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Abstract

We evaluate the effect of a time-of-use pricing program introduced in Spain on residential electricity
consumption. Using a Difference-in-Difference approach, we find that households responded by reducing
consumption during peak hours. We then use machine learning for variable selection and show that it is able
to capture pre-trends unrelated to the policy, improving the credibility of our estimates. We find that the
program could have reduced consumption by up to 9% during peak periods, with significant spillovers to
weekends. Using a more conservative estimator, we find that it reduced consumption by at least 1-2% during
peak periods. We find evidence of habit formation during periods of uniform pricing, accompanied by an
adaptation process that ends with a permanent change in consumption behavior. The results suggest that
a predetermined pricing program can enhance consumer awareness and increase household price elasticity,
thus making it an effective policy tool to reduce peak electricity demand and improve market efficiency.
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1 Introduction

The costs of generating electricity vary significantly between sources and technologies. Simultaneously, elec-

tricity demand fluctuates considerably over time, yielding periods of peak demand. In those periods, the optimal

mix includes generating capacity with high marginal costs to balance supply and demand. If prices faced by

consumers do not reflect these cost variations, consumption will be distorted and generate market inefficien-

cies (Joskow and Wolfram, 2012). Thus, several governments have tried pushing regulatory reforms from

time-invariant to dynamic or marginal cost pricing. These reforms are more and more urgent as the share of

intermittent renewable generation increases.1

The efficiency gains from dynamic pricing will depend on the price mechanism and the presence of po-

tential market failures and frictions. For instance, a day-ahead real-time pricing (RTP) scheme with constant

hourly price changes may fail in the presence of imperfect information or adjustment costs. In that case, in-

troducing automated load-shifting technologies might be necessary to induce a significant demand response

(Bollinger and Hartmann, 2020; Fabra et al., 2021). Alternatively, policies with predetermined retail pricing

could ease information constraints and short-term costs of shifting consumption. Time-of-use (TOU) pricing

with predetermined tariffs varying between different periods within a day is an example of such a mechanism.

We study the introduction of a TOU pricing program in Spain on residential electricity consumption. In

June 2021, the Spanish government introduced a new regulation where system and network charges (which

traditionally amount to 50% of the total electricity bill) would be charged at three different marginal prices

depending on the hour of the day and the day of the week. According to the new regulation, peak hours range

from 10 am to 2 pm and from 6 pm to 10 pm, and off-peak hours cover hours from 12 am to 8 am during

working days. The remaining hours in working days are considered mid-peak, while all hours on weekends and

national holidays are off-peak.

To estimate the causal impact of the policy, we use demand data at the distribution area level for Spain

and compare it with its nearby country, Portugal. Portugal is a natural control group for several reasons. First,

geographically both countries have similar weather conditions, a determinant factor of electricity demand.

Perhaps more importantly, Spain and Portugal trade in the same electricity wholesale market. This attenuates

the possibility that our results are driven by differences in supply curves, consequently affecting equilibrium

prices and quantities.

In the estimation, we focus on the responses of Spanish residential consumers who were under the regu-

lated tariff during the period spanning from 2018 to September 2021.2 The regulated tariff is offered by five

main distribution groups, each of them being the only retailer entitled to offer the regulated tariff in a given

distribution area. After the policy implementation, regulated prices increased by more than 60% on average,

partly driven by rising prices in the wholesale market and partly by the policy change. Importantly, increases in

energy costs impacted prices at all hours of the day, while the TOU policy has large price jumps within the day.

This allows us to identify the effect of changes in TOU prices. Indeed, the reform provided large incentives
1According to Wolak (2019), setting day-ahead and real-time prices that reflect transmission network constraints will reduce the

costs of integrating intermittent renewable generation capacity.
2We focus on this subset of consumers due to data availability and the fact that consumers on commercial tariffs do not necessarily

have a time-of-use pricing scheme mimicking the regulated tariff, although many do. Households on the regulated tariff represent
around 39% of residential consumers in our sample period.
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to consume during cheap hours of the day: after the policy, prices at off-peak hours were 86% lower, while

consuming at peak hours was 200% more expensive.

We estimate two empirical models. The first is a Differences-in-Differences (DID) fixed effects model,

comparing hourly differences in electricity consumption before and after the policy in Spain’s distribution

areas and Portugal, controlling for a rich set of fixed effects. However, this richness of the data makes it

difficult to choose the correct specification among many possible candidate controls. We thus turn to machine

learning techniques (ML), particularly LASSO and forest estimators, for variable selection. In a nutshell, our

empirical strategy consists of two steps. First, we use pre-treatment data to create a distribution area-specific

electricity consumption model. We then use these estimates to create out-of-sample predictions for the post-

treatment period following Burlig et al. (2020). While the difference between the actual outcome and the

prediction in treated units already gives us an idea of the treatment effect, it does not control for time trends

that would otherwise be accounted for in a DID setting. In a second step, we regress these prediction errors

on a treatment dummy and the same set of fixed effects used in the DID strategy previously presented. The

identifying assumption requires treated and control units to trend similarly in prediction errors, modifying the

standard parallel trend assumption in DID settings.

Our results indicate an overall reduction in electricity consumption. In our preferred specification of the

standard panel fixed effect regression, results are insignificant for off-peak hours, while we observe a 5.7% and

8.9% decrease during mid-peak and peak hours, respectively. We find evidence that using machine learning

techniques helps to reduce the sensitivity of the estimates across different fixed-effect specifications. The algo-

rithm helps capture pre-trends in consumption unrelated to the policy. In this model, consumption would have

decreased by 6.4%, and 9.5% during mid- and peak hours, respectively.

We then split off-peak hours between weekdays and weekends. The goal of this analysis is threefold. First, it

allows us to identify the within-day shift in consumption. Second, we define ”fake” mid- and peak hours during

the weekend, thus identifying possible effects of the policy that could be related to habit formation. Third,

methodologically, if unobserved confounders threatening the parallel trend assumption are similar between

weekdays and weekends (for instance, due to aggregate shocks affecting one of the two countries), we may be

able to reduce the bias of our estimates by computing the additional effect of the policy during weekdays when

compared to weekends.

Notably, we observe a significant demand response during the weekends for all three periods. Indeed, the

magnitude of the coefficients for off-peak and mid-peak hours during weekends is comparable to weekdays. In

particular, looking at our ML model, weekend consumption decreased by 7.3% and 8.3% for mid- and peak

hours and by 6.4% and 9.5% during weekdays. Taking this comparison, we define a lower bound of policy

effects, this is, estimating the difference between weekdays and weekends. In that case, we still find a decrease

in consumption during peak hours of 1.2%. However, this approach may be quite conservative, as the policy

could have induced consumption pattern changes during weekends due to habit formation or some degree of

misinformation on pricing during the weekend.

We complement our main analysis with two additional extensions. Using price data and the exogeneity of

the policy, we can compute household price elasticities. We find significant price elasticities ranging between

-0.08 and -0.135. These estimates are above what is usually found in the literature on electricity demand
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estimation, where consumers are usually found to be relatively insensitive to price variations. With that, we

compute back-of-the-envelope demand responses given the price changes, and we find that our results match

the estimated policy effects.

Our results align with the literature studying behavioral factors in explaining consumer responsiveness,

suggesting that a predetermined pricing program, by enhancing consumer awareness, makes these prices more

salient thus triggering stronger household responses. To reinforce this hypothesis, we present an exploratory

analysis of the relationship between Google searches and the effect of the policy. Searching behavior is con-

sistent with an adaption process, with households reducing their overall consumption during the first weeks,

followed by a subsequent stabilization of policy effects and Google searches. The effect is particularly well

timed around the time in which the policy is publicized, providing more credibility to the causal impact on

consumption by the policy.

The paper is organized as follows: Section 2 reviews the literature on dynamic pricing in the electricity

market. Section 3 describes the empirical setting and data. Section 4.1 presents the empirical strategy to

identify the causal effect of the policy and discusses the results. Section 4.2 repeats the same analysis using

the machine learning methodology and compares results with the standard panel fixed effect model. Section 5

provides a framework to compute price elasticities and compare them to the identified policy effects, as well as

it relates these estimates with consumer searching behavior. Finally, Section 6 concludes.

2 Literature review

This paper contributes to the literature on time-varying pricing in the electricity market.3 The rationalization of

making electricity consumption more closely tied to the variations of the marginal cost of generation appeared

already in the late 1950s (Steiner, 1957; Boiteux, 1960; Williamson, 1966). In the last two decades, there has

been a push to reconsider dynamic pricing given the recent developments in the electricity market, such as the

deployment of smart meters and the increasing share of intermittent renewable in the generation mix (Joskow

and Wolfram, 2012).

Potential efficiency gains from dynamic pricing are studied, among others, by Borenstein (2005) and Boren-

stein and Holland (2005) in the context of real-time pricing (RTP). They show that, under ideal market condi-

tions, adopting RTP would reduce peak electricity production capacity and would lead to significant welfare

gains in the long run (up to 11% for the California electricity market). Holland and Mansur (2006) show that

benefits are relatively modest in the short run, suggesting that a large portion of welfare benefits originates from

a reduction in the construction of new generation capacity. Moreover, RTP proponents argue that real-time

pricing could alleviate market power since a more elastic demand would reduce firms’ incentives to curb their

output to increase prices (Borenstein, 2002). 4

In addition, Holland and Mansur (2008) show that dynamic pricing does not always bring down emissions,

at least in the short run. By using exogenous changes in temperature and economic activity, they link variations
3Dynamic pricing methods are consistently used in other sectors where the capacity is limited in the short-term, such as airlines,

hotels, and car rental firms (Elmaghraby and Keskinocak, 2003; McAfee and Te Velde, 2006; Gibbs et al., 2017).
4Poletti and Wright (2020) finds that efficiency gains from RTP are 41% larger in the presence of market power in the New Zealand

market.
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in load with variations in emissions, arguing that the conclusions could be helpful to link real-time pricing

(affecting load variance) with environmental benefits. Unfortunately, the effect of a reduction in load variance

is pollutant and location dependent. In particular, the shift of consumption towards off-peak hours drives SO2,

NOX , and CO2 emissions down in regions where peak demand is supplied with oil-fired power stations. Still,

the effect becomes the opposite when hydroelectric power is more generally used to cover peak demand.

The benefits of dynamic pricing materialize only if households react to prices by adjusting their demand.

Nevertheless, research has found that consumers generally exhibit inelastic demand. Allcott (2011), using data

from an RTP pilot program, finds that enrolled households have an average elasticity of -0.1, with no load

shifting from peak to low price hours. Similar results are obtained by Fabra et al. (2021) studying the first

large-scale deployment of RTP in Spain in 2015. Both papers point out that low price variation is one of the

possible reasons that explain the lack of demand response. They also highlight the importance of information

and adaptation costs.

Jessoe and Rapson (2014) and Bollinger and Hartmann (2020) analyze more explicitly the impact of these

costs and the role of assisting technology. Jessoe and Rapson (2014) analyze the effect of providing in-home

devices that display households’ electricity usage in real-time. They show that households provided with infor-

mation were three standard deviations more responsive to prices than those without. Bollinger and Hartmann

(2020) show that consumers incur adjustment costs and thus cannot shift consumption in response to short-term

price changes unless they use automation technologies - such as programmable communicating thermostats.

Even if TOU prices adjust more accurately to high demand than flat rates, they fail to acknowledge all

the differences in marginal costs within a day. As a result, efficiency gains were first estimated to be just 20%

relative to RTP, according to Borenstein (2005). Woo et al. (2013) study the effect of TOU pricing and conclude

that households respond by reducing electricity usage during peak hours (while off-peak either remains the

same or increases only slightly) and lower overall electricity consumption. However, new estimates on the

efficiency of TOU pricing relative to spot pricing suggest that well-designed pricing schemes perform relatively

well in indicating relative price differences within days and provide relatively effective load-shifting incentives

(Schittekatte et al., 2022). Importantly, Prest (2020) suggests that the success of TOU prices derives from

getting consumers to pay attention, while getting the price right would be a second-order problem.

Faruqui et al. (2020) report that while nearly four hundred TOU rates have been tested in pilots around

the globe, full-scale deployment of TOU rates is quite limited, with only 4% of residential consumers being

on TOU rates. Moreover, the evidence drawn from these field experiments faces some important limitations.

Sample sizes are usually small, and the design of the programs, in which signing up for dynamic rates is

optional, increases the potential for selection bias. To overcome these concerns, Fowlie et al. (2021) partnered

with a utility in California and implemented a large-scale randomized control trial to study the effects of opt-in

vs. opt-out of dynamic pricing schemes. They find that households in the opt-in are more responsive than

households in the opt-out group, although the aggregate effect can be substantially larger since participation is

higher. Our case is a unique opportunity in that all households belonging to the regulated segment are put into

the TOU tariff by default.

A potential concern of time-varying tariffs is their possible distributional impacts. With fixed tariff rates,

households with a flatter consumption profile would cross-subsidize those with higher consumption at peak
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hours. The effect of transitioning to dynamic prices on low-income households is not clear ex-ante. Borenstein

(2013) studies the effects of switching to critical peak pricing (CPP) and finds that, even assuming no demand

response, low-income households face no significant changes in their electricity bills.5 By combining substation

data with demographics characteristics for a utility in Victoria (Australia), Leslie et al. (2021) find that areas

with low housing prices, a high share of renters and elderly people are better off with RTP. Nevertheless, Cahana

et al. (2022) find that while low-income households react to hourly variation in prices within a day, regressive

impacts can arise from monthly variation depending on HVAC mode by income levels. In the end, efficient

tariffs compatible with distributionally equitable rates are a matter of design. Burger et al. (2019) propose

a two-part tariff with a fixed charge based on income (or other correlated measures) that would mitigate the

adverse effects of dynamic pricing while maintaining most of the efficiency gains.

Our methodological approach is based on machine learning techniques. By permitting much more flexible

nonlinear, high-dimensional models, these techniques have emerged as a powerful tool to build post-treatment

counterfactuals, a key element in causal inference (Varian, 2016). In fact, Prest et al. (2023) find that prediction

algorithms such as random forest or LASSO regressions are able to replicate experimental treatment effects,

even in the absence of control groups. In this paper, we closely follow the method used in Burlig et al. (2020)

in which first, they use pre-treatment data and LASSO regressions to estimate electricity consumption, and

second, generate in- and out-of-sample predictions to construct prediction errors that are used to identify the

policy treatment effects. Similar approaches are used in the context of energy efficiency in Christensen et al.

(2023). Finally, in using machine learning to flexibly control for selection when we have a single control unit,

this paper partly resembles Arkhangelsky et al. (2021), where the authors combine data-driven synthetic control

and standard differences-in-differences techniques to compensate for the lack of parallel trends. While the re-

weighting of units to match their pre-trends is different, we observe parallelisms between the conclusions.6

3 Context and Data

There are five main distribution groups in the Spanish electricity market.7 These five groups compete in each

other’s territories as retailers alongside new entrants. In each distribution area, only the vertically integrated

retailer can offer the regulated tariff. This tariff is prescribed by law based on market conditions, and it is unique

throughout the country. In contrast, non-regulated or commercial tariffs can be offered by any retailer across

distribution areas, and the contract terms are freely set.

Despite improvements in competition since deregulation, the Spanish retail market is still highly concen-

trated. There are five main retailing firms, which belong to the same business groups as the five largest distri-

bution companies. In 2019, 39% of consumers were still on the default regulated tariff, and an additional 42%

were served by the commercial brand of the distribution company. Thus, over 80% of residential households

are still served by mainly the five business groups. In addition, Enrich et al. (2022) find a significant incumbent
5Critical Peak Pricing, or CPP, combines flat rates with significant price increases, typically in a limited number of hours annually

in which the electricity grid is under high stress, such as extremely hot summer days.
6For instance, they find that when there is little systematic heterogeneity between units, the estimator might be less precise relative

to the DID estimator.
7The largest distribution groups are Endesa, Iberdrola, Naturgy, EDP, and Repsol. There are also a few small distribution companies

that serve much smaller areas.
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advantage, with the probability of choosing the commercial brand of the distribution group higher on its own

market, as well as strong consumer inertia.8

In recent years, the roll-out of smart meters has enabled the introduction of new and more flexible tariffs that

can adjust better to the consumption profile of each household. The Spanish electricity bill has four components:

energy costs, network charges, system charges, and taxes.9 On average, system charges and energy costs

represent the largest part of the bill (30% each), followed by network charges and taxes (each around 20%).

In October 2015, households under the regulated tariff were put into an RTP scheme for the energy charge of

their electricity bill. Despite this reform, Fabra et al. (2021) find that households did not respond to RTP, which

may be attributed to the lack of consumer awareness, costly information acquisition, and small gains of demand

response due to low price variation.

A significant change in the design of the tariffs was introduced on June 1, 2021. The policy change intro-

duced mandatory TOU pricing in the regulated tariff, with system and network charges having three different

tiers, depending on the hour of the day and the day of the week. According to the new regulation, peak hours

ranged from 10 am to 2 pm and from 6 pm to 10 pm, and off-peak hours covered hours from 12 am to 8 am

during working days. The remaining hours in the working days were considered mid-peak, while weekends

and national holidays were fully off-peak.

In Figure 1, we represent on the left the different pricing schemes that consumers in the regulated tariff

could choose from before the reform. Consumers were put into a flat rate and could opt-in to time-of-use

charges in their electricity bill, facing 2 or 3 prices within a day. Before the policy, the share of consumers in

the regulated tariff under TOU remained below 10%.10 On the right-hand side, we show the new pricing scheme

depending on the time of the day. Although the policy was compulsory for all residential contracts, retailers in

the liberalized market could offer flat rates that compensate for the variation of the TOU tariff. Thus, we restrict

our analysis to the regulated market.

Table 1 and Figure 2a show how prices in the regulated segment changed after the policy for each TOU

period. We take energy costs and system and network charges, which constitute the largest part of the electricity

bill. In Table 1, we compare the months affected by the policy (June to September 2021) to the same period

between 2018 and 2020. Figure 2a shows the evolution of these components throughout the whole period,

including regulated prices for Portugal. Total regulated prices increased by more than 60%, partly driven by

rising prices in the wholesale market translated into higher energy costs. Importantly, increases in energy costs

are independent of the hour of the day. If energy costs would have affected total price differently between

TOU periods, our policy estimates of within-day shifts would have captured price changes external to the

policy. Next, the reform increased average charges by nearly 50%. Still, it provided incentives for load shifting:

prices during off-peak hours were 86% lower while consuming at peak hours was 200% more expensive after

the policy. In contrast, electricity prices in Portugal were decided for the year ahead. However, given the
8Byrne et al. (2022) provide experimental evidence of variations in consumer willingness and ability to search and bargain, con-

tributing to the different consumer bases and price distribution between incumbents and entrants.
9System charges include subsidies to renewable energies, deficit payments, and compensation of the extra cost of generation in

non-peninsular regions.
10In Portugal, nearly 90% of consumers in the regulated tariff pay flat rates, a share that has remained stable over our period of

study, according to the Portugal Regulation Authority. Similar to Spain, consumers can choose between a flat rate, a two-period, and a
three-period.
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Figure 1: Tariffs Before and After the Policy

Flat tariff

Two periods

0 2 4 6 8 10 12 14 16 18 20 22 24

Three periods

0 2 4 6 8 10 12 14 16 18 20 22 24

Mandatory TOU
Flat rate

Off-peak

Mid-peak

Peak

Notes: Available tariffs for the charges component of the electricity bill before and after the policy was implemented. Before June 2021,
consumers were assigned a flat rate tariff by default, but could opt-in to different TOU programs, while the policy made compulsory a
three-tier TOU pricing.

Table 1: Percentage Change of the Energy Components Before and After the Policy

Average Off-Peak Mid-Peak Peak

Total Price 61.4% 12.2% 39.6% 117.5%
Charges 49.1% -86.3% -5.1% 199.4%
Energy Costs 68.6% 71.2% 65.4% 70.2%

Notes: Average prices are weighted by consumption in the regulated segment. We restrict to the months of the policy: June to mid-
September since system charges were reduced on 15 September 2021 to cope with rising energy prices. Taxes are not included.

recent increases in wholesale prices, regulated tariffs kept increasing during 2020 and 2021. Nonetheless, these

prices were only updated monthly. In Section 5.1, we use the variation induced by the policy to estimate price

elasticities.

To estimate the causal effect of the policy, we compare the evolution of electricity consumption in Spain

and its nearby country, Portugal, between January 2018 and September 14, 2021. In particular, we end our

sample on 14 September since the Spanish authorities reduced system charges by 96% as a response to the

rising energy prices. As a result, TOU tariffs were essentially canceled. Restricting the sample to September

2021 also avoids the most heated episodes of the energy crisis, which given how Spanish regulated prices are

set, introduces substantial volatility.11

Consumption data for Spain come from the archives of the Spanish System Operator, Red Eléctrica de

España (REE). These data measure the hourly demand of all the Programming Units that provide electricity

into the national grid and are differentiated by regulated and non-regulated demand. The former only includes

demand from residential households, whereas the latter includes domestic consumers, small- and medium-

sized enterprises, and industrial consumers. This provides an additional reason for limiting our sample to the

regulated segment, as we are only interested in households’ demand response to the policy.

For the case of Portugal, electricity consumption data come from the Iberian electricity market operator,

Operador del Mercado Ibérico de Energı́a (OMIE). We also restrict the sample to domestic consumers under
11As explained above, the energy component of the regulated price reflects day-ahead wholesale market prices.
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Figure 2: Electricity prices and demand

(a) Decomposition of retail electricity prices (b) Electricity Demand per Capita

Notes: Figure 2a plots the evolution of each price component of the Spanish regulated electricity price and the regulated prices for
Portugal. Each observation corresponds to the monthly average price of a given hour weighted by consumption. The two vertical lines
indicate the period with the new TOU schedule. Figure 2b plots the average household monthly consumption.

the regulated tariff. Unfortunately, there is only one leading distribution company in Portugal, and therefore the

data are reported at the aggregate national level.12

Since aggregate consumption under the regulated tariff in Spain is roughly ten times larger than in Portugal,

we take per capita consumption as our variable of interest. Figure 2b shows the evolution of demand per

capita for Spain and Portugal. We observe that electricity consumption follows a clear seasonal pattern over

the months of the year. Even if Portuguese households in our sample present a relatively greater consumption,

which widens in the winter, an important surge in Spanish consumption occurs yearly in the months where the

policy is analyzed, mainly in the summer. To control for the impact of weather, we obtained hourly temperature

data from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) released by the

NASA.13 To match the temperature data at the 50x50km grid point-level with our consumption data, we weigh

the temperature data by population in each distributing area.

Due to the aggregate nature of the demand data, we need information on the number of consumers per util-

ity. The information on the number of consumers in Spain has been kindly provided by the Spanish National

Markets and Competition Commission (CNMC, according to the Spanish acronym) based on the Reports on

Oversight of the Retail Electricity Market.14 The number of consumers is presented quarterly for all retailers

across all distributing areas in Spain. We interpolate the data to monthly frequency using a monotonic algo-

rithm proposed by Fritsch and Butland (1984). We obtain Portugal’s consumer data from the Bulletins of the

Liberalized Electricity Market, which provide the number of consumers under the regulated and the liberalized

segment by month.15

As in many liberalized markets, the number of consumers under the regulated tariff in Spain and Portugal

has decreased in recent years. In particular, Portugal has set the end date for the regulated tariff to 2025. As we
12In continental Portugal, 99% of low-voltage consumers have their energy distributed by EDP Distribuçao (see here). This large

distribution area is comparable in terms of size and consumers to the largest distribution companies in Spain: Endesa and Iberdrola.
13See GES DISC.
14See IS Mercado Minorista de Gas y Electricidad.
15See Boletim do Mercado Liberalizado de Eletricidade.
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Figure 3: Number of consumers
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Notes: Evolution of consumers in the regulated market for Spain and Portugal. We interpolate
quarterly data to monthly frequency.

observe in Figure 3, in January 2018, the regulated tariff included over 11M consumers in Spain and over 1M

in Portugal, representing respectively 41% and 20% of residential consumers. In the last year of our sample,

the share of consumers in the regulated segment reached a record low at 34% in Spain and 15% in Portugal.

However, during the months of the policy, the drop was steeper for Spain, suggesting that part of the consumers

might have switched to the liberalized market in search of flat rates. By design, Spanish consumers with a

regulated tariff are more affected by changes in wholesale prices, which may be a factor explaining the decline

of consumers in the context of high price increases. In contrast, the regulated tariff in Portugal is determined

ex-ante, and its prices stayed relatively lower than the commercial prices, thus mitigating the impact of price

increases on end-users. This may explain the consumer surge under the regulated tariff in October 2021, which

is another reason to limit the analysis to September 2021.16

If those consumers switching to a liberalized contract had different consumption patterns, our policy coef-

ficients would be capturing these composition effects. On the one hand, opt-out households that are not willing

to change their consumption patterns could be switching away. If these less price elastic consumers opted out of

the regulated tariff, our estimates would be an upper bound of the average treatment effect. On the other hand,

if switching patterns are correlated with the degree of awareness, our treated sample would over-represent un-

aware households, possibly leading to a lower bound of treatment effects. That said, it is important to keep

in mind the decrease in consumers started months before the implementation of the policy, coinciding with

increases in real-time prices. In fact, from January to September 2021, the regulated segment lost 4% of con-

sumers, with half of those switching after June. This suggests that our estimates may not be primarily driven

by these composition effects.

In addition, we use Google Trends data to capture consumer awareness of the new tariffs. This public

tool uses a largely unfiltered sample of actual search requests occurring in a given location during a certain

period of time.17 To account for all searches related to the policy, we use different wordings and synonyms

that are closely related to the topic in Spanish. A limitation of the data is the scale on which search interest
16Find more information on the Portuguese tariff on the regulator website.
17To read more, visit Google Trends’ Help Page.
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Figure 4: Google trends’ weekly search index
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Notes: This figure shows the logarithm of the search index based on keywords related to the
policy in Spain. The search index is constructed on a scale from 0 to 100, where 100 represents
the maximum number of topic searches for the period of interest.

is defined because it is not only contingent on the generated sample but also the combination of regions and

periods selected by the researcher. In particular, search interest is given on a scale from 0 to 100, where 100

represents the maximum number of topic searches for given regions and period selection. For our analysis,

we have collected data spanning from January 2018 to October 2021. Figure 4 shows the logarithm of the

weekly search index of keywords related to the policy. While we observe a modest increase in searching during

the weeks previous to the introduction of the policy (marked with a red line), most searches are concentrated

during the first week after the implementation. This increase in consumer awareness is in line with the results

derived from a Household Panel survey conducted by the Spanish regulatory body (CMNC),18 where the share

of consumers declaring not knowing its own electricity contract decreased from 35% in the first semester of

2021 to 17% in the second semester, after several years remaining relatively constant.

In sum, to analyze the effect of the policy, we use demand data for the domestic regulated segment at the

distribution area level for Spain and the national level for Portugal. We drop the observations for 2020 due to the

disruption of COVID-19 to electricity demand. In total, we end up with a panel of 142,000 hourly observations

from the five Spanish distribution areas and Portugal, spanning from January 2018 to December 2019 and

January 2021 to September 14, 2021. Summary statistics of the main variables are shown in Appendix Table 7.

4 Empirical strategy and Results

In this section, we describe the empirical strategy used to recover the effect of the policy on electricity con-

sumption. Throughout the analysis, we will be comparing two different approaches: fixed effects vs machine

learning. While machine learning techniques are not built to produce good parameter estimates, they can dis-

cover complex structures of the data that were not specified in advance (Mullainathan and Spiess, 2017), for

example, by enabling us to select among a large set of covariates. In particular, we will closely follow Burlig

et al. (2020), who use machine learning algorithms to estimate robust causal effects.
18See Estadı́sticas panel de hogares.
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The main difference between the two approaches is that using machine learning tools and pre-treatment

data, we create distribution area-specific models to predict electricity consumption in the post-treatment period.

In the second step, we use these out-of-sample predictions to generate prediction errors that we incorporate as

a dependent variable in the panel fixed effect model. On the other hand, the panel fixed effects model directly

includes the observed electricity consumption as the dependent variable.

4.1 Panel fixed effects: Differences-in-Differences

To identify the potential demand response to the policy, we start by estimating the following Differences-in-

Differences (DiD) regression:

yith = βkDitk + δkPitk + γXith + αith + ϵith, (1)

where yith is the log of the demand per capita in the distribution area i at day t and hour h. Note that we treat

Portugal as a control distribution area. Ditk is a dummy variable that equals one for all Spanish distribution areas

after the policy was implemented for each TOU tariff k = {Off-Peak, Mid-Peak, Peak}. Therefore, βk captures

the effect of the policy at different tariffs. Pitk stands for Placebo, and it takes one for all Spanish distribution

areas one month before introducing the policy, thus capturing possible pre-trends unrelated to the policy or

anticipatory effects that could cast doubts on the validity of the parallel trend assumption. Ultimately, even if

the policy was officially announced in early 2021, the media coverage broadly started a week in advance, as

evidenced by the Google Trends searches. Control variables Xith include hourly temperature and an interaction

for whether the temperature is above or below 20ºC.19 Finally, αith includes different combinations of fixed

effects. We weigh observations by the number of consumers to make the sample representative and thus identify

an average effect.

Table 2 reports the results of equation (1) under different fixed effects specifications. Specification (1)

includes month-of-sample and area fixed effects, both interacted with weekend-hour fixed effects. Specifica-

tion (2) allows for area hourly fixed effects to be different depending on each month of the year. That is, For

each hour and type of day (weekdays and weekends), we control for differential patterns across distribution

areas, months of the year, and common shocks or time trends at the monthly level. Specification (3) includes

temperature controls. Finally, in Specification (4) we test the sensitivity of our estimates to a comparison fo-

cused on within-month-and-area variation across hours, with the inclusion of weekend-area-month of sample

effects. In this latter case, the off-peak effect is not identified. We cluster standard errors at the area-month of

sample level.20

First, we observe that the sign of the coefficients for off-peak hours change across specifications, but none
19Temperature can have heterogeneous effects on electricity consumption. While an increase in temperature for mild and cold

weather might result in a decrease of electricity consumption (e.g. by reducing electric heating), an increase in temperature on hot
days can induce higher usage of AC. Indeed, in our ML exercise, we show that daily maximum and minimum temperatures are better
predictors than average hourly temperature. Thus, if controls are not correctly specified, one might suffer from linear misspecification
bias (see Goff (2014) for a formal derivation).

20A good rule of thumb is to cluster at the level of treatment assignment. See Abadie et al. (2022) and Roth et al. (2022) for a
discussion on the recent developments in the DiD literature. Here, the TOU intervention is defined at the area-month of sample level.
That said, hours within a month potentially receive different levels of treatment. Because consumption within a day and week is very
interrelated, we keep all hours of a month within an area in the same cluster.
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Table 2: Panel fixed effects: Differences-in-Differences

(1) (2) (3) (4)

Policy
Off-peak 0.028 -0.022 -0.023

(0.032) (0.016) (0.015)
Mid-peak -0.007 -0.057*** -0.058*** -0.068***

(0.030) (0.015) (0.015) (0.006)
Peak -0.021 -0.089*** -0.092*** -0.100***

(0.028) (0.014) (0.014) (0.009)
Placebo
Off-peak -0.041 0.012 0.022

(0.021) (0.016) (0.017)
Mid-peak -0.060* 0.008 0.011 -0.013

(0.024) (0.027) (0.028) (0.014)
Peak -0.020 0.015 0.019 -0.006

(0.024) (0.024) (0.029) (0.012)

R-sqr 0.001 0.003 0.004 0.002
Observations 142,000 142,000 142,000 142,000

Hour X Weekend X Month-of-Sample Yes Yes Yes Yes
Hour X Weekend X Area Yes Yes Yes Yes
Hour X Weekend X Area X Month Yes Yes Yes
Hour X Weekend X Temp. controls Yes
Weekend X Area X Month-of-sample Yes

Notes: This table presents estimates of Equation (1). The dependent variable is log consumption per capita. Observations are weighted
by the number of consumers in each distribution area. Standard errors clustered at the area-month of sample level. Significance levels:
∗∗∗p<0.01, ∗∗p<0.05, ∗p<0.1.
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of them is significant. In contrast, some of the results for mid- and peak hours are significant and negative. In

column (2), we observe that households reduce peak consumption by 5.7% and 8.9%. These results suggest

that households reduce overall consumption in response to TOU prices, without any sign of load-shifting to off-

peak hours. Placebo coefficients for mid- and peak hours do not exhibit any particular pre-trend in consumption

patterns before the introduction of the policy. Overall, controlling for differences in calendar months across

distribution areas seems to be the most important factor in correcting our estimates, including differences in

temperature.

One limitation of our analysis is that our policy estimates also capture increases in the energy cost compo-

nent of the price during the months the policy was in place. However, given that those increases were constant

between hours, we can still use the difference in policy effects to identify changes in TOU rates even after

controlling for the month of sample at the area level, as shown in column (4). We find that the change in con-

sumption between TOU periods using a within-month comparison is very similar and around 6.8% and 10.0%

for mid- and peak hours, respectively. While energy costs started rising months before the implementation of the

policy, our placebo coefficients do not suggest any particular pre-trend in electricity consumption. Therefore,

the results align with a response to the policy implementation. Indeed, in the extensions below using Google

Trends we show that the response to TOU prices appears to be sharp around the time of the implementation and

media coverage.

Week vs. weekend effects When comparing these different pricing regimes, and given that we control for

weekdays vs. weekends, our estimate reflects variation in prices during weekdays, which are the days affected

by the policy. However, there is a question on whether consumption by households was affected during week-

ends, even if hourly prices remained roughly the same. We next split the effect by differentiating between

weekdays and weekends by estimating equation (2).

The goal of this analysis is threefold. First, as already mentioned, we want to identify changing consumption

patterns within a day. Second, we define mid- and peak hours during the weekend, thus identifying possible

effects of the policy that could be related to habit formation. Third, methodologically, if placebo tests exhibit

the same patterns, we may be able to reduce the bias of our estimates due to a violation of the parallel trend

assumption by computing the additional difference of the policy on weekdays with respect to weekends. For the

sake of exposition, we define this model as the triple-differences (TD) model. In most cases, we estimate the

effect for both groups (weekdays and weekends), instead of the traditional approach of identifying treatment

effects as the difference in treatment between groups. Conceptually, this relates to whether we understand the

treatment effects on weekends as true policy effects or as a control for unobserved confounders. The estimation

equation becomes

yith =
∑

w∈[0,1]

βkwDitk1[weekday = w] +
∑

w∈[0,1]

δkwPitk1[weekday = w] + γtempith + αithw + ϵith. (2)

Table 3 reports the results of the triple-differences model. Even though under the new TOU tariffs, weekend

consumption is subject to off-peak prices, we observe a significant demand response for mid- and peak hours.

These findings align with Fowlie et al. (2021), where consumers under CPP reduce their consumption on event

14



Figure 5: Panel fixed effects: Policy effects by hour of the day and type of day

(a) Weekends and Holidays (b) Weekdays

Notes: These figures present estimates of Equation (2) - Specification (2) in blocks of 3 hours. The dependent variable is log consump-
tion per capita. Observations are weighted by the number of consumers in each distribution area. Controls include area-month-hour-
weekend and month-of-sample-hour-weekend fixed effects. Standard errors clustered at the area-month of sample level and confidence
intervals reflect a 95% significance level.

and non-event days, pointing to habit formation. Indeed, the null effect on off-peak hours found in Table 2

was an average effect of first, increases during off-peak hours in weekdays (although not significant), and

second, significant consumption cuts for mid- and peak hours during weekends. In fact, looking at column (2),

during mid-peak hours, the reduction in consumption is higher during weekends. Finally, placebo coefficients,

especially for off-peak hours, appear to be sensitive to the inclusion of fixed effects or controls. Looking

at column (3), the inclusion of temperature controls might worsen the ability of the model to capture pre-

trends unrelated to the policy. Recall that we weighted the temperature by population in each distribution area,

although these areas are not perfectly defined. Finally, note that for each column, results for mid-peak and peak

hours during weekdays are similar to the ones found in the DiD model (as they should be, given that the policy

dummies are defined in the same way).

To explore the responses in a more flexible way during the day, we also estimate a treatment effect for

blocks of three hours during the day. Figure 5 plots placebo and policy estimates of equation (2) - Specification

(2) in blocks of 3 hours, along with their difference for each block. During weekdays, we observe two u-shaped

curves corresponding to the hours with peak pricing. This is consistent to a reaction to mid and peak prices

during TOU hours. There is also a decrease in consumption during weekends, although it is more diluted across

hours and appears to be somewhat more confounded in the placebo effects. Overall, these patterns suggest some

differential response between weekdays and weekends, although weekend consumption also appears to react to

the policy.

4.2 Machine Learning

In this section, we repeat the same analysis but with a machine-learning estimator. This approach allows the

researcher to include all possible interactions between controls, making the model selection process transparent

and data-driven. To estimate the effect of the policy, we will proceed in two steps. First, we create a distribution
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Table 3: Panel fixed effects: triple-differences

(1) (2) (3) (4)

Policy Weekday
Off-peak 0.053 0.010 0.006

(0.037) (0.018) (0.017)
Mid-Peak -0.007 -0.057*** -0.058*** -0.068***

(0.030) (0.015) (0.015) (0.006)
Peak -0.021 -0.089*** -0.092*** -0.100***

(0.028) (0.014) (0.014) (0.009)
Policy Weekend
Off-peak 0.062 -0.002 0.001

(0.040) (0.019) (0.018)
Mid-Peak -0.016 -0.066*** -0.065*** -0.064***

(0.026) (0.017) (0.016) (0.011)
Peak -0.026 -0.080*** -0.080*** -0.078***

(0.023) (0.016) (0.016) (0.014)
Placebo Weekday
Off-peak -0.042* 0.021 0.029

(0.019) (0.017) (0.018)
Mid-Peak -0.060* 0.008 0.011 -0.013

(0.024) (0.027) (0.028) (0.014)
Peak -0.020 0.015 0.019 -0.006

(0.024) (0.024) (0.029) (0.012)
Placebo Weekend
Off-peak -0.046* 0.018 0.041*

(0.022) (0.014) (0.017)
Mid-Peak -0.060* -0.007 0.004 -0.025***

(0.026) (0.016) (0.018) (0.007)
Peak -0.013 0.006 0.003 -0.011

(0.024) (0.016) (0.019) (0.008)

R-sqr 0.002 0.004 0.005 0.002
Observations 142,000 142,000 142,000 142,000

Hour X Weekend X Month-of-Sample Yes Yes Yes Yes
Hour X Weekend X Area Yes Yes Yes Yes
Hour X Weekend X Area X Month Yes Yes Yes
Hour X Weekend X Temp. controls Yes
Weekend X Area X Month-of-sample Yes

Notes: This table presents hourly estimates of Equation (2). The dependent variable is log consumption per capita. Observations are
weighted by the number of consumers in each distribution area. Standard errors clustered at the area-month of sample level. Significance
levels: ∗∗∗p<0.01, ∗∗p<0.05, ∗p<0.1.
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area-specific model of electricity consumption. For that, consider the following standard regression:

Yiht = γihXiht + ϵiht, (3)

where Yiht is the electricity consumption per capita in the distribution area i at hour h in period t, and Xiht is

a set of control variables. This vector of covariates includes month, weekend, and national holiday dummies,

temperature, the minimum and maximum temperature of the day, and all possible interactions between these

variables. In practice, we estimate a separate regression for each area-hour unit, so effectively, each variable

is interacted with area and hour fixed-effects. Importantly, we only use pre-treatment observations to estimate

Equation (3). We treat Portugal as another area unit (and the only non-treated unit).

We estimate equation (3) using the LASSO regularization technique to choose among all possible predictors

with nonzero significant values. Note that these predictors may vary between hours of the day or areas.21 We

then use these models to generate in-sample and out-of-sample predictions of electricity consumption per capita

in the post-treatment period. We compute prediction errors by comparing predictions with the actual outcome.

Figure 9 in Appendix B shows the fraction of models for which a variable is selected. We find that national

holidays and weekends explain electricity consumption in both, Spain and Portugal. The maximum daily

temperature appears to be even more important than the hourly temperature. As for months, Figure 9 suggests

that Portugal has greater seasonal effects, with monthly dummies being an important factor for most hours of

the day.

In the second step, we use the prediction errors as the dependent variable in the DiD and TD model presented

in Section 4.1. Figure 6 plots the prediction errors for Spain and Portugal, with a break for the year 2020. The

red line marks the date of the reform. Before its implementation, residuals are centered around zero, meaning

that in-sample predictions generally approximate the observed data.22 On the other hand, there is a decoupling

in prediction errors between Spain and Portugal after June 2021, with prediction errors for Spanish distribution

areas turning negative, meaning that the predicted consumption overstates the realized one. Intuitively, this

should be related to the effect of the policy that we want to identify.23 Note that Figure 6 pools hours with

different TOU tariffs, and thus, the decrease in consumption is an average effect of the policy (or even related

to the generalized increase in prices coinciding with the date of the policy). To gain intuition of the effects

of the policy, Figure 11 in the Appendix plots prediction errors by TOU periods. One can see that while the

ML estimation is able to predict consumption during off-peak periods, prediction errors become significantly
21We choose the level of regularization through cross-validation, where we partition the data into ten subsamples. We follow the

commonly used “one standard error” rule to select the parameters with the best performance.
22For Spain, the plotted residuals in Figure 6 show the average among distribution areas, which lowers its variance with respect to

Portugal.
23We also considered a random forest approach instead of the LASSO regression for the first step. Figure 10 plots the difference in

prediction errors between the two methods for Spain and Portugal, and Figure 9c shows the most relevant variables. Even though the
random forest approach seems to provide better in-sample predictions, especially in capturing seasonal patterns, regression results in
step two are similar to LASSO, suggesting that these patterns were then captured in the panel fixed effect regression. Tables 9 and 10
show these results. Note that in the random forest approach, some placebo coefficients turn significant. This is not because the random
forest approach is unable to control for pre-trends (the magnitude is close to the LASSO method), but because in general, we find that
the random forest produces more precise estimates.
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Figure 6: Machine Learning - Lasso: Prediction errors
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Notes: This figure plots daily prediction errors, defined as the difference between the log of the demand per
capita and the log of the prediction of our LASSO model. For Spain, the prediction error is the average over
distribution groups.

negative during Mid- and Peak hours.24

The identifying assumption requires treated and control units to trend similarly in prediction errors, rather

than electricity consumption, modifying the standard parallel trend assumption in DID settings. This is because

the counterfactual prediction acts as a new pseudo-control observation, taking into account all controls flexibly

(and individually) included in the first step. Alternatively, the prediction error can be interpreted as an additional

difference in the DID (or Triple-Differences) models.

Table 4 presents the results for the DiD model of Equation (1) using prediction errors as the dependent

variable. Focusing on column (2), mid-peak and peak coefficients are -6.4% and -9.5%, respectively, slightly

larger than the ones found using the standard panel fixed-effect regression. Again, we observe an insignificant

reduction in off-peak consumption. Recall that this coefficient is an average of changes in consumption during

weekdays off-peak hours, and weekends, and thus this coefficient may be explained by household behavior

during weekends.

In Table 5, we split the results between weekdays and weekends. Again, results for mid-peak and peak hours

mirror those of the DiD model. Also, results suggest greater effects of the policy compared to the standard panel

fixed-effect model. In particular, we find a 6.4% and 9.5% decrease during mid- and peak hours, respectively.

However, we still do not find any evidence of load-shifting. Importantly, using a machine learning estimator

seems to better capture hidden pre-trends unrelated to the policy, as evidenced by the robustness of placebo

estimates across specifications. In particular, comparing estimates of columns (2) and (3), coefficients for off-
24Figure 12 shows the individual prediction for each distribution area and Portugal. The bigger differences between out-of-sample

predictions and actual consumption are found for the EDP and Naturgy regions. In contrast, for Endesa and Repsol, predictions
reasonably approximate the true evolution of electricity consumption. We can match these differences with the policy effects shown in
Figures 13a and 13b, derived from estimating the Panel FE and Machine learning models for each distribution area. In all cases, the
biggest effects are found in the EDP, Naturgy, and Iberdrola regions, while for Endesa and Repsol, the results are less conclusive.
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Table 4: Machine learning - Lasso: Differences-in-Differences

(1) (2) (3) (4)

Policy
Off-peak -0.028* -0.028 -0.029*

(0.014) (0.015) (0.015)
Mid-peak -0.065*** -0.064*** -0.064*** -0.068***

(0.013) (0.014) (0.014) (0.006)
Peak -0.095*** -0.095*** -0.094*** -0.099***

(0.012) (0.013) (0.013) (0.007)
Placebo
Off-peak 0.030 0.022 0.016

(0.017) (0.018) (0.017)
Mid-peak 0.016 0.016 0.013 -0.013

(0.017) (0.026) (0.024) (0.009)
Peak 0.027 0.025 0.023 -0.004

(0.016) (0.025) (0.023) (0.008)

R-sqr 0.009 0.007 0.007 0.003
Observations 142,000 142,000 142,000 142,000

Hour X Weekend X Month-of-Sample Yes Yes Yes Yes
Hour X Weekend X Area Yes Yes Yes Yes
Hour X Weekend X Area X Month Yes Yes Yes
Hour X Weekend X Temp. controls Yes
Weekend X Area X Month-of-sample Yes

Notes: This table presents estimates of Equation (1). The dependent variable is the prediction error of log consumption from a LASSO
area-specific model. Observations are weighted by the number of consumers in each distribution area. Standard errors clustered at the
area-month of sample level. Significance levels: ∗∗∗p<0.01, ∗∗p<0.05, ∗p<0.1.
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peak hours are insensitive to the inclusion of possible bad controls. Recall that temperature is already taken into

account in the first step, but it is the data-driven process that determines for which cases (i.e., for which area-

hour units) the variable has explanatory power. Finally, conditional on choosing a plausibly correct specification

(columns (4) for both models, where we can control for increases in energy costs common to different TOU

tariffs), the better precision of the ML estimates turns some placebo coefficients slightly significant, but we do

not think that this is sufficient to favor the standard panel fixed effects model over the ML estimates. We plot

the hourly coefficients of the policy and placebo effects in Figure 7. Comparing it to the hourly coefficients of

the standard fixed effects model in Figure 5, we find that the results are similar to our central specification.25

However, there are still some patterns that could be of concern, with some positive consumption at night in our

Placebo, particularly during the weekends.

We address these unobserved confounders by estimating the additional policy effects during weekdays with

respect to weekends with a standard triple-differences model. Compared to Table 5, this effect can be estimated

by the difference between the weekday and the weekend coefficient. Table 8 in the Appendix shows the results.

Taking this scenario as a lower bound, we still find a decrease in consumption during peak hours of 1-2%.

However, these effects are no longer significant for most specifications. That said, this approach may be too

conservative for two reasons. First, in identifying only additional effects during weekdays with respect to

weekends, we are implicitly shutting down other than the price effects of the policy, such as habit formation

or some degree of misinformation on pricing during the weekend. Second, as shown in Table 5, on average,

placebo tests do not show significant responses in most specifications. However, in column (4), which focuses

on the within-month comparison, we find some mid-peak and peak reductions during placebo weekends (of

about 1-3%). These are still substantially smaller than those estimated during weekends with the policy (6

-7%). It would also increase the triple difference effect if we corrected for this placebo effect. The hourly plots

in Figure 7 also provide reassurance that these effects are much smaller than our main findings.

For the standard errors to be comparable, one should account for the noise generated in the first step of the

estimation. To assess the relevance of these concerns, we implement a two-step bootstrap procedure. In the first

step, we sample with replacement months of the sample during the pre-treatment period for each distribution

area. We then use these data to estimate the area-specific LASSO model and obtain predictions for all months

in the original data (this is, all pre- and post-treatment periods). We repeat this step twenty times to have twenty

alternative predictions for each area. In the second step, we draw one prediction for each area, compute the

prediction error and estimate the panel fixed-effect model. We repeat this process a thousand times.26 Figure 15

in the Appendix shows the results of this exercise for each group of coefficients. The standard deviation of

the bootstrapped distribution ranges between 0.002 and 0.005, suggesting that the noise generated in the first

step is of smaller magnitude than the standard errors clustered at area-month of sample level. It is nevertheless

reassuring that the mean of the distribution of the bootstrapped coefficients converges to the triple-differences

coefficients estimated in the main analysis, suggesting that our results are not driven by a particular sample
25Hourly estimates for the fixed effects regressions are quite sensitive to the specification of choice, but they are very stable across

specifications for the machine learning models.
26Usually, at this stage, one would sample at the level of the events, estimate Equation (2), and get a distribution of policy coefficients.

The standard deviation of this distribution would be the analogue to the clustered standard errors computed in the main analysis. This is
the approach followed in Patnaik et al. (2013) based on Davison et al. (1986). Unfortunately, our treatment consists of only one event,
which makes this event study bootstrapping strategy not applicable.
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Table 5: Machine Learning: triple-differences

(1) (2) (3) (4)

Policy Weekday
Off-peak 0.003 0.003 -0.000

(0.015) (0.016) (0.015)
Mid-Peak -0.065*** -0.064*** -0.064*** -0.068***

(0.013) (0.014) (0.014) (0.006)
Peak -0.095*** -0.095*** -0.094*** -0.099***

(0.012) (0.013) (0.013) (0.007)
Policy Weekend
Off-peak -0.004 -0.008 -0.006

(0.017) (0.018) (0.017)
Mid-Peak -0.075*** -0.073*** -0.073*** -0.065***

(0.018) (0.017) (0.016) (0.011)
Peak -0.084*** -0.083*** -0.084*** -0.076***

(0.020) (0.018) (0.018) (0.014)
Placebo Weekday
Off-peak 0.040* 0.029 0.026

(0.019) (0.020) (0.019)
Mid-Peak 0.016 0.016 0.013 -0.013

(0.017) (0.026) (0.024) (0.009)
Peak 0.027 0.025 0.023 -0.004

(0.016) (0.025) (0.023) (0.008)
Placebo Weekend
Off-peak 0.045* 0.032* 0.026

(0.018) (0.016) (0.016)
Mid-Peak 0.005 0.001 -0.006 -0.031***

(0.015) (0.017) (0.014) (0.004)
Peak 0.015 0.015 0.005 -0.017***

(0.015) (0.019) (0.015) (0.005)

R-sqr 0.010 0.008 0.008 0.003
Observations 142,000 142,000 142,000 142,000

Hour X Weekend X Month-of-Sample Yes Yes Yes Yes
Hour X Weekend X Area Yes Yes Yes Yes
Hour X Weekend X Area X Month Yes Yes Yes
Hour X Weekend X Temp. controls Yes
Weekend X Area X Month-of-sample Yes

Notes: This table presents estimates of Equation (2). The dependent variable is the prediction error of log consumption from a LASSO
area-specific model. Observations are weighted by the number of consumers in each distribution area. Standard errors clustered at the
area-month of sample level. Significance levels: ∗∗∗p<0.01, ∗∗p<0.05, ∗p<0.1.
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Figure 7: Machine Learning: Hourly Policy effects by type of day

(a) Weekends and Holidays (b) Weekdays

Notes: These figures present estimates of Equation (2) - Specification (2) in blocks of 3 hours. The dependent variable is the prediction
error of log consumption from a LASSO area-specific model. Observations are weighted by the number of consumers in each distri-
bution area. Controls include area-month-hour-weekend and month-of-sample-hour-weekend fixed effects. Standard errors clustered at
the area-month of sample level and confidence intervals reflect a 95% significance level.

during the estimation of the machine learning method.

5 Extensions

5.1 Price Elasticities

This section uses the exogeneity of the policy to estimate household price elasticities. Albeit far from a formal

demand estimation analysis, we believe that it can improve the comparability of the results to previous studies,

and, therefore, may be helpful for policy evaluation and guidance. We consider a modified version of the DiD

model presented in Equation (1) substituting the policy indicator with actual electricity prices:

yith = ηpith + γXith + αith + ϵith, (4)

where yith is the consumption prediction error from our lasso model in the distribution area i at time t and hour

h, and piht is the log of the electricity price. Thus, η can be interpreted as the price elasticity.

Estimating Equation (4) for only the treatment group would be problematic because the price coefficient is

biased in a context of simultaneous equations where prices and quantities are jointly determined in equilibrium.

However, by including Portugal data as our control group and using the policy as an instrument for electricity

prices, we can break the simultaneity problem. We instrument the logarithm of the price with the logarithm of

the sum of the charges component affected by the new TOU and the average energy cost prior to the policy.

Given that the instrument is used to construct the total price, it satisfies the relevance condition by definition.27

The Spanish electricity prices come from the archives of the Spanish System Operator, Red Eléctrica de

España (REE). See Table 1 and Figure 2a for summary statistics. Traditionally, regulated prices in Portugal
27Another problem in estimating Equation (4) is that these estimates do not take into account intra-day substitution patterns (cross-

elasticities), where consumption in hour h could be affected by a price of a different hour of the day. Given the limited price variation,
we only estimate the own elasticity.
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Table 6: Elasticity estimates

(1) (2) (3) (4) (5)

Log(price) -0.092*** -0.087*** -0.082*** -0.135*** -0.108***
(0.015) (0.016) (0.015) (0.011) (0.014)

∆ 25 - 75th 0.010
(0.013)

∆ 75 - 90th 0.010
(0.013)

∆ >90th 0.011
(0.012)

Observations 142,000 142,000 142,000 142,000 142,000

Hour X WE X Month-of-Sample Yes Yes Yes Yes Yes
Hour X Weekend X Area Yes Yes Yes Yes Yes
Hour X Weekend X Area X Month Yes Yes Yes Yes
Hour X Weekend X Temp. controls Yes
Weekend X Area X Month-of-sample Yes

Notes: This table presents estimates of Equation (4). All variables are in log-form. Prediction errors are the difference between the
observed demand per capita (in logs) and the predicted one (in logs). Column (5) shows the results of the IV specification when we split
the sample by percentiles of the energy cost component. Observations are weighted by the number of consumers in each distribution
area. Standard errors clustered at the area-month of sample level. Significance levels: ∗∗∗p<0.01, ∗∗p<0.05, ∗p<0.1.

were decided for the year ahead. However, given the recent increases in wholesale prices, regulated tariffs

kept increasing during 2020 and 2021.28 Nonetheless, these prices were only updated monthly. Thus, they add

limited variation given that our regressions include month-of-sample fixed effects.

Table 6 presents the demand parameters estimated using Equation (4). Looking at columns (1) to (4), we

observe significant price elasticities ranging between -0.082 and -0.135. This suggests consumers substantially

responded to TOU prices. To further understand demand response to changes in prices, column (5) of Table 6

shows results when we estimate equation 4 splitting the sample based on the percentile of the energy cost after

the policy was implemented.29 In the context of the European crisis, this amounts to roughly separating days

over time. The estimates do not display any additional effect at different price levels.30 This is reassuring in our

context, as it implies that our results of changes in hourly consumption patterns are not explained by growing

average electricity prices.

We can use these estimates to compute back-of-the-envelope demand responses given price changes and,

thus, connect these results with our policy estimates. For that, we focus on column (4), which provides the

cleanest comparison. This amounts to testing the implied elasticity that arises from the differential response to

mid-peak and peak prices. In what follows, we take the elasticity of -0.135 found in column (4) of Table 6, and
28See the Portuguese regulator website.
29For each regression, we kept all the observations for Portugal and for Spain prior to the policy, while we divided the days after the

policy was implemented based on average daily real-time prices in Spain.
30Prest (2020) finds that awareness is the major factor in predicting higher treatment effects in an experiment with different TOU

tariffs. The paper finds a declining price elasticity, suggesting that different price levels did not trigger different demand responses.
While the test is not equivalent, our results also point out awareness as a major factor explaining consumer response.
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the policy effects during weekdays estimated using prediction errors (see column (4) in Table 5).

Recall from Figure 2a that the newly implemented TOU rates were 6, 42, and 133C/MWh for off-, mid-,

and peak hours, respectively, while they were constant before for a majority of households. According to these

price changes and the estimated elasticity, electricity consumption should have decreased by 4.8% and 16.2%

in mid- and peak hours, respectively.31 These results suggest that consumers overly responded in mid-peak

hours (6.8%) and under responded to peak hours (9.9%), for the effects to be consistent with a constant and

independent elasticity. While imperfect, we believe consumers responded (at least on average) consistently to

the observed price changes. In the end, we should take into account that not all consumption can be easily

shifted. Thus, these differences can reflect the impossibility of households to perfectly time their consumption.

Indeed, spillovers to nearby hours are common in the critical peak pricing literature (e.g., Jessoe and Rapson

(2014)).

5.2 Google Trends

In this section, we present an exploratory analysis of the relationship between Google searches and the effect

of the policy. As shown in Figure 4, there was only a modest increase in searching during the weeks previous

to the introduction of the policy, while most searches were concentrated during the first week, returning to

initial levels afterward. It is this one-time shock nature and the subsequent lack of variation that did not allow

us to proceed with a more formal analysis to establish some sort of causality between searching behavior and

consumer response.

To study the relationship between search and consumption behavior, Figure 8a shows the weekly change

in consumption by TOU tariff starting two months prior to the policy, thus capturing both policy and placebo

effects. We estimate these effects using Equation (1) on weekdays consumption data with prediction errors as

the outcome variable. Figure 8b combines both graphs by plotting the relation between searches and policy

effects. We find the following results. First, in concordance with the estimated placebo effects, if any we see

an increase in demand prior to its implementation. Importantly, we do not observe any differential patterns

between hours of the day. These weeks correspond to the left-most points in Figure 8b. Second, starting

one week after the introduction of the policy (the first week that is completely treated), it starts a process of

divergence in consumption between TOU tariffs. This trend is maintained during the following weeks, although

there is a significant reduction in search. Even though it is not possible to draw causal conclusions from this

relationship, these estimates are consistent with an adaptation process that took around three weeks and ended

with a permanent change in household behavior.

6 Conclusions

We study the effects of a TOU pricing program for residential electricity demand introduced in Spain in June

2021. Under the new regulation, system and network charges (accounting for 50% of the overall electricity

bill) had three tiers during weekdays, while weekends were fully off-peak. To identify the causal impact of
31Apart from the change in TOU tariffs, to compare price differences with our policy estimates we need the price for the energy cost.

We take 100C/MWh, which approximates the price of electricity during the first month after the introduction of the policy.
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Figure 8: Google Trends and Policy Effects

−20

−15

−10

−5

0

5

10

04−2021 05−2021 06−2021 07−2021 08−2021 09−2021

C
ha

ng
e 

in
 A

gg
re

ga
te

 C
on

su
m

pt
io

n 
(%

)

Off−Peak Mid−Peak Peak

(a) Policy effects by week
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(b) Google Searches and Policy effects

Notes: Figure 8a presents estimates of Equation (1) on weekdays consumption data with prediction errors as the outcome variable.
We aggregate the treatment dummies at the TOU tariff level and interact them with week-of-sample fixed effects. Observations are
weighted by the number of consumers in each distribution area. We include area-month-weekend-hour, and week-of-sample-hour fixed
effects. Standard errors clustered at the area-month of sample level and confidence intervals reflect a 95% significance level.

the policy, we estimate a Differences-in-Differences model using Portugal to control for cross-sectional and

temporal confounders. We compare two empirical models, the first being the standard fixed effects panel

model. Using this method, we find a significant reduction in consumption of 5.7% and 8.9% for mid and peak

hours on average, while we do not find any load-shifting to hours with lower prices. We then split off-peak

hours between weekdays and weekends. We observe a significant demand response during weekends for all

three periods, pointing to some sort of habit formation.

We then turn to machine learning techniques for variable selection, given the richness of fixed effects in this

setting. We do not find evidence that using machine learning techniques helps to reduce the sensitivity of the

policy estimates across different specifications. A possible explanation for the sensitivity of this approach could

come from the lack of heterogeneity of treated units and treatment dates. Nonetheless, the algorithm is able to

capture pre-trends unrelated to the policy, improving the credibility of our estimates and reducing the risk of

including bad controls. In particular, during weekdays, consumption decreased by 6.4%, and 9.5% during mid-

and peak hours, respectively. We also find significant decreases during weekends, suggesting spillover effects

to untreated hours due to misinformation or habit formation.

This paper contributes to the discussion on whether dynamic pricing schemes are an effective tool to change

consumer behavior and help to reduce overall energy consumption. We find that salience can be a crucial factor

in driving consumer response and that, while a system with frequent price changes may need to be accompanied

by a process of automation, we find that a TOU pricing scheme can have significant effects given its foreseeable

nature and thus, forming new consumption habits. All in all, economic incentives can be an effective tool,

especially when the long-run effects such as habit formation are taken into account.
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7 Appendix

A Tables

Table 7: Summary statistics

Spain

variable units mean st. dev. minimum median maximum
demand MWh 3064.91 909.76 1466.20 2983.40 7029.90
consumer Million 11.07 0.28 10.43 11.10 11.51
demand per capita Wh/cons. 276.65 81.13 137.13 270.40 648.56
temperature Celsius 15.84 7.18 -1.30 15.16 35.21
high temperature Binary 0.30 0.46 0.00 0.00 1.00

Portugal

variable units mean st. dev. minimum median maximum
demand MWh 344.50 97.94 160.60 316.10 816.30
consumer Million 1.07 0.09 0.92 1.09 1.21
demand per capita Wh/cons. 320.95 85.62 164.02 297.45 820.30
temperature Celsius 16.95 8.48 -3.72 15.89 44.63
high temperature Binary 0.33 0.47 0.00 0.00 1.00

Notes: Sample between January 2018 and September 14, 2021, excluding 2020. The unit of observation is an hour-distribution area.
There are five distribution areas in Spain and one distribution area in Portugal. N = 142, 000.
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Table 8: Lasso: triple-differences additional effect

(1) (2) (3) (4)

Policy
Off-peak -0.004 -0.008 -0.006

(0.017) (0.018) (0.017)
Mid-Peak -0.075*** -0.073*** -0.073*** -0.065***

(0.018) (0.017) (0.016) (0.011)
Peak -0.084*** -0.083*** -0.084*** -0.076***

(0.020) (0.018) (0.018) (0.014)
∆ Policy Weekday
Off-peak 0.007 0.011 0.006

(0.010) (0.009) (0.005)
Mid-Peak 0.010 0.009 0.009 -0.002

(0.013) (0.011) (0.009) (0.009)
Peak -0.012 -0.012 -0.009 -0.023*

(0.015) (0.013) (0.012) (0.010)
Placebo
Off-peak 0.045* 0.032* 0.026

(0.018) (0.016) (0.016)
Mid-Peak 0.005 0.001 -0.006 -0.031***

(0.015) (0.017) (0.014) (0.004)
Peak 0.015 0.015 0.005 -0.017***

(0.015) (0.019) (0.015) (0.005)
∆ Placebo Weekday
Off-peak -0.005 -0.003 -0.001

(0.005) (0.005) (0.005)
Mid-Peak 0.011* 0.015 0.019 0.018**

(0.005) (0.010) (0.011) (0.006)
Peak 0.012** 0.010 0.018* 0.013**

(0.004) (0.008) (0.009) (0.005)

R-sqr 0.010 0.008 0.008 0.003
Observations 142,000 142,000 142,000 142,000

Hour X Weekend X Month-of-Sample Yes Yes Yes Yes
Hour X Weekend X Area Yes Yes Yes Yes
Hour X Weekend X Area X Month Yes Yes Yes
Hour X Weekend X Temp. controls Yes
Weekend X Area X Month-of-sample Yes

Notes: This table presents estimates related to Equation (2) but computing the additional effect of the policy during weekdays with
respect to weekends. Observations are weighted by the number of consumers in each distribution area. Standard errors clustered at the
area-month of sample level. Significance levels: ∗∗∗p<0.01, ∗∗p<0.05, ∗p<0.1.
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Table 9: Random Forests: Differences-in-Differences

(1) (2) (3) (4)

Policy
Off-peak -0.017* -0.018* -0.018*

(0.009) (0.008) (0.008)
Mid-peak -0.053*** -0.054*** -0.054*** -0.065***

(0.010) (0.009) (0.009) (0.005)
Peak -0.081*** -0.082*** -0.082*** -0.093***

(0.009) (0.008) (0.008) (0.007)
Placebo
Off-peak 0.027 0.027* 0.025

(0.018) (0.013) (0.013)
Mid-peak 0.023 0.022 0.021 -0.009**

(0.014) (0.013) (0.013) (0.003)
Peak 0.029* 0.027* 0.027* -0.004

(0.012) (0.011) (0.011) (0.004)

R-sqr 0.017 0.014 0.014 0.006
Observations 142,000 142,000 142,000 142,000

Hour X Weekend X Month-of-Sample Yes Yes Yes Yes
Hour X Weekend X Area Yes Yes Yes Yes
Hour X Weekend X Area X Month Yes Yes Yes
Hour X Weekend X Temp. controls Yes
Weekend X Area X Month-of-sample Yes

Notes: This table presents estimates of Equation (1). Observations are weighted by the number of consumers in each distribution area.
Standard errors clustered at the area-month of sample level. Significance levels: ∗∗∗p<0.01, ∗∗p<0.05, ∗p<0.1.
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Table 10: Random Forests: triple-differences

(1) (2) (3) (4)

Policy Weekday
Off-peak 0.009 0.010 0.011

(0.011) (0.010) (0.010)
Mid-Peak -0.054*** -0.055*** -0.055*** -0.065***

(0.010) (0.009) (0.009) (0.005)
Peak -0.082*** -0.083*** -0.082*** -0.093***

(0.009) (0.008) (0.008) (0.007)
Policy Weekend
Off-peak 0.004 0.003 0.003

(0.013) (0.011) (0.011)
Mid-Peak -0.059*** -0.057*** -0.058*** -0.061***

(0.012) (0.011) (0.011) (0.011)
Peak -0.069*** -0.070*** -0.070*** -0.073***

(0.012) (0.010) (0.010) (0.012)
Placebo Weekday
Off-peak 0.032 0.031* 0.030*

(0.017) (0.012) (0.013)
Mid-Peak 0.023 0.021 0.021 -0.010**

(0.014) (0.013) (0.013) (0.004)
Peak 0.030* 0.027* 0.027* -0.004

(0.012) (0.012) (0.012) (0.005)
Placebo Weekend
Off-peak 0.027 0.028* 0.025

(0.020) (0.014) (0.014)
Mid-Peak 0.014 0.014 0.012 -0.014***

(0.017) (0.013) (0.013) (0.002)
Peak 0.026 0.027* 0.028* -0.001

(0.017) (0.014) (0.013) (0.003)

R-sqr 0.021 0.017 0.017 0.008
Observations 142,000 142,000 142,000 142,000

Hour X Weekend X Month-of-Sample Yes Yes Yes Yes
Hour X Weekend X Area Yes Yes Yes Yes
Hour X Weekend X Area X Month Yes Yes Yes
Hour X Weekend X Temp. controls Yes
Weekend X Area X Month-of-sample Yes

Notes: This table presents estimates related to Equation (2). Observations are weighted by the number of consumers in each distribution
area. Standard errors clustered at the area-month of sample level. Significance levels: ∗∗∗p<0.01, ∗∗p<0.05, ∗p<0.1.
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Table 11: Random Forests: triple-differences additional effect

(1) (2) (3) (4)

Policy
Off-peak 0.004 0.003 0.003

(0.013) (0.011) (0.011)
Mid-Peak -0.059*** -0.057*** -0.058*** -0.061***

(0.012) (0.011) (0.011) (0.011)
Peak -0.069*** -0.070*** -0.070*** -0.073***

(0.012) (0.010) (0.010) (0.012)
∆ Policy Weekday
Off-peak 0.005 0.007 0.008

(0.010) (0.008) (0.008)
Mid-Peak 0.004 0.003 0.003 -0.004

(0.013) (0.010) (0.010) (0.008)
Peak -0.013 -0.013 -0.012 -0.020*

(0.013) (0.011) (0.010) (0.008)
Placebo
Off-peak 0.027 0.028* 0.025

(0.020) (0.014) (0.014)
Mid-Peak 0.014 0.014 0.012 -0.014***

(0.017) (0.013) (0.013) (0.002)
Peak 0.026 0.027* 0.028* -0.001

(0.017) (0.014) (0.013) (0.003)
∆ Placebo Weekday
Off-peak 0.004 0.003 0.004

(0.004) (0.002) (0.003)
Mid-Peak 0.009* 0.007 0.009 0.004

(0.004) (0.004) (0.004) (0.004)
Peak 0.004 -0.000 -0.001 -0.003

(0.006) (0.005) (0.005) (0.004)

R-sqr 0.021 0.017 0.017 0.008
Observations 142,000 142,000 142,000 142,000

Hour X Weekend X Month-of-Sample Yes Yes Yes Yes
Hour X Weekend X Area Yes Yes Yes Yes
Hour X Weekend X Area X Month Yes Yes Yes
Hour X Weekend X Temp. controls Yes
Weekend X Area X Month-of-sample Yes

Notes:This table presents estimates related to Equation (2) but computing the additional effect of the policy during weekdays with
respect to weekends. Observations are weighted by the number of consumers in each distribution area. Standard errors clustered at the
area-month level. Significance levels: ∗∗∗p<0.01, ∗∗p<0.05, ∗p<0.1.

33



B Figures

Figure 9: Machine learning: predictive capacity of control variables
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Figure 10: Prediction errors by method
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Figure 11: Lasso: Prediction errors by TOU period

−0.1

0.0

0.1

0.2

20
18

−0
1−

01

20
18

−0
7−

01

20
19

−0
1−

01

20
19

−0
7−

01

20
21

−0
1−

01

20
21

−0
6−

01

20
21

−0
9−

14

P
re

di
ct

io
n 

er
ro

r 
(in

 lo
gs

)

Spain Portugal

(a) Off-Peak

−0.2

−0.1

0.0

0.1

20
18

−0
1−

01

20
19

−0
1−

01

20
19

−0
7−

01

20
21

−0
1−

01

20
21

−0
6−

01

20
21

−0
9−

14

P
re

di
ct

io
n 

er
ro

r 
(in

 lo
gs

)

Spain Portugal

(b) Mid-Peak

−0.2

−0.1

0.0

0.1

20
18

−0
1−

01

20
19

−0
1−

01

20
19

−0
7−

01

20
21

−0
1−

01

20
21

−0
6−

01

20
21

−0
9−

14

P
re

di
ct

io
n 

er
ro

r 
(in

 lo
gs

)

Spain Portugal

(c) Peak

35



Figure 12: Lasso: in- and out-of-sample predictions by distribution area
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Figure 13: Triple-differences coefficients by distribution area and for weekdays

(a) Panel Fixed Effects

(b) Machine Learning: Lasso
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Figure 14: Random Forests: Policy effects by hour of the day and type of day

(a) Weekends and Holidays (b) Weekdays

Notes: These figures present estimates of Equation (2) - Specification (2) in blocks of 3 hours. Observations are weighted by the number
of consumers in each distribution area. Controls include area-month-hour-weekend and month-of-sample-hour-weekend fixed effects.
Standard errors clustered at the area-month of sample level and confidence intervals reflect a 95% significance level.

Figure 15: Bootstrapped Distribution of Triple-Difference LASSO coefficients
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