The microgeography of housing supply in England

Elaine Drayton¹ Peter Levell^{1,3} David Sturrock^{1,2}

¹ IFS

²UCL

³CEPR

EEA, Barcelona, 2023

Introduction

- Sustained house price rises over past half-century across developed economies
 - Major policy concern in UK
- Raises number of issues:
 - 1. Affordability / quality of housing
 - 2. Implications for who can live where (and what opportunities they can access)
 - 3. And drag on productivity
- How house building responds to *local* demand is essential to understanding these issues
- But little evidence on local housing supply elasticities and their impacts on location choices

Introduction

- Sustained house price rises over past half-century across developed economies
 - Major policy concern in UK
- Raises number of issues:
 - 1. Affordability / quality of housing
 - 2. Implications for who can live where (and what opportunities they can access)
 - 3. And drag on productivity
- How house building responds to *local* demand is essential to understanding these issues
- But little evidence on local housing supply elasticities and their impacts on location choices

This paper

Characterise differences in housing supply growth in response to house price changes across 6,788 census tract areas in England

- Over two periods of house price growth, 1996-2006, 2011-2021
- Measuring the importance of policy and natural constraints
- Measure the importance of different constraints for local housing mix
- Quantify effects of housing supply on location choices [to come!]

Preview of findings

Weak local supply response to price changes

- Elasticity of 0.17 for 1996-2006 and 0 for 2011-2021
- Comparable estimates from the US 0.30 (Baum-snow and Han, 2022)
- Lower responses in areas with more uneven topography, less land available for development and higher historical housing density
- Housing density and land available for development do more to constrain construction of larger properties than one/two bed properties

Planning approval less important at small area level

Housing in England

Only 9% of land is built on

- Conservation areas (national parks, AONB and SSSI) together cover around one quarter of land
- Further 13% is covered by green belt, rings around major cities that largely prohibits new building Green belt
- For what's left, house building decisions taken by 393 Local Planning Authorities
 - Strong incentives to be conservative
 - Local spending determined centrally and weakly related to local tax takes

Planning permission slow, expensive PQ trend

Housing in England

Only 9% of land is built on

- Conservation areas (national parks, AONB and SSSI) together cover around one quarter of land
- Further 13% is covered by green belt, rings around major cities that largely prohibits new building Green belt
- For what's left, house building decisions taken by 393 Local Planning Authorities
 - Strong incentives to be conservative
 - Local spending determined centrally and weakly related to local tax takes

Planning permission slow, expensive PQ trend

Empirical approach

Housing supply equation

$$\Delta \log Q_i = \gamma (Z_i) \Delta \log P_i + \Delta u_i$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- \blacktriangleright *u_i* local productivity shock
- Elasticities $\gamma(Z_i)$ vary according to vector of local constraints Z_i :
- *P_i* local house price
- ▶ ... u_i and P_i correlated (\implies downward bias to OLS)

Identification

- Use shift-share (shifts in labour demand) to get exogenous variation in prices
- Geographic areas are small weak instrument
- Also account for employment growth in potential commute destinations using changes in 'residential market access' (Baum-Snow and Han, 2022)

Residential Market Access (BH, 2022)

- Derived from spatial equilibrium model
- Workers choose locations based on expected wage, housing costs and amenities, then commute destinations
- Productivity in each potential destination are draws from Fréchet, with shape parameter e
 - \triangleright ϵ determines how specific worker-location match is
- Wages in different destinations discounted according to commute time and disutility of commuting (κ)

▲□▶▲□▶▲□▶▲□▶ □ の��

- Fewer commuters from *i* to *j* implies $\uparrow \kappa \epsilon$

Calculating Residential Market Access

Solve simultaneous equations:

$$RMA_{i} = \sum_{j} rac{L_{j}e^{-\epsilon\kappa au_{ij}}}{FMA_{j}}$$

$$\mathit{FMA}_{j} = \sum_{i} rac{\pi_{i} e^{-\epsilon \kappa au_{ij}}}{\mathit{RMA}_{i}}$$

- *RMA_i* 'residential market access'
- FMA_i 'firm market access'
- $\blacktriangleright \pi_i$ of residents
- L_i of workers
- $\succ \tau_{ij}$ commute time
- \blacktriangleright κ , ϵ parameters from gravity model

Predicted RMA_{i,t}

Solve for

$$\widetilde{RMA}_{i,t} = \sum_{j} \frac{\widetilde{L}_{j,t} e^{-\epsilon \kappa \tau_{ij}}}{\widetilde{FMA}_{j,t}}$$
(1)

(2)

and

$$\widetilde{\textit{FMA}}_{j,t} = \sum_{i} rac{\pi_{i,t_0} e^{-\epsilon \kappa au_{ij}}}{\widetilde{\textit{RMA}}_{i,t}}$$

 π_{i,t_0} residents shifted by population growth $\tilde{L}_{j,t}$ shift-share predicted employment

Control function specification

2SLS with many interactions not feasilbe

Instead use control function

Estimate:

$$\Delta \ln Q_i = \gamma(Z_i) \Delta \ln P_i + \zeta \hat{v}_i + \omega_i$$
(3)

• \hat{v}_i residual from a regression of $\Delta \ln P_i$ on $\Delta \ln \widetilde{RMA}_i$

• Assumes $(\Delta u_i, \hat{v}_i) \perp Z_i$ and $\Delta \ln \widetilde{RMA}_i$

Data

Data I

Housing data

- Number of housing units from the Valuation Office Agency
- House prices and characteristics from UK Land Registry (universe of transactions)
 - Quality adjust using house type, freehold vs leasehold and month of sale

Constraints

- Historical housing density
- Share of land available for development

 \rightarrow derived using satellite data on land cover (water bodies, cliffs, built up areas) and locations of green belt, national parks and SSSIs

- Geographical constraints, including max min elevation, landslide risk, and radon
- Historic refusal rates for major projects (1975-1990) from Hilber and Vermeulen (2016)

Data II

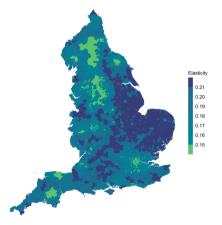
Commuting data

Travel times from National Travel Survey

Employment and population

 Annual Employment Survey and Annual Business Inquiry for employment and industry classification (two digit SIC 1992 measured in 1991)

- Labour Force Survey and Annual Population Survey for resident populations
- Construct 10 metro regions (larger than commuting zones/TTWAs)


Results

Supply elasticities 1996 - 2006

	OLS	+controls	+interactions	+control func.	lasso
$\Delta \log P$	0.031	0.096***	0.112***	0.166*	0.167
Radon * $\Delta \log P$	[-0.003,0.065]	[0.066,0.127]	[0.083,0.141] -0.001	[0.001,0.332] -0.001	[-0.005,0.323]
Elevation * $\Delta \log P$			[-0.003,0.002] -0.012***	[-0.001,0.003] -0.012***	-0.012***
Landslides * Δ log P			[-0.016,-0.009] 0.000	[-0.016,-0.009] 0.000*	[-0.015,-0.008]
Housing density * $\Delta \log P$			[-0.001,0.001] -0.018***	[0.000,0.002] -0.018***	-0.018***
Sh. unconstrained * $\Delta \log P$			[-0.024,-0.013] 0.009***	[-0.023,-0.012] 0.009***	[-0.022,-0.012] 0.009***
Refusal rate * $\Delta \log P$			[0.006,0.013] 0.000	[0.005,0.012] 0.000	[0.005,0.012]
\hat{v}_i			[-0.003,0.004]	[-0.005,0.002] -0.054* [-0.335,-0.001]	-0.056 [-0.329,0.004]
R2	0.021	0.073	0.113	0.113	0.113
Observations Controls	6,788 No	6,788 Yes	6,788 Yes	6,788 Yes	6,788 Yes

* *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001 (specification)

Elasticities map, 1996-2006

Supply elasticities 2011 - 2021

	OLS	+controls	+interactions	+control func.	lasso
$\Delta \log P$	0.044** [0.014,0.075]	0.064*** [0.031,0.096]	0.067*** [0.037,0.096]	0.030 [-0.183,0.175]	0.030 [-0.183,0.175]
Radon * $\Delta \log P$	[01011,01010]	[0.000,0.000]	-0.009 [-0.021,0.003]	-0.009 [-0.023,0.003]	-0.009
Elevation * $\Delta \log P$			-0.047***	-0.047***	-0.047***
Landslides * Δ log P			[-0.062,-0.032] 0.000	[-0.051,-0.021] 0.000	[-0.051,-0.021]
Housing density * Δ log P			[-0.006,0.006] -0.061***	[-0.006,0.005] -0.061***	-0.061***
Sh. unconstrained * $\Delta \log P$			[-0.082,-0.040] 0.014 [-0.005,0.032]	[-0.064,-0.023] 0.014 [-0.021,0.013]	[-0.064,-0.023] 0.014 [-0.021,0.013]
Refusal rate * Δ log P			-0.025***	-0.026***	-0.026***
\hat{v}_i			[-0.040,-0.011]	[-0.046,-0.019] 0.037 [-0.181,0.180]	[-0.046,-0.019] 0.037 [-0.181,0.180]
R2	0.023	0.045	0.075	0.075	0.075
Observations Controls	6,788 No	6,788 Yes	6,788 Yes	6,788 Yes	6,788 Yes

Supply elasticities 2011 - 2021: by property size

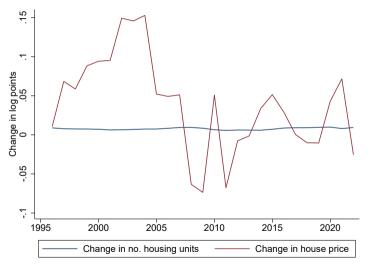
	1/2 bed	3+ bed	Ratio 1/2 vs 3+ bed
Δ log P	0.170	-0.156	0.223*
Radon * $\Delta \log P$	[-0.119,0.357]	[-0.608,0.223]	[0.022,0.460]
	-0.008	-0.005	-0.003
Elevation * $\Delta \log P$	[-0.026,0.012]	[-0.035,0.015]	[-0.006,0.009]
	-0.080***	-0.043*	-0.017
Landslides * $\Delta \log P$	[-0.081,-0.035]	[-0.049,-0.006]	[-0.016,0.007]
	-0.001	-0.003	-0.001
Housing density * $\Delta \log P$	[-0.007,0.003]	[-0.010,0.005]	[-0.003,0.004]
	-0.090***	-0.058*	0.028*
Sh. unconstrained * $\Delta \log P$	[-0.111,-0.040]	[-0.052,-0.004]	[0.004,0.032]
	-0.045***	0.057***	-0.041***
Refusal rate * $\Delta \log P$	[-0.082,-0.029]	[0.014,0.056]	[-0.046,-0.022]
	-0.018**	-0.010	0.017
Ŷi	[-0.055,-0.016]	[-0.036,0.005]	[-0.003,0.021]
	-0.048	0.218	-0.186*
Constant	[-0.374,0.104]	[-0.231,0.610]	[-0.463,-0.037]
	0.111	0.201	-0.022
	[-0.026,0.211]	[-0.031,0.354]	[-0.127,0.074]
R2	0.125	0.055	0.162
Observations	6,788	6.785	6,788

* p < 0.05, ** p < 0.01, *** p < 0.001

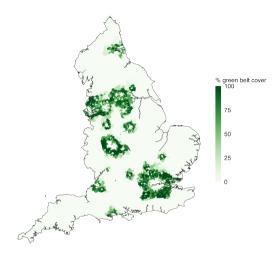
Summary and conclusions

► Elasticities are low: \approx 0.17 1996-2006; \approx 0 2011 - 2021

 \implies demand-side home ownership policies likely to push up prices


- Differences in elasticities mainly driven by available land and existing housing density
 - \implies less role for planning decisions at local levels
- Share of land available/urban density mean marginal units are smaller (fewer bedrooms)
 - \implies Potential implications for resident composition e.g. families
- Next steps:
 - Measure impact of elasticities on growth in local workforce/resident families
 - Consider effects of policies (limited release of green belt land)

Thank you!


Extras

Supply looks unresponsive

Back ∢□>∢母>∢≣>∢≣>

æ

くりょう 小田 マイボット 山下 シックション

Housing supply regressions

- Control variables:
 - Initial price, elderly share, higher educated share, initial employment rate, metro-region FE and quadratic distance to CBD
- Weight by initial number of housing units
- For control function use wild-cluster bootstrap
 - Recommended for IV when clustering in Roodman et al. (2019)
 - Use method in MacKinnon (2014) to obtain CIs
 - Cluster at LA level (defn of RMA)
- Standardise all Z variables
 - Coefficient on price is elasticity in location with mean characteristics
 - Coefficients are effect of changing constraints by 1 s.d.

Supply elasticities 2011 - 2021: no. bedrooms

	OLS	+controls	+interactions	+control func.	lasso
$\Delta \log P$	0.010 [-0.017,0.038]	0.064*** [0.031,0.096]	0.044** [0.016,0.071]	-0.007 [-0.221,0.140]	-0.007 [-0.222,0.139]
Radon * $\Delta \log P$	[0.017,0.000]	[0.001,0.000]	-0.009 [-0.020,0.002]	-0.009 [-0.023,0.000]	-0.009 [-0.023,0.000]
Elevation * $\Delta \log P$			-0.039*** [-0.053,-0.025]	-0.040***	-0.040*** [-0.0440.018]
Landslides * $\Delta \log P$			-0.000	[-0.044,-0.017] -0.000	[-0.044,-0.018]
Housing density * Δ log P			[-0.006,0.006] -0.059***	[-0.007,0.005] -0.059***	-0.059***
Sh. unconstrained * Δ log P			[-0.077,-0.042] 0.032***	[-0.056,-0.023] 0.032	[-0.056,-0.023] 0.032
Refusal rate * Δ log P			[0.016,0.048] -0.024***	[-0.003,0.027] -0.024***	[-0.003,0.027] -0.024***
$\widehat{\mathbf{v}}_i$			[-0.037,-0.011]	[-0.041,-0.017] 0.051 [-0.136,0.220]	[-0.041,-0.017] 0.051 [-0.136,0.220]
R2 Observations	0.011 6,788	0.045 6,788	0.078 6,788	0.078 6,788	0.078 6,788

* p < 0.05, ** p < 0.01, *** p < 0.001

Share of variance in elasticities explained by

	Owen-Shapely (%)
Housing density	46
Share unconstrained	39
Elevation	12
Refusal rate	3
Landslides	0
Radon	0