in the US).

No significant change in total number of drivers between 2010 and
2018.

No significant shift to alternative modes between 2010 and 2018.

Under no plausible congestion level city roads are faster than
highways.

Post-COVID commuting trends

Back
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Post-COVID commuting trends in the US

68% drove alone to work in 2021 (down from 76% in 2019).

19% worked from home in 2021 in metro areas (up from 6% in 2019).

Carpooling and public transit decreased between 2019 and 2021.

Congestion was about 20% lower than pre-COVID as of April 2022.

Back
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Distribution of toll paid per mile

Back
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Distribution of absolute time saved

Back
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Moving away from hedonic OLS of VOT

Hedonic regression of EL toll π on time saved τ .

Endogeneity: unobserved driving conditions and individual factors
correlated with both toll and time saved (Greenstone (2017)).

EL discontinuities isolate plausibly exogenous variation in toll.
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Framework for EL demand

Conditional on commuting, i chooses the EL if utility uEL is positive:

uELit = δEL + βVOT
i ·E[τit |Ψit ]− πit + εit

where δEL is taste for the EL, εit is an error term with cdf G , τ is
time saved and π is toll.

Ψit can include surrounding traffic, toll itself, unobservables.

The EL choice probability is:

PEL
it = 1 − G (−δEL − βVOT

i ·E[τit |Ψit ] + πit)
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Assumptions: rational expectation and smoothness

1 Rational expectation of time saved is consistent with its realization.

E[τit |Ψit ] = τit + νit , E[νit ] = 0

Implication: can use ex-post measurement of time saved.

2 Smoothness: untreated potential outcome continuous at cutoff.

E[τ0
it |R = r ] is continuous at r = c , R running variable

Total number of drivers on the road is smooth at the cutoff:
drivers reallocate from EL to normal lanes. Check assumption

No selection on observables Back
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No change in total cars on the road at cutoff

Back
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No selection on observables on EL drivers

EL drivers are not selected on observables on each side of the discontinuity
cutoffs:

No bunching in distribution of running variable Distribution of running variable

No bunching in distribution of entry second Distribution of entry second

Miles traveled on the EL (morning) Miles (morning)

Miles traveled on the EL (afternoon) Miles (afternoon)

Entry time (morning) Entry time (morning)

Entry time (afternoon) Entry time (afternoon)

Back
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No bunching in distribution of running variable

Back
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No bunching in distribution of entry second

Back
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No selection on observables on EL drivers

Back
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No selection on observables on EL drivers
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Intuition for RDD (cutoff 1)
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Intuition for RDD (cutoff 1)
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Intuition for RDD (cutoff 2)
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Intuition for RDD (cutoff 32)

Back
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Regression equations

For driver i who uses the EL, at time t:

FS: πit = απ
z + βπ

z 1[dit ≥ cz ] + γπ
z · f (dit − cz ) + δπz · 1[dit ≥ cz ] · f (dit − cz ) + ηit

SS: τit = ατ + βτ π̂it + γτ
z · f (dit − cz ) + δτz · 1[dit ≥ cz ] · f (dit − cz ) + εit

τit is minutes of time saved, πit is the toll paid, dit is traffic density,
cz is the cutoff for discontinuity z ;

VOT = 1
βτ

f (·) is a 3rd-degree polynomial (Calonico et al. (2017)); standard
errors and averaging over all estimates follows Bertanha (2020).

Back
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RD time saved effect at each cutoff

Back
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Comparison between RDD and OLS

Hedonic OLS of toll paid on time saved underestimates VOT.

Regression table Back
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Comparison between RDD and OLS (table)

PANEL 1: RDD Dependent: time saved (minutes)
All roads I-394 I-35W I-35E

Estimated RDD effect 0.225∗∗∗ 0.215∗∗∗ 0.244∗∗∗ 0.254∗∗∗
(0.00667) (0.00741) (0.0128) (0.0152)

Implied VOT ($/hour) 66.56 69.92 61.52 59.00
(1.97) (2.41) (3.23) (3.53)

PANEL 2: OLS Dependent: toll paid ($)
All roads I-394 I-35W I-35E

Time saved (minutes) 0.281∗∗∗ 0.211∗∗∗ 0.331∗∗∗ 0.143∗∗∗
(0.00162) (0.00121) (0.00176) (0.00159)

Implied VOT ($/hour) 16.83 12.66 19.85 8.58
(0.10) (0.07) (0.11) (0.09)

N 1,935,965 956,530 642,886 337,226
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Back
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Results by road and by travel location

Correlation with aggregate economic indicators Back
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Correlation between VOT results and Census data

Correlation with estimated VOT
Average hourly wage 0.2324∗∗∗

Median individual income 0.1721∗∗∗

Median household income 0.3571∗∗∗

% households >$200k yearly income 0.3114∗∗∗

Median owned property value 0.2172∗∗∗

% of properties over $1M 0.1343∗∗∗

Back
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VOT distribution and EL choice probability

Outcome of interest: aggregate EL choice probability.

Conditional on commuting, i ’s latent EL utility in market j is:

uELij = δEL + βVOT
i · τj − πj + εij

Aggregate EL choice probability depends on VOT distribution in the
population.

Back
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Intuition: identification of VOT distribution

Back
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Intuition: estimation of VOT distribution

Back
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Intuition: estimation of VOT distribution
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Intuition: estimation of VOT distribution
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Andrea Mattia University of Chicago 18 / 18



Intuition: estimation of VOT distribution

Back
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Specification of aggregate EL choice probability

Assume εit is logistic with scale s and the VOT distribution is
approximated by a set of M mass points βm,VOT

i with probability θm.

Aggregate EL choice probability in market j (Fox et al. (2011)):

sELj =
M∑

m=1

θmsELj ,m =
M∑

m=1

θm
exp

(
δEL+βm,VOT ·τj−πj

s

)
1 + exp

(
δEL+βm,VOT ·τj−πj

s

)
To use exogenous variation at cutoff, focus on ∆sELj = sEL,1j − sEL,0j :

∆sELj =
M∑

m=1

θm

 exp

(
δEL+βm,VOT ·τ1

j −π1
j

s

)
1 + exp

(
δEL+βm,VOT ·τ1

j −π1
j

s

) −
exp

(
δEL+βm,VOT ·τ0

j −π0
j

s

)
1 + exp

(
δEL+βm,VOT ·τ0

j −π0
j

s

)


Back
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Assume εit is logistic with scale s and the VOT distribution is
approximated by a set of M mass points βm,VOT

i with probability θm.

Aggregate EL choice probability in market j (Fox et al. (2011)):

sELj =
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M∑

m=1

θm
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s
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s
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To use exogenous variation at cutoff, focus on ∆sELj = sEL,1j − sEL,0j :
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Assumptions to infer VOT distribution

1 Independence: E[θm|τj , πj ] = E[θm] ∀j , ∀m

2 Relevance: βm,VOT ∈ [VOT 0
j ,VOT

1
j ] ∀m, for some j

(a) Time saved across subsamples (b) Ratio toll/time saved across subsamples

Back
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Implementation of VOT distribution estimation

Each market j is a day and cutoff in the sample.

In the data I observe ∆̂s
EL

j = ∆sELj + ζj , with E[ζj |τ, π, βm,VOT ] = 0.
I estimate:

∆̂s
EL

j =
∑
m

θm ·∆sELj ,m + ζj

Divide VOT space in 20 bins, from $0 to $200 per hour saved.

Implementation details Back
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Implementation of VOT estimation

Estimate the θ̂m parameters given a guess for δEL and s.

Draw a sample of drivers from VOT distribution given by the θ̂m.

Match share of trips with negative time savings and the EL traffic
share and iterate to pin down δEL and s.

δEL is identified as log(sEL|τ = 0)− log(1 − sEL|τ = 0) and an open
set around τ = 0 is observed.

% trips with negative time saved fit Back
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% EL trips negative time saved
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Data support for VOT distribution estimation

Back
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VOT distribution only for frequent EL users

Frequent EL user: over 10 uses per year (less than half of the
sample). Sample restriction allows to relax assumptions.

Plug in estimated scale parameter s from general estimation.

Can estimate βVOT
i ,EL through likelihood, matching each individual’s EL

usage probability.

Back Comparison with VOT distribution for all drivers
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Estimated VOT distributions — comparison

Back Road-specific estimated distributions Robustness: 20+ yearly uses Robustness: 50+ yearly uses
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Estimated VOT distributions by road

I-394 (AM)

I-394 (PM)

I-35W (AM)

I-35W (PM)

I-35E (AM)

I-35E (PM)
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Estimated VOT distribution
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Estimated VOT distribution

Back

Andrea Mattia University of Chicago 18 / 18



Estimated VOT distribution
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Estimated VOT distribution
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Estimated VOT distribution
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Estimated VOT distribution
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VOT distribution, frequent users (20+ yearly uses)

Back
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VOT distribution, frequent users (50+ yearly uses)
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Key trade-off choice underlying the model

Pure preference: suppose everyone prefers to commute at 8am.

Trade-off with commuting time expectation: someone might end up
traveling at 7:30am to avoid congestion.

Including this choice margin is important to fully characterize drivers’
response to counterfactuals.

Entry time results (Fridays) Entry time results (holidays) Entry time results (snow days) Back
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Model equations

Stage 1: each driver i chooses, each day d and peak p, the departure
time t that maximizes expected utility u(tdpi ) knowing that they
might take the Express Lane EL(tdpi ) or not:

u(tdpi ) = βpi ·αpt +max{EL(tdpi ), 0}+ εdpti

EL(tdpi ) = δEL + βpi ·E[τpt(tdpi )]−E[πpt(tdpi )]

βpi is individual VOT, αpt are entry time FEs, τpt is travel time
saved, πpt is EL toll, δEL is taste for the EL. Traffic to travel time relationship

EL choice in stage 2 replicates the VOT distribution part. Equations

Moments list Estimation procedure Moments fit Untargeted moments Replication of RD results

Back
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EL entry time results (Fridays)

(a) Travel time change (b) EL entry change relative to median

Back
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EL entry time results (around holidays)

(a) Travel time change (b) EL entry change relative to median

Back
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EL entry time results (snow days)

(a) Travel time change (b) EL entry change relative to median
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Model prediction of EL usage by individual VOT

Back
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Speed to traffic density relationship

(a) Morning (b) Afternoon
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Stage 2: EL choice in general equilibrium

Each driver i in day d and peak p sees the realization of time savings
and toll and chooses the EL if their latent utility uELdpi is positive:

uELdpi = δEL + βpi · τ(t∗dpi )− π(t∗dpi ) + ηdpi

Solved sequentially and in general equilibrium: drivers are allocated
between EL and GL so that no driver wants to behave differently
given what the others are doing.

Back
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164 moments targeted for 82 parameters

1 Median traffic density in the general lanes every 6 minutes (80
moments).

2 Median traffic density in the ELs every 6 minutes (80 moments).

3 Standard deviation of EL entry time (2 moments).

4 average % change in general lane traffic density at discontinuity
cutoffs (2 moments).

Back
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Model estimation procedure

1 Stage 1:

Guess departure time shares for each m VOT class.
For each m VOT class, find expected value of taking the EL.
Compute expected utility of each departure time t.
After realization of shocks εdpti , each driver i chooses the
optimal t in each day and peak.
Aggregate probability of each t needs to be consistent with the
initial guess.

2 Stage 2:

Given simulated stage 1 choices, find EL traffic equilibrium.
Iterate back from stage 1 until moments are matched.

Back
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Targeted moments fit

Traffic density on standard lane (morning)

Traffic density on standard lane (afternoon)

Traffic density on Express lane (morning)

Traffic density on Express lane (afternoon)

Standard deviation of EL entry time

Share of EL trips with negative time saved

Average % change in standard lane density at cutoff

Back

Andrea Mattia University of Chicago 18 / 18



Moments fit: traffic on standard lane (AM)

Back to moments list
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Moments fit: traffic on standard lane (PM)

Back to moments list
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Moments fit: traffic on Express lane (AM)

Back to moments list
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Moments fit: traffic on Express lane (PM)

Back to moments list
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Moments fit: std of EL entry time

Back to moments list
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Moments fit: % EL trips negative time saved

Back to moments list
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Moments fit: mean % GL density change at cutoff

Back to moments list
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Untargeted moments fit (1)

(a) General lanes traffic (b) EL traffic

Next untargeted moments Back
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Untargeted moments fit (2)

(a) EL yearly usage rate (b) VOT of frequent EL users

Previous untargeted moments Back
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VOT model replication of RD results
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EL converted to free lane: intuition

Benchmark with EL 3 standard lanes
Back
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Distributional effects: EL becomes standard lane

I-394 (AM)

I-394 (PM)

I-35W (AM)

I-35W (PM)

I-35E (AM)

I-35E (PM)
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Distributional effects: EL becomes standard lane

Per-capita welfare change (without rebate): $32.34 per year.
Per-capita welfare change (with rebate): $19.45 per year.
Back

Andrea Mattia University of Chicago 18 / 18



EL is converted into a general lane

Per-capita welfare change (without rebate): $17.61 per year.
Per-capita welfare change (with rebate): -$11.80 per year. Back
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EL is converted into a general lane

Per-capita welfare change (without rebate): $52.99 per year.
Per-capita welfare change (with rebate): $28.49 per year.
Back
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EL is converted into a general lane

Per-capita welfare change (without rebate): $15.44 per year.
Per-capita welfare change (with rebate): $9.48 per year.
Back
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EL is converted into a general lane

Per-capita welfare change (without rebate): $7.40 per year.
Per-capita welfare change (with rebate): -$28.20 per year.
Back
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EL is converted into a general lane

Per-capita welfare change (without rebate): -$0.28 per year.
Per-capita welfare change (with rebate): -$18.33 per year.
Back
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More low-VOT drivers: intuition

Benchmark with EL Normal lanes more congested
Back
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Distributional effects: more low-VOT drivers

I-394 (AM)

I-394 (PM)

I-35W (AM)

I-35W (PM)

I-35E (AM)

I-35E (PM)
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Distributional effects: more low-VOT drivers

Per-capita welfare change (without rebate): $2.16 per year.
Per-capita welfare change (with rebate): $0.50 per year.
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Change in VOT composition of drivers

Per-capita welfare change (without rebate): $0.96 per year.
Per-capita welfare change (with rebate): -$1.82 per year.
Back
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Change in VOT composition of drivers

Per-capita welfare change (without rebate): $2.39 per year.
Per-capita welfare change (with rebate): $0.28 per year.
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Change in VOT composition of drivers

Per-capita welfare change (without rebate): $0.34 per year.
Per-capita welfare change (with rebate): -$0.43 per year.
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Change in VOT composition of drivers

Per-capita welfare change (without rebate): $7.83 per year.
Per-capita welfare change (with rebate): $7.39 per year.
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Change in VOT composition of drivers

Per-capita welfare change (without rebate): $0.93 per year.
Per-capita welfare change (with rebate): -$0.40 per year.
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Ignore VOT heterogeneity: intuition

Benchmark with EL Random assignment to EL
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