(Green) Technology Adoption and Skill Reallocation

Sacha den Nijs [†] Stefanos Tyros [†]

[†]Vrije Universiteit Amsterdam & Tinbergen Institute

Barcelona, August 31 2023

▲□▶▲□▶▲≡▶▲≡▶ Ξ|= めぬ⊙

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

Moving towards a green economy

Requires a technological transformation:

- Brown sector contracts and green expands
- Sectors transform to meet green demand
- ★ Vona et al. (2018): Skill sorting, not (only) shortage
- \rightarrow Do firms adopt the available technologies?
- \rightarrow How does this interact with labour markets?

Labour Market $\stackrel{updating}{\longleftrightarrow}$ Technology adoption

- \blacksquare Frictions: green tech adoption $\sim 35\%$ slower first order effect
- Workers with green skills *locked-in* brown jobs
- \blacksquare 2050 carbon neutrality \Rightarrow labour market transitions $\uparrow \sim 10\%$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Environment: technology adoption & skills

Building on Hornstein et al. (2007) and Gautier et al. (2010):

- \blacksquare Firm technology + worker \rightarrow homogeneous good
- Workers(technologies) with heterogeneous skills(requirements)
 - Mass 1 of workers
 - ► Free entry for firms
 - Skills (and requirements) uniformly distributed over unit circle
- New, greener, technologies created at constant pace
- Labour market frictions: $\lambda = \lambda_0 u^a v^{1-a}$
- Fixed amount of UI benefits, B
- **•** Nash Bargaining: β share of match surplus to worker
- \blacksquare Exogenous job destruction at rate σ

Green Skills Assu

Assumptions

Introduction Baseline Model Results Policy Conclusion Skill mismatch and technology age

The productivity of a worker-technology match:

$$y(a,x) = e^{-\phi a} \left[1 - \frac{1}{2}\gamma x^2\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

• ϕ : energy efficiency innovation/green demand increase

- *a*: technology age
- x: worker-technology skill mismatch $\sim U[0, 1/2]$
- γ : measure of specialisation

Full Production Function Energy Efficiency

Introduction	Baseline Model	Results	Policy	Conclusion
00		000	000	000
Model setur	o: 3 stages			

・ロト < 団ト < 三ト < 三ト < 三日 < のへの

Stage 1: Invest in new technology

Stage 2: Technology ages

Stage 3: Technology is scrapped

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Stage 1: Invest in new Technology

Stage 2: Technology ages

Stage 3: Technology is scrapped

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

Distance from the Frontier

Figure: The age distribution of matched technologies along the BGP for various search friction parameters λ_0

 \rightarrow Scrapping age as proxy of distance from the froniter Calibration

Skill sorting delaying green-tech adoption

Figure: The number of years a technology remains in use. $\phi = \omega(\eta + \delta)$

 \rightarrow Mismatch effect: $\gamma = 0$, Search effect: $\lambda_0 \rightarrow \infty$

<ロト < 団ト < 団ト < 団ト < 団ト 三国 のへで</p>

Figure: Labour market transition rates

★ Vona (2019): climate policy driven firings reduce their political acceptability

Introduce carbon tax, c: taxing older technologies to increase the pace of decarbonisation

$$y(a,x) = e^{-\phi a} \left[1 - \frac{1}{2}\gamma x^2\right] - ca$$

<□> <</p>
<□> <</p>
□> <</p>
□> <</p>
□> <</p>
□>
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

Figure: Effect of a carbon tax on the scrapping age

Retraining:

- Equivalent to lowering job specialization
 - \rightarrow Lowers labour market transitions, Retraining
 - \rightarrow Increases policy acceptability
- In the absence of a carbon tax
 - \rightarrow Retraining subsidies for efficient policy
- In the presence of carbon tax
 - \rightarrow Retraining subsidies for policy acceptability

Green Transition:

- Frictions induce first order effect on adoption delay
- Workers with green skills locked-in brown jobs
- Faster decarbonisation increases labour market transitions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Optimal policy mix: include retraining subsidies

- Skill shortage increases skills effect
- Multiplier if innovation depends on pace of adoption

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

- Translation to carbon footprint
- Quantitative optimal policy analysis

Thank you for your attention! Stefanos Tyros - stefanos.tyros@vu.nl

ACEMOGLU, D. (1998): "Why do new technologies complement skills? Directed technical change and wage inequality," *The quarterly journal of economics*, 113, 1055–1089.

- (2023): "Distorted Innovation: Does the Market Get the Direction of Technology Right?" Working Paper 30922, National Bureau of Economic Research.
- ALLCOTT, H. AND M. GREENSTONE (2012): "Is there an energy efficiency gap?" in *Journal of Economic Perspectives*.
- BOWEN, A., K. KURALBAYEVA, AND E. L. TIPOE (2018):
 - "Characterising green employment: The impacts of 'greening' on workforce composition," *Energy Economics*, 72, 263–275.
- BREMER, L. AND S. DEN NIJS (2023): "working paper," .
- DUERNECKER, G. (2014): "Technology adoption, turbulence, and the dynamics of unemployment," *Journal of the European Economic Association*, 12, 724–754.
- GAUTIER, P. A., C. N. TEULINGS, AND A. VAN VUUREN (2010): "On-the-job search, mismatch and efficiency," *Review* of *Economic Studies*.

HORNSTEIN, A., P. KRUSELL, AND G. L. VIOLANTE (2007): "Technology-policy interaction in frictional labour-markets," *Review of Economic Studies*.

IEA (2021): *Energy Efficiency 2021*, Energy Efficiency, OECD. MORTENSEN, D. T. AND C. A. PISSARIDES (1998):

"Technological progress, job creation, and job destruction," *Review of Economic Dynamics.*

MULDER, P., H. L. DE GROOT, AND M. W. HOFKES (2003): "Explaining slow diffusion of energy-saving technologies; a vintage model with returns to diversity and learning-by-using," *Resource and Energy Economics*.

VONA, F. (2019): "Job losses and political acceptability of climate policies: why the 'job-killing' argument is so persistent and how to overturn it," *Climate Policy*, 19, 524–532.

VONA, F., G. MARIN, D. CONSOLI, AND D. POPP (2018): "Environmental regulation and green skills: An empirical exploration," *Journal of the Association of Environmental and Resource Economists*, 5, 713–753.

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Model Extensions

- Worker retainment
- Worker retraining
- Aggregate skill shortage
- Skill biased technical change
- Return

Extensions

Worker Retainment

 \rightarrow Firm scraps old technology, retains worker and realises new x

- \blacksquare Some firms update w/out worker
- Retaining firm value:

$$V^J(\widetilde{a}(x),x)=V^F_W-I>0$$

Update inflow-outflow to include retaining firms

 $\Rightarrow \mathsf{Search} \ \mathsf{effect} \downarrow$

Extensions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

Worker Retraining

Retraining all workers: reduce mismatch by a ζ factor:

$$y(a,x) = e^{-\phi a} \left[1 - \frac{1}{2}\zeta \gamma x^2\right].$$

Equivalent to a reduction of specialization, γ , by a ζ factor. Return

Aggregate Skill Shortage

$$\bigstar x \sim U[0, 1/2] \longrightarrow x \sim X_{\kappa}, \quad E[X_{\kappa}] > 1/4$$

- \rightarrow Distributions change accordingly.
- \Rightarrow Mismatch effect \uparrow (including spatial mismatch)

How to quantify imperfect sorting versus shortage:

- Skill Shortage = $\lim_{\lambda_0 \to \infty} [Y_{\kappa} Y_{\kappa \to 0}]$
- Imperfect Skill Sorting = $\lim_{\kappa \to 0} [Y_{\gamma} Y_{\gamma \to 0}]$
- \rightarrow Can use skills, employment, and vacancy data to estimate κ
- ightarrow Skill biased tech change: $\kappa_t \uparrow$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Green skills

 \rightarrow Green technologies require other technology-specific skills than $\mathsf{predecessors}^1$

Are the transferable skills out there? Yes (at least partially):

- Skills gap between green and brown jobs is small²
- 44.3% of U.S. jobs have similar tasks to green jobs³

Skill sorting important, not (only) aggregate skill shortage

Return

¹Bremer and den Nijs (2023) ²Vona et al. (2018) ³Bowen et al. (2018)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ ��

Green tech requires other skills

Do your employees need to have the following skills to work with energy efficient technologies?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Production function of the firm

$$y(t, a, x) = f(x)z(t)k(t, a)^{\omega}$$
$$= f(x)z_0e^{\psi t} \left[k_0e^{\eta(t-a)}e^{-\delta a}\right]^{\omega}$$

At the balanced growth path the economy grows at a rate $g = \psi + \omega \eta$ and a new technologies' productivity increases at an effective rate of $\phi = \omega(\eta + \delta)$ compared to older vintages.

Return

Energy productivity over time (GDP / energy use)

Figure: Energy productivity in the EU, source: Eurostat

Value functions

• Employment & Unemployment: $\rho V^{E}(a, x) = \underbrace{w(a, x)}_{\text{instantaneous gain}} -\sigma \underbrace{[V^{E}(a, x) - V^{U}]}_{\text{job destruction loss}} + \underbrace{V^{E}_{a}(a, x)}_{\text{tech ageing}}$ $\rho V^{U} = \underbrace{\mathcal{B}}_{\text{instantaneous gain}} + \frac{\lambda}{u} \underbrace{\int_{\Omega(a^{*})} [V^{E}(a, x) - V^{U}] dF(a, x)}_{\text{job finding gain}}$

Matched Job and Vacancy:

$$\rho V^{J}(a, x) = \underbrace{y(a, x) - w(a, x)}_{\text{instantaneous gain}} - \sigma \underbrace{\left[V^{J}(a, x) - V^{V}(a) \right]}_{\text{job destruction loss}} + \underbrace{V^{J}_{a}(a, x)}_{\text{tech ageing}}$$
$$\rho V^{V}(a) = \frac{2\lambda}{v} \underbrace{\int_{0}^{\overline{x}(a)} \left[V^{J}(a, y) - V^{V}(a) \right] dy}_{\text{worker finding gain}} + \underbrace{V^{V}_{a}(a)}_{\text{tech ageing}}$$

a

Distribution of technologies

•
$$Y(\overline{x}) = e^{-\phi \overline{a}(x)} \left[1 - \frac{1}{2}\gamma x^2\right] = \rho V^U$$

• f & g uniform over x Distributions

 $\begin{array}{c} x^{*} & \overbrace{\cdots}^{x} \\ _{i} & \underset{i} & \underset{$

Figure: Supports of distributions *f* (meetings) and *g* (matches)

Return

Distributions Return

- f(a, x): a x distribution of meeting
- g(a, x): a x distribution of matches
- $\widetilde{f}(a)$: share of meeting that lead to a match below a
- m(a): vacancy/meeting age distribution
- $\tilde{g}(a)$: matches age distribution

•
$$f(a,x) = m(a) \cdot 2 \Rightarrow \widetilde{f}(a) = f(a,x) \cdot \overline{x}(a)$$

$$g(a,x) = \widetilde{g}(a) \cdot \frac{1}{\overline{x}(a)}$$

<□> <0><</p>

Inflow-outflow equations: BGP

■ Inflow-ouflow equation of **technologies**:

■ Inflow-outflow equation for matches:

Balanced Growth Path Return

Reservation match:

$$V^{U} = V^{E}(a, \overline{x}(a)) \quad \Leftrightarrow \quad V^{J}(\overline{a}(x), x) = 0$$
$$\Rightarrow \rho V^{U} = e^{-\phi \overline{a}(x)} \left[1 - \frac{1}{2}\gamma x^{2}\right], \quad a^{*} = \overline{a}(0)$$

• Firm free entry: $V^V(0) = I$

■ Inflow-outflow of matches at $a = a^*$: $u = 1 - \frac{\lambda \widetilde{F}(a^*)}{\sigma + \widetilde{g}(a^*) + E(a^*)}$

 \longrightarrow BGP: { u, v, a^* }, given V^U and $\tilde{g}(a)$.

4日 + 4日 + 4日 + 4日 + 4日 + 900

Solving for the Distributions & Surplus

■ Simplyfing the inflow-outflow equations:

$$\frac{d\widetilde{g}(a)}{da} = -\left[\frac{2\lambda\overline{x}(a)}{v} + \sigma - \frac{1}{\overline{x}(a)}\frac{d\overline{x}(a)}{da}\right]\widetilde{g}(a) + \frac{2\lambda\overline{x}(a)}{1-u}m(0)$$
$$\rightarrow \widetilde{g}(a) \text{ as a function of } \overline{x}(a) \text{ Solving for } \widetilde{g}$$

• Surplus: $S(a, x) := V^{J}(a, x) + V^{E}(a, x) - V^{V}(a) - V^{U}(a)$

$$\Rightarrow (\rho + \sigma)S(a, x) = y(a, x) - \frac{2\lambda}{v}(1 - \beta)\int_0^{\overline{x}(a)} S(a, y)dy + S_a(a, x) - e^{-\phi a^*}$$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solving for $\tilde{g}(a)$ using the inflow-outflow equations

Differentiating the inflow-outflow equation and plugging in:

$$\frac{d\widetilde{g}(a)}{da} = -\left[\frac{2\lambda\overline{x}(a)}{\nu} + \sigma - \frac{1}{\overline{x}(a)}\frac{d\overline{x}(a)}{da}\right]\widetilde{g}(a) + \frac{2\lambda\overline{x}(a)}{1-u}m(0)$$
$$\Rightarrow \widetilde{g}(a) = \frac{2\lambda}{1-u}m(0)\overline{x}(a)e^{-\left[\sigma a + \frac{2\lambda}{\nu}\int_{0}^{a}\overline{x}(a)da\right]}\left[\int_{0}^{a}e^{\sigma\widetilde{a} + \frac{2\lambda}{\nu}\int_{0}^{\widetilde{a}}\overline{x}(a)da}da + c\right]$$

Return

Extensions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Numerical solution

• Solving backwards using $S(a^*, 0) = 0$

Use and iterate until BGT is found (Iteration

Iteration

- Job creation: firm free entry equation
- Job destruction: V^U equation

Figure: Job destruction and job creation curve

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Assumptions: What we do NOT do

- No absolute (only relative) worker advantage over jobs
- No directed search or on-the-job search
- No endogenous pace of innovation
- No dynamics, study BGP

Relaxed in extensions:

- No work retainment when updating technology
- No aggregate skill shortage/skill bias

Return Extensions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回■ のへの

Calibration

Table: Exogenous chosen & calibrated parameters

Parameter	Description	Value
γ	Specialization	1.8
ρ	Discounting	0.02
η	Capital-embodied energy efficiency	0.013-0.04 ⁴
ω	Capital share in production	0.3
а	Cobb Douglas parameter matching function	0.5
λ_0	Matching efficiency	6
δ	Depreciation rate	0.13
β	Wage share	0.7
σ	Exogenous separation rate	0.05
1	Investment costs	2.2
В	Unemployment benefits	0.1

$$\triangleright \quad \phi = \omega(\eta + \delta)$$

Return Numerical Solution Targets Balanced Growth Path

⁴IEA (2021)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Calibration Targets

US data:

- Average Technology Age in energy intensive sector: 9 years
- Vacancy & Unemployment duration: 9 weeks & 4 months
- Unemployment rate: 5%, UI replacement rate: 30%
- Wage share of income: 70%

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④○♡

- Energy-intensive - Non-energy intensive

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④○♡

The calibrated BGP

Table: Resulting BGP from calibration

u	V	$\frac{\lambda}{v}$	a*	a_{CE}^{*}
0.05	0.02	11	15.3	7.6