The Distribution of Value of Time: An Analysis from Traffic Congestion and Express Lanes

Andrea Mattia

University of Chicago
30 August 2023

Why do we care about VOT and commuting?

- Allocation of time to tasks
- Commuting and congestion
- Wage vs residential amenities trade-off
- Infrastructure
\Rightarrow Need to know VOT distribution

Traffic jam in the US.

US President Biden signs $\$ 1$ trillion infrastructure bill.

This paper: Express Lanes (ELs) in Minneapolis

- Time savings vs toll trade-off
- Toll changes every 3 minutes
- Identification: tolling function
- 'Lexus Lanes'?

Express Lane on highway l-394 in Minnesota.

Analysis in three parts and preview of results

RDD: travel time savings that EL users exchange for $\$ 0.25$ toll increase.
VOT is 66.56 \$/hour saved, conditional on using the EL.

Analysis in three parts and preview of results

RDD: travel time savings that EL users exchange for $\$ 0.25$ toll increase.
VOT is 66.56 \$/hour saved, conditional on using the EL.

VOT distribution for all drivers that rationalizes EL traffic share, VOT as random coefficient:

Median: \$17.42;
75th percentile: $\$ 34.97$;
95th percentile: $\$ 166.05$.

Analysis in three parts and preview of results

RDD: travel time savings that EL users exchange for $\$ 0.25$ toll increase.
VOT is 66.56 \$/hour saved, conditional on using the EL.

VOT distribution for all drivers that rationalizes EL traffic share, VOT as random coefficient:

Median: \$17.42;
75th percentile: $\$ 34.97$;
95th percentile: $\$ 166.05$.
Structural model of when to commute + EL choice:
Converting the EL into a standard lane increases per-driver welfare by $\$ 25.68$ per year: 52% of drivers spend less on the EL over a whole year.

Outline of the paper

(1) Setting and data
(2) Step 1: RD analysis of mean VOT among EL drivers
(3) Step 2: estimation of VOT distribution among all drivers
(a) Step 3: structural model of departure time and EL choice
(3) Counterfactuals and distribution of welfare effects

Outline of the paper

(1) Setting and data

Toll function creates 32 cutoffs

Toll changes every 3 minutes as function of traffic density (vehicles per mile) on the EL in the previous 6 minutes: toll $=0.045 \cdot$ density $^{1.1}$, then rounded to the nearest $\$ 0.25$.

Panel dataset of EL usage and highway traffic

(1) EL panel dataset from MnPASS:

- 45,421 distinct EL users, 2017-2018, over 3M observations.
- Includes entry and exit location and time at the seconds level.
- Identified by transponder tag ID, only observed if on EL.

Panel dataset of EL usage and highway traffic

(1) EL panel dataset from MnPASS:

- 45,421 distinct EL users, 2017-2018, over 3M observations.
- Includes entry and exit location and time at the seconds level.
- Identified by transponder tag ID, only observed if on EL.
(2) Highway traffic dataset from Minnesota DOT:
- Covers both ELs and free lanes, measurements every 30 seconds.
- Includes aggregate traffic density (in vehicles per mile), traffic volume (in vehicles per hour) and speed.

Outline of the paper

(1) Setting and data
(2) Step 1: RD analysis of mean VOT among EL drivers

RD identifies reduced-form time saved effect

- Toll $\$ 0.25 \uparrow \Longrightarrow$ Demand $P_{i t}$ for EL $\downarrow \Longrightarrow$ Time saved $\tau_{i t} \uparrow$:

RD identifies reduced-form time saved effect

- Toll $\$ 0.25 \uparrow \Longrightarrow$ Demand $P_{i t}$ for EL $\downarrow \Longrightarrow$ Time saved $\tau_{i t} \uparrow$:

RD identifies reduced-form time saved effect

- Toll $\$ 0.25 \uparrow \Longrightarrow$ Demand $P_{i t}$ for EL $\downarrow \Longrightarrow$ Time saved $\tau_{i t} \uparrow$:

RD identifies reduced-form time saved effect

- Toll $\$ 0.25 \uparrow \Longrightarrow$ Demand $P_{i t}$ for EL $\downarrow \Longrightarrow$ Time saved $\tau_{i t} \uparrow$:

Number of drivers on the road is smooth at cutoff No selection on observables More details

- The RD correctly identifies $\Delta \tau$, the average time saved increase that EL users trade off for a $\$ 0.25$ toll increase:

$$
\mathbb{E}\left[\tau_{i t}^{1}-\tau_{i t}^{0} \mid R=c\right]=\Delta \tau
$$

RDD results (toll and time saved)

First stage

RDD results (toll and time saved)

RDD results (toll and time saved)

RDD-estimated VOT is $\$ 66.56$ per hour saved conditional on using the EL. $2.5 x$ the hourly wage in Minnesota in 2018 ($\$ 28.52$, US BLS). $5 x$ the US government VOT for personal travel (\$13.60, US DOT).

RDD results (speed and density differentials)

Drivers reallocate to normal lanes.

Note: density differential is defined as the difference between EL density and general lanes density.

RDD results (speed and density differentials)

Drivers reallocate to normal lanes.

EL flows faster.

Note: speed differential is defined as the difference between EL speed and general lanes speed.

Outline of the paper

(1) Setting and data
(2) Step 1: RD analysis of mean VOT among EL drivers
(3) Step 2: estimation of VOT distribution among all drivers

VOT distribution and EL choice probability

- Aggregate EL choice probability in market j (Fox et al. (2011)):

$$
s_{j}^{E L}=\sum_{m=1}^{M} \theta^{m} s_{j, m}^{E L}=\sum_{m=1}^{M} \theta^{m} \frac{\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}-\pi_{j}}{s}\right)}{1+\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}-\pi_{j}}{s}\right)}
$$

VOT distribution and EL choice probability

- Aggregate EL choice probability in market j (Fox et al. (2011)):

$$
s_{j}^{E L}=\sum_{m=1}^{M} \theta^{m} s_{j, m}^{E L}=\sum_{m=1}^{M} \theta^{m} \frac{\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}-\pi_{j}}{s}\right)}{1+\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}-\pi_{j}}{s}\right)}
$$

- To use exogenous variation at cutoff, focus on $\Delta s_{j}^{E L}=s_{j}^{E L, 1}-s_{j}^{E L, 0}$.

VOT distribution and EL choice probability

- Aggregate EL choice probability in market j (Fox et al. (2011)):

$$
s_{j}^{E L}=\sum_{m=1}^{M} \theta^{m} s_{j, m}^{E L}=\sum_{m=1}^{M} \theta^{m} \frac{\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}-\pi_{j}}{s}\right)}{1+\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}-\pi_{j}}{s}\right)}
$$

- To use exogenous variation at cutoff, focus on $\Delta s_{j}^{E L}=s_{j}^{E L, 1}-s_{j}^{E L, 0}$.
- Each market j is a day and cutoff in the sample.

VOT distribution and EL choice probability

- Aggregate EL choice probability in market j (Fox et al. (2011)):

$$
s_{j}^{E L}=\sum_{m=1}^{M} \theta^{m} s_{j, m}^{E L}=\sum_{m=1}^{M} \theta^{m} \frac{\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}-\pi_{j}}{s}\right)}{1+\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}-\pi_{j}}{s}\right)}
$$

- To use exogenous variation at cutoff, focus on $\Delta s_{j}^{E L}=s_{j}^{E L, 1}-s_{j}^{E L, 0}$.
- Each market j is a day and cutoff in the sample.
- I estimate:

$$
\widehat{\Delta s}_{j}^{E L}=\sum_{m} \theta^{m} \cdot \Delta s_{j, m}^{E L}+\zeta_{j}
$$

Estimated VOT distribution

Median \$17.42; 75th percentile: \$34.97; 95th percentile: \$166.05. RDD result $\$ 66.56$ is close to the 85 th percentile.

Alternative estimation for frequent EL users

Outline of the paper

(1) Setting and data
(2) Step 1: RD analysis of mean VOT among EL drivers
(3) Step 2: estimation of VOT distribution among all drivers
(4) Step 3: structural model of departure time and EL choice

Model intuition and setup

- People can respond to congestion (and congestion policy) by adjusting what time of day they choose to commute.
- Drivers want to minimize travel time. Heterogeneity: individual VOT.
- In the first stage, drivers choose entry time on the highway. Preference for entry times are population averages.
- In the second stage, conditional on entry time, drivers choose EL or normal lane, in GE framework.

Outline of the paper

(1) Setting and data
(2) Step 1: RD analysis of mean VOT among EL drivers
(3) Step 2: estimation of VOT distribution among all drivers
(a) Step 3: structural model of departure time and EL choice
(5) Counterfactuals and distribution of welfare effects
(1) EL is converted into a standard lane.
(2) More low-VOT drivers. Graphical intuition
(3) Lower or higher toll.
(-) Ignore VOT heterogeneity. Graphical intuition

EL converted to free lane: result

EL converted to free lane: distribution of effects

Gains are concentrated among low-VOT commuters.

More low-VOT drivers: result

More low-VOT drivers: distribution of effects

Gains are concentrated among high-VOT commuters.

Road-specific distributional effects

Changes in toll: 0.1 x to 2 x original toll

Welfare effects of toll changes

Ignore VOT heterogeneity: result

What if we rebated toll revenues to drivers?

Concluding remarks

- Estimate full VOT distribution of a policy-relevant population using new data: wide heterogeneity in individual VOT.
- The EL maximizes drivers' welfare when the underlying VOT distribution produces a separating equilibrium.
- The VOT distribution is essential to design targeted congestion policy and assess inequality concerns.

Thank you for your attention! amattia@uchicago.edu

Contributions of this paper and literature review

(1) Value of time literature: Deacon and Sonstelie (1985), Chui and McFarland (1987), Small et al. (2005), Small et al. (2006), Bento et al. (2017), Nevo and Wong (2019), Hall (2020), Kreindler (2021), Goldszmidt et al. (2021).

My contribution: full VOT distribution using new data.
(2) Welfare effects of congestion policies: Vickrey (1969), Arnott et al. (1993) and (1994), Braid (1996), Small and Verhoef (2007), van den Berg and Verhoef (2011), Hall (2018), Yang et al. (2020), Anderson and Davis (2020).

My contribution: distributional and welfare effects.
(3) Distribution of individual valuation of non-transferable good.

Map of Express Lanes location

Toll and time saved observations in the data

Distribution of toll in the data

(a) Absolute toll levels

Mean toll: $\$ 1.69$
Mean toll per mile: $\$ 0.34$

(b) Time saved by toll level

Mean time saved: 1.11 minutes Max time saved: 24.92 minutes

Data: toll is hard to predict and EL goes faster

(a) Toll variation every 3 minutes

(b) Average speeds every 3 minutes

Data: Lexus Lanes, very few high-frequency users

(a) Yearly number of EL uses per driver

(b) Yearly toll payments per driver

Median: 18
Mean: 52.84
Max: 450

Median: $\$ 23.50$
Mean: \$81.89
Max: \$2004.50

Facts about commuting in Minnesota and the US

- 75% drove alone to work in 2019 (76% in the US).
- Average one-way commute in 2019: 25.6 minutes (27.6 in the US).
- No significant change in total number of drivers between 2010 and 2018.
- No significant shift to alternative modes between 2010 and 2018.
- Under no plausible congestion level city roads are faster than highways.

Post-COVID commuting trends in the US

- 68\% drove alone to work in 2021 (down from 76\% in 2019).
- 19% worked from home in 2021 in metro areas (up from 6% in 2019).
- Carpooling and public transit decreased between 2019 and 2021.
- Congestion was about 20\% lower than pre-COVID as of April 2022.

Distribution of toll paid per mile

Distribution of absolute time saved

Distribution of time saved in the data

Moving away from hedonic OLS of VOT

- Hedonic regression of EL toll π on time saved τ.
- Endogeneity: unobserved driving conditions and individual factors correlated with both toll and time saved (Greenstone (2017)).
- EL discontinuities isolate plausibly exogenous variation in toll.

Framework for EL demand

- Conditional on commuting, i chooses the EL if utility $u^{E L}$ is positive:

$$
u_{i t}^{E L}=\delta^{E L}+\beta_{i}^{V O T} \cdot \mathbb{E}\left[\tau_{i t} \mid \Psi_{i t}\right]-\pi_{i t}+\varepsilon_{i t}
$$

where $\delta^{E L}$ is taste for the EL, $\varepsilon_{i t}$ is an error term with $\operatorname{cdf} G, \tau$ is time saved and π is toll.

- $\Psi_{i t}$ can include surrounding traffic, toll itself, unobservables.

Framework for EL demand

- Conditional on commuting, i chooses the EL if utility $u^{E L}$ is positive:

$$
u_{i t}^{E L}=\delta^{E L}+\beta_{i}^{V O T} \cdot \mathbb{E}\left[\tau_{i t} \mid \Psi_{i t}\right]-\pi_{i t}+\varepsilon_{i t}
$$

where $\delta^{E L}$ is taste for the EL, $\varepsilon_{i t}$ is an error term with $\operatorname{cdf} G, \tau$ is time saved and π is toll.

- $\Psi_{i t}$ can include surrounding traffic, toll itself, unobservables.
- The EL choice probability is:

$$
P_{i t}^{E L}=1-G\left(-\delta^{E L}-\beta_{i}^{V O T} \cdot \mathbb{E}\left[\tau_{i t} \mid \Psi_{i t}\right]+\pi_{i t}\right)
$$

Assumptions: rational expectation and smoothness

(1) Rational expectation of time saved is consistent with its realization.

$$
\mathbb{E}\left[\tau_{i t} \mid \Psi_{i t}\right]=\tau_{i t}+\nu_{i t}, \quad \mathbb{E}\left[\nu_{i t}\right]=0
$$

- Implication: can use ex-post measurement of time saved.

Assumptions: rational expectation and smoothness

(1) Rational expectation of time saved is consistent with its realization.

$$
\mathbb{E}\left[\tau_{i t} \mid \Psi_{i t}\right]=\tau_{i t}+\nu_{i t}, \quad \mathbb{E}\left[\nu_{i t}\right]=0
$$

- Implication: can use ex-post measurement of time saved.
(2) Smoothness: untreated potential outcome continuous at cutoff.

$$
\mathbb{E}\left[\tau_{i t}^{0} \mid R=r\right] \quad \text { is continuous at } r=c, \quad R \text { running variable }
$$

- Total number of drivers on the road is smooth at the cutoff: drivers reallocate from EL to normal lanes.

```
Check assumption
```


No change in total cars on the road at cutoff

No selection on observables on EL drivers

EL drivers are not selected on observables on each side of the discontinuity cutoffs:

- No bunching in distribution of running variable Distribution of running variable
- No bunching in distribution of entry second Distribution of entry second
- Miles traveled on the EL (morning) Miles (moming)
- Miles traveled on the EL (afternoon) Miles (afternoon)
- Entry time (morning) Entry time (morming)
- Entry time (afternoon) Enty time (afternoon)

No bunching in distribution of running variable

No bunching in distribution of entry second

No selection on observables on EL drivers

Length of EL trip at the cutoff (morning)

No selection on observables on EL drivers

Length of EL trip at the cutoff (afternoon)

No selection on observables on EL drivers

EL entry time at the cutoff (morning)

No selection on observables on EL drivers

Intuition for RDD (cutoff 1)

Intuition for RDD (cutoff 1)

Intuition for RDD (cutoff 2)

Intuition for RDD (cutoff 32)

Regression equations

- For driver i who uses the EL, at time t :

FS: $\quad \pi_{i t}=\alpha_{z}^{\pi}+\beta_{z}^{\pi} \mathbb{1}\left[d_{i t} \geq c_{z}\right]+\gamma_{z}^{\pi} \cdot f\left(d_{i t}-c_{z}\right)+\delta_{z}^{\pi} \cdot \mathbb{1}\left[d_{i t} \geq c_{z}\right] \cdot f\left(d_{i t}-c_{z}\right)+\eta_{i t}$ SS: $\quad \tau_{i t}=\alpha^{\tau}+\beta^{\tau} \hat{\pi}_{i t}+\gamma_{z}^{\tau} \cdot f\left(d_{i t}-c_{z}\right)+\delta_{z}^{\tau} \cdot \mathbb{1}\left[d_{i t} \geq c_{z}\right] \cdot f\left(d_{i t}-c_{z}\right)+\varepsilon_{i t}$

- $\tau_{i t}$ is minutes of time saved, $\pi_{i t}$ is the toll paid, $d_{i t}$ is traffic density, c_{z} is the cutoff for discontinuity z;

Regression equations

- For driver i who uses the EL, at time t :

FS: $\quad \pi_{i t}=\alpha_{z}^{\pi}+\beta_{z}^{\pi} \mathbb{1}\left[d_{i t} \geq c_{z}\right]+\gamma_{z}^{\pi} \cdot f\left(d_{i t}-c_{z}\right)+\delta_{z}^{\pi} \cdot \mathbb{1}\left[d_{i t} \geq c_{z}\right] \cdot f\left(d_{i t}-c_{z}\right)+\eta_{i t}$ SS: $\quad \tau_{i t}=\alpha^{\tau}+\beta^{\tau} \hat{\pi}_{i t}+\gamma_{z}^{\tau} \cdot f\left(d_{i t}-c_{z}\right)+\delta_{z}^{\tau} \cdot \mathbb{1}\left[d_{i t} \geq c_{z}\right] \cdot f\left(d_{i t}-c_{z}\right)+\varepsilon_{i t}$

- $\tau_{i t}$ is minutes of time saved, $\pi_{i t}$ is the toll paid, $d_{i t}$ is traffic density, c_{z} is the cutoff for discontinuity z;

$$
V O T=\frac{1}{\beta^{\tau}}
$$

Regression equations

- For driver i who uses the EL, at time t :

FS: $\quad \pi_{i t}=\alpha_{z}^{\pi}+\beta_{z}^{\pi} \mathbb{1}\left[d_{i t} \geq c_{z}\right]+\gamma_{z}^{\pi} \cdot f\left(d_{i t}-c_{z}\right)+\delta_{z}^{\pi} \cdot \mathbb{1}\left[d_{i t} \geq c_{z}\right] \cdot f\left(d_{i t}-c_{z}\right)+\eta_{i t}$ SS: $\quad \tau_{i t}=\alpha^{\tau}+\beta^{\tau} \hat{\pi}_{i t}+\gamma_{z}^{\tau} \cdot f\left(d_{i t}-c_{z}\right)+\delta_{z}^{\tau} \cdot \mathbb{1}\left[d_{i t} \geq c_{z}\right] \cdot f\left(d_{i t}-c_{z}\right)+\varepsilon_{i t}$

- $\tau_{i t}$ is minutes of time saved, $\pi_{i t}$ is the toll paid, $d_{i t}$ is traffic density, c_{z} is the cutoff for discontinuity z;

$$
V O T=\frac{1}{\beta^{\tau}}
$$

- $f(\cdot)$ is a 3rd-degree polynomial (Calonico et al. (2017)); standard errors and averaging over all estimates follows Bertanha (2020).

RD time saved effect at each cutoff

Comparison between RDD and OLS

Hedonic OLS of toll paid on time saved underestimates VOT.

Comparison between RDD and OLS (table)

PANEL 1: RDD	Dependent: time saved (minutes)			
	All roads	I-394	I-35W	I-35E
Estimated RDD effect	$\begin{gathered} 0.225^{* * *} \\ (0.00667) \end{gathered}$	$\begin{gathered} 0.215^{* * *} \\ (0.00741) \end{gathered}$	$\begin{aligned} & 0.244^{* * *} \\ & (0.0128) \end{aligned}$	$\begin{aligned} & 0.254^{* * *} \\ & (0.0152) \end{aligned}$
Implied VOT (\$/hour)	$\begin{aligned} & 66.56 \\ & (1.97) \end{aligned}$	$\begin{aligned} & 69.92 \\ & (2.41) \end{aligned}$	$\begin{aligned} & 61.52 \\ & (3.23) \end{aligned}$	$\begin{aligned} & 59.00 \\ & (3.53) \end{aligned}$
PANEL 2: OLS	Dependent: toll paid (\$)			
	All roads	I-394	I-35W	I-35E
Time saved (minutes)	$\begin{gathered} \hline 0.281^{* * *} \\ (0.00162) \end{gathered}$	$\begin{gathered} 0.211^{* * *} \\ (0.00121) \end{gathered}$	$\begin{aligned} & 0.331^{* * *} \\ & (0.00176) \end{aligned}$	$\begin{aligned} & 0.143^{* * *} \\ & (0.00159) \end{aligned}$
Implied VOT (\$/hour)	$\begin{aligned} & 16.83 \\ & (0.10) \end{aligned}$	$\begin{aligned} & 12.66 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 19.85 \\ & (0.11) \end{aligned}$	$\begin{gathered} 8.58 \\ (0.09) \end{gathered}$
N	1,935,965	956,530	642,886	337,226

Results by road and by travel location

Correlation between VOT results and Census data

Correlation with estimated VOT

Average hourly wage	$0.2324^{* * *}$
Median individual income	$0.1721^{* * *}$
Median household income	$0.3571^{* * *}$
$\%$ households $>\$ 200 \mathrm{k}$ yearly income	$0.3114^{* * *}$
Median owned property value	$0.2172^{* * *}$
$\%$ of properties over $\$ 1 \mathrm{M}$	$0.1343^{* * *}$

VOT distribution and EL choice probability

- Outcome of interest: aggregate EL choice probability.
- Conditional on commuting, i 's latent EL utility in market j is:

$$
u_{i j}^{E L}=\delta^{E L}+\beta_{i}^{V O T} \cdot \tau_{j}-\pi_{j}+\varepsilon_{i j}
$$

- Aggregate EL choice probability depends on VOT distribution in the population.

Intuition: identification of VOT distribution

Intuition: estimation of VOT distribution

Specification of aggregate EL choice probability

- Assume $\varepsilon_{i t}$ is logistic with scale s and the VOT distribution is approximated by a set of M mass points $\beta_{i}^{m, V O T}$ with probability θ^{m}.

Specification of aggregate EL choice probability

- Assume $\varepsilon_{i t}$ is logistic with scale s and the VOT distribution is approximated by a set of M mass points $\beta_{i}^{m, V O T}$ with probability θ^{m}.
- Aggregate EL choice probability in market j (Fox et al. (2011)):

$$
s_{j}^{E L}=\sum_{m=1}^{M} \theta^{m} s_{j, m}^{E L}=\sum_{m=1}^{M} \theta^{m} \frac{\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}-\pi_{j}}{s}\right)}{1+\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}-\pi_{j}}{s}\right)}
$$

Specification of aggregate EL choice probability

- Assume $\varepsilon_{i t}$ is logistic with scale s and the VOT distribution is approximated by a set of M mass points $\beta_{i}^{m, V O T}$ with probability θ^{m}.
- Aggregate EL choice probability in market j (Fox et al. (2011)):

$$
s_{j}^{E L}=\sum_{m=1}^{M} \theta^{m} s_{j, m}^{E L}=\sum_{m=1}^{M} \theta^{m} \frac{\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}-\pi_{j}}{s}\right)}{1+\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}-\pi_{j}}{s}\right)}
$$

- To use exogenous variation at cutoff, focus on $\Delta s_{j}^{E L}=s_{j}^{E L, 1}-s_{j}^{E L, 0}$:

$$
\Delta s_{j}^{E L}=\sum_{m=1}^{M} \theta^{m}\left[\frac{\exp \left(\frac{\delta^{E L}+\beta^{m, V o T} \cdot \tau_{j}^{1}-\pi_{j}^{1}}{s}\right)}{1+\exp \left(\frac{\delta^{E L}+\beta^{m, V O T} \cdot \tau_{j}^{1}-\pi_{j}^{1}}{s}\right)}-\frac{\exp \left(\frac{\delta^{E L}+\beta^{m, V o T} \cdot \tau_{j}^{0}-\pi_{j}^{0}}{s}\right)}{1+\exp \left(\frac{\delta^{E L}+\beta^{m}, V O T \cdot \tau_{j}^{0}-\pi_{j}^{0}}{s}\right)}\right]
$$

Assumptions to infer VOT distribution

(1) Independence: $\mathbb{E}\left[\theta^{m} \mid \tau_{j}, \pi_{j}\right]=\mathbb{E}\left[\theta^{m}\right] \quad \forall j, \quad \forall m$
(2) Relevance: $\beta^{m, V O T} \in\left[V O T_{j}^{0}, V O T_{j}^{1}\right] \quad \forall m$, for some j

(a) Time saved across subsamples

(b) Ratio toll/time saved across subsamples

Implementation of VOT distribution estimation

- Each market j is a day and cutoff in the sample.
- In the data I observe $\widehat{\Delta s_{j}}=\Delta s_{j}^{E L}+\zeta_{j}$, with $\mathbb{E}\left[\zeta_{j} \mid \tau, \pi, \beta^{m, V O T}\right]=0$. I estimate:

$$
\widehat{\Delta s}_{j}^{E L}=\sum_{m} \theta^{m} \cdot \Delta s_{j, m}^{E L}+\zeta_{j}
$$

- Divide VOT space in 20 bins, from $\$ 0$ to $\$ 200$ per hour saved.

Implementation of VOT estimation

- Estimate the $\hat{\theta}^{m}$ parameters given a guess for $\delta^{E L}$ and s.
- Draw a sample of drivers from VOT distribution given by the $\hat{\theta}^{m}$.
- Match share of trips with negative time savings and the EL traffic share and iterate to pin down $\delta^{E L}$ and s.
- $\delta^{E L}$ is identified as $\log \left(s^{E L} \mid \tau=0\right)-\log \left(1-s^{E L} \mid \tau=0\right)$ and an open set around $\tau=0$ is observed.

\% EL trips negative time saved

Data support for VOT distribution estimation

VOT distribution only for frequent EL users

- Frequent EL user: over 10 uses per year (less than half of the sample). Sample restriction allows to relax assumptions.
- Plug in estimated scale parameter s from general estimation.
- Can estimate $\beta_{i, E L}^{V O T}$ through likelihood, matching each individual's EL usage probability.

Estimated VOT distributions - comparison

Estimated VOT distributions by road

1-394 (AM)

1-394 (PM)
1-35W (AM)
1-35W (PM)
1-35E (AM)
1-35E (PM)

Back

Estimated VOT distribution

VOT distribution, frequent users (20+ yearly uses)

VOT distribution, frequent users (50+ yearly uses)

Key trade-off choice underlying the model

- Pure preference: suppose everyone prefers to commute at 8am.
- Trade-off with commuting time expectation: someone might end up traveling at 7:30am to avoid congestion.
- Including this choice margin is important to fully characterize drivers' response to counterfactuals.

Model equations

- Stage 1: each driver i chooses, each day d and peak p, the departure time t that maximizes expected utility $u\left(t_{d p i}\right)$ knowing that they might take the Express Lane $E L\left(t_{d p i}\right)$ or not:

$$
\begin{aligned}
u\left(t_{d p i}\right) & =\beta_{p i} \cdot \boldsymbol{\alpha}_{\boldsymbol{p t}}+\max \left\{E L\left(t_{d p i}\right), 0\right\}+\varepsilon_{d p t i} \\
E L\left(t_{d p i}\right) & =\delta^{E L}+\beta_{p i} \cdot \mathbb{E}\left[\tau_{p t}\left(t_{d p i}\right)\right]-\mathbb{E}\left[\pi_{p t}\left(t_{d p i}\right)\right]
\end{aligned}
$$

- $\beta_{p i}$ is individual VOT, $\alpha_{p t}$ are entry time FEs, $\tau_{p t}$ is travel time saved, $\pi_{p t}$ is EL toll, $\delta^{E L}$ is taste for the EL. Traficic to travel time relationship
- EL choice in stage 2 replicates the VOT distribution part.

EL entry time results (Fridays)

EL entry time results (around holidays)

EL entry time results (snow days)

(a) Travel time change

(b) EL entry change relative to median

Model prediction of EL usage by individual VOT

Frequency of EL usage by individual VOT

Speed to traffic density relationship

Stage 2: EL choice in general equilibrium

- Each driver i in day d and peak p sees the realization of time savings and toll and chooses the EL if their latent utility $u_{d p i}^{E L}$ is positive:

$$
u_{d p i}^{E L}=\delta^{E L}+\beta_{p i} \cdot \tau\left(t_{d p i}^{*}\right)-\pi\left(t_{d p i}^{*}\right)+\eta_{d p i}
$$

- Solved sequentially and in general equilibrium: drivers are allocated between EL and GL so that no driver wants to behave differently given what the others are doing.

164 moments targeted for 82 parameters

(1) Median traffic density in the general lanes every 6 minutes (80 moments).
(2) Median traffic density in the ELs every 6 minutes (80 moments).
(3) Standard deviation of EL entry time (2 moments).
(3) average \% change in general lane traffic density at discontinuity cutoffs (2 moments).

Model estimation procedure

(1) Stage 1:

- Guess departure time shares for each m VOT class.
- For each m VOT class, find expected value of taking the EL.
- Compute expected utility of each departure time t.
- After realization of shocks $\varepsilon_{d p t i}$, each driver i chooses the optimal t in each day and peak.
- Aggregate probability of each t needs to be consistent with the initial guess.
(2) Stage 2:
- Given simulated stage 1 choices, find EL traffic equilibrium.
- Iterate back from stage 1 until moments are matched.

Targeted moments fit

- Traffic density on standard lane (morning)
- Traffic density on standard lane (afternoon)
- Traffic density on Express lane (morning)
- Traffic density on Express lane (afternoon)
- Standard deviation of EL entry time
- Share of EL trips with negative time saved
- Average \% change in standard lane density at cutoff

Moments fit: traffic on standard lane (AM)

Moments fit: traffic on standard lane (PM)

Moments fit: traffic on Express lane (AM)

Moments fit: traffic on Express lane (PM)

Moments fit: std of EL entry time

Moments fit: \% EL trips negative time saved

Moments fit: mean \% GL density change at cutoff

Untargeted moments fit (1)

Untargeted moments fit (2)

VOT model replication of RD results

EL converted to free lane: intuition

Benchmark with EL

3 standard lanes

Distributional effects: EL becomes standard lane

I-394 (AM)

$1-394$ (PM)
I-35W (AM)
1-35W (PM)
1-35E (AM)
H35E (PM)

Distributional effects: EL becomes standard lane

Per-capita welfare change (without rebate): $\$ 32.34$ per year.
Per-capita welfare change (with rebate): $\$ 19.45$ per year.

EL is converted into a general lane

Per-capita welfare change (without rebate): $\$ 17.61$ per year. Per-capita welfare change (with rebate): $-\$ 11.80$ per year.

EL is converted into a general lane

Per-capita welfare change (without rebate): $\$ 52.99$ per year. Per-capita welfare change (with rebate): $\$ 28.49$ per year.

EL is converted into a general lane

Per-capita welfare change (without rebate): $\$ 15.44$ per year. Per-capita welfare change (with rebate): $\$ 9.48$ per year.

EL is converted into a general lane

Per-capita welfare change (without rebate): $\$ 7.40$ per year.
Per-capita welfare change (with rebate): - $\$ 28.20$ per year.

EL is converted into a general lane

Per-capita welfare change (without rebate): $-\$ 0.28$ per year.
Per-capita welfare change (with rebate): $-\$ 18.33$ per year.

More low-VOT drivers: intuition

Benchmark with EL

Normal lanes more congested

Distributional effects: more low-VOT drivers

I-394 (AM)

1-394 (PM)

I-35W (AM)
I-35W (PM)
I-35E (AM)
I-35E (PM)

Back

Distributional effects: more low-VOT drivers

Per-capita welfare change (without rebate): $\$ 2.16$ per year.
Per-capita welfare change (with rebate): $\$ 0.50$ per year.

Change in VOT composition of drivers

Per-capita welfare change (without rebate): $\$ 0.96$ per year.
Per-capita welfare change (with rebate): - $\$ 1.82$ per year.

Change in VOT composition of drivers

Per-capita welfare change (without rebate): $\$ 2.39$ per year.
Per-capita welfare change (with rebate): $\$ 0.28$ per year.

Change in VOT composition of drivers

Per-capita welfare change (without rebate): $\$ 0.34$ per year.
Per-capita welfare change (with rebate): - $\$ 0.43$ per year.

Change in VOT composition of drivers

Per-capita welfare change (without rebate): $\$ 7.83$ per year.
Per-capita welfare change (with rebate): $\$ 7.39$ per year.

Change in VOT composition of drivers

Per-capita welfare change (without rebate): $\$ 0.93$ per year.
Per-capita welfare change (with rebate): - $\$ 0.40$ per year.

Ignore VOT heterogeneity: intuition

Benchmark with EL

Random assignment to EL

