The Economic Value of Eliminating Diseases

Julio Crego, Daniel Karpati, Jens Kvaerner and Luc Renneboog

Tilburg University

August 30, 2023

Research Questions

- 1. What are the economic consequences of a given disease?
 - Mortality
 - Participation or disability
 - Wage (productivity) growth
 - Medical expenditures
 - Entering into a nursing home
- 2. How much a given individual is willing to pay to eliminate a given disease?
- 3. Does the answer to the previous questions depend on who the individual is?
 - Low vs. high income
 - Young vs. old
 - Female vs. male

Answers are key for understanding demand for insurance products and policy analysis

What We Do

- 1. Treat bad health as a multidimensional risk, ...
 - use administrative data on the whole Dutch population
 - for 334 distinct medical diagnoses in 12 medical specialties
 - to estimate the effect of bad health on several dimensions (mortality, disability, medical expenditures, wages, entering into a nursing home)
 - per gender, age, and income group.
- 2. Measure the incidence of each disease.
- 3. Obtain willingness to pay for curing a given disease using a life-cycle model.

Literature & Our Contribution

- Effect of health on savings and insurance: DeNardi et al. (2010), Koijen et al. (2016), DeNardi et al. (2017)
 - We consider health at the disease level, and our counterfactual is changing health because we estimate causal effects.
- Heterogeneous effects of a diagnosis: Heinesen and Kolodziejczyk (2013), García-Gómez et al. (2013), Lundborg et al. (2015)
 - We consider the impact in terms of welfare by using a comprehensive set of diseases and a life-cycle model.
- Cost of illness: see Larg and Moss (2011) for a review.
 - We consider a comprehensive set of diseases, a life-cycle model, and socioeconomic heterogeneity.

Administrative Data from Statistics Netherlands

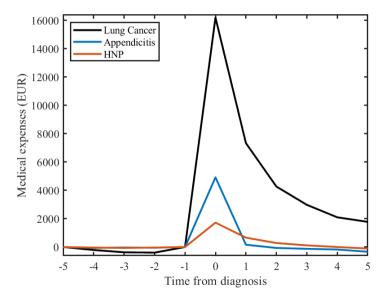
- Medical expenses: covered by mandatory basic health insurance
- **Diagnoses by medical specialists** (2013-2017): spell-type data on inpatient and outpatient care with medical diagnosis codes (Dutch Healthcare Authority)
- Labor market: gross earnings and payroll taxes
- **Income groups**: we classify people into income groups using the fixed effect estimate of a linear regression of wages on an age polynomial by gender.

Empirical Design - Event Study

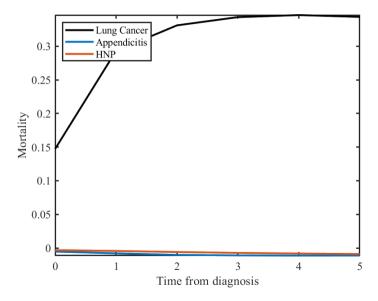
- Aim to identify the average treatment effect of health shock on:
 - {Medical expenditures, Employment, Labor earnings, Nursing home use}
- Sub-samples: 334 diagnoses \times {Male, Female} \times 3 age groups \times 3 income groups
- E_i : year of diagnosis; t: calendar year; $K_{i,t} = t E_i$: years since diagnosis; c: birth cohort; i: individual

$$Y_{i,t} = \alpha_i + \delta_{c(i),t} + \sum_{k=-4, k\neq -1}^{5} \gamma_k \mathbb{1}\{K_{i,t} = k\} + \epsilon_{i,t},$$

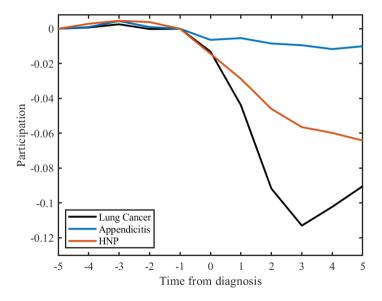
- Mortality: We use an OLS regression including all diseases in the previous period


Three diseases as a running example

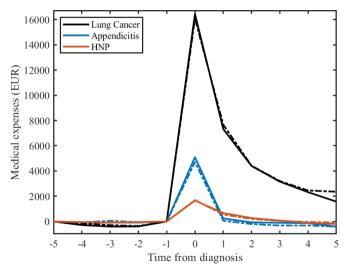
- Lung Cancer: abnormal cell growth that starts in the lungs.


- Hernia (HNP): Injury to the cushioning and connective tissue between vertebrae

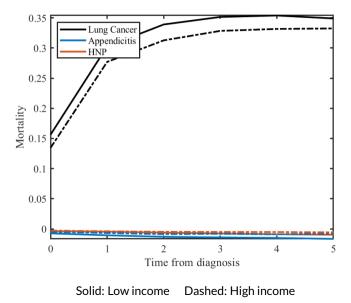
- Appendicitis: Inflammation of the appendix


Effect on medical expenses

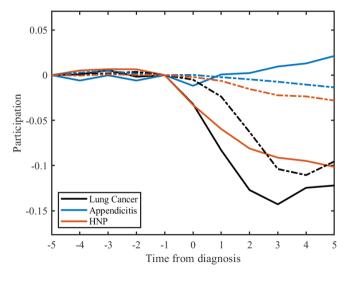
Effect on mortality


Effect on participation

Risks are not spanned by one factor


- Usually, we consider health as a single risk factor. E.g. bad, medium, good health.
- We show there are:
 - Diseases with medium medical costs but no mortality or labor effects (Appendicitis).
 - Diseases with low medical costs and mortality but high labor effects (HNP).
 - Diseases with high medical costs, mortality, and labor effects (Lung cancer).
- Understanding each risk is important to design insurance.
- If the exposure to each risk differs across the population (e.g. low vs high income), a simple risk factor might hide redistributional effects.

Effect on medical expenses



Solid: Low income Dashed: High income

Effect on mortality

Effect on participation

Solid: Low income Dashed: High income

Model set-up

Individual *i* belonging to socieconomic group *s* maximizes current and future utility flows:

$$u(c_{it}) = \overline{u} + \frac{c_{it}^{1-\rho}}{1-\rho},$$
(1)

and obtain utility v from bequests when they pass away:

$$\mathbf{v}(a_{it}) = \theta \frac{(R^{\frac{a_{it+1}}{\theta}} + \overline{a})^{1-\rho}}{1-\rho}.$$
(2)

Assets of individuals outside a nursing home follow:

$$a_{it+1} = a_{it}R + y_{it} - \tau_{y}(y_{it}) - c_{it} - premium - min(m_{it}, ded), \qquad (3)$$

where $y_{it} = \max\{d_{it}\tilde{y_t^s}, \underline{y}\}$ for working individuals and y_R^s for retired individuals.

Counterfactual

- Implementation:
 - We set the probability of a given disease to 0.
 - Then, we compute the maximum annual increase in premium that an individual can face without losing welfare (willingness to pay).
 - Finally, we consider the whole premium goes to the government to obtain the government surplus per individual.
- Interpretation willingness-to-pay: The annual amount an individual is willing to pay to reduce all the effects of the disease to 0 (e.g. vaccine).
- Interpretation government surplus: The maximum amount per born individual that the government can spend in medical research for that disease without lowering welfare.

Three diseases example

- We consider four states: diagnosed with appendicitis, lung cancer, HNP, or none of these.
- We assume the labor effect is permanent.
- The mortality and medical expenses effects last for one period.
- We calibrate incidence depending on the observed probability of each diagnosis.

Willingness to pay

	Lung Cancer	Appendicitis	HNP
	Female		
Lowest PI	340	7	155
Medium PI	564	7	126
Highest PI	7,940	115	1,509
	Male		
Lowest PI	476	6	190
Medium PI	3,475	49	518
Highest PI	15,294	149	1,733
	Government surplus		
	258,657	11,833	46,540

Conclusions and applications

- 1. Estimate the causal effects of 334 diagnoses on mortality and morbidity
- 2. Health risk has more than one dimension and varies across income groups
- 3. Quantify the willingness to pay to eliminate health risks

Ongoing work on applications: benefits of HPV vaccination, colon cancer screening, obesity

Our Dataset Covers 334 Diagnoses from 12 Medical Specialties

- Start with ~ 2500 Dutch diagnosis codes ('Diagnosis Treatment Combinations', DTC), e.g., 'small cell lung cancer'
- Exclude: rehabilitation, clinical genetics, anesthesiology, radiotherapy, and radiology (follow-up care/diagnosis); pregnancy-related care and plastic surgery
- Classify the remaining 1761 codes into 334 diagnosis groups based on the 'ICD-10 DTC' correspondence table of the Dutch Healthcare Authority
- Health shock: focus on the first diagnosis of a given group in the sample period

Generalization: All and income

Year	Medical expenses (EUR) t = 0	Excess Mortality (%) t = 3	Labor participation (%) t = 3	Disability (%) t = 3	Log earnings (%) t = 3	Nursing home (%) t = 3
	All					
Mean 5%;95%	5385 [401;18300]	0.04 [-0.02;0.23]	-0.04 [-0.15;0.00]	0.04 [0.00;0.15]	-0.02 [-0.06;0.01]	0.02 [0.00;0.07]
% Sign.	99%	54%	66%	74%	49%	79%
	By permanent income tercile					
Low Medium High	5436 5391 5322	0.04 0.04 0.04	-0.05 -0.05 -0.03	0.05 0.04 0.03	-0.03 -0.02 -0.02	0.02 0.03 0.02

5th and 95th percentiles within square brackets

Generalization: Gender and age

Year	Medical expenses (EUR) t=0	Excess Mortality (%) t = 3	Labor participation (%) t = 3	Disability (%) t=3	Log earnings (%) t=3	Nursing home (%) t = 3
	By gender					
Male Female	5838 5036	0.04 0.04	-0.04 -0.04	0.04 0.04	-0.02 -0.02	0.02 0.03
By age at diagnosis						
25-45 45-65 65+	4798 5753 5761	0.02 0.03 0.04	-0.03 -0.05	0.02 0.05	-0.01 -0.02	

5th and 95th percentiles within square brackets

Calibration

Parameter	Value	Interpretation	Source/Note
ρ	5	Risk aversion parameter	Kvaerner (2022)
r	2.44%	Return on savings	Kvaerner (2022)
β	$\frac{1}{1+r}$	Discount rate	Kvaerner (2022)
ā	ÊUR 20,000	Bequest threshold	Kvaerner (2022)
θ	83.3	Bequest intensity	Kvaerner (2022)
$SVL\left(\overline{u} ight)$	2 million ($\overline{u}~pprox~1.3 imes$ 10 $^{-17}$)	Utility flow for being alive	DeNardi et al. (2017)
у	EUR 12,700	Minimum income	Social minimum (2015)
Ē _{NH}	EUR 43,545	Total cost of nursing home care	Statistics Netherlands
C _{NH}	EUR 30,481	Consumption in the nursing home	70% of E _{NH}
λ_{dis}	0.7	Dis. insurance replacement rate	WGA wage-related benefit
τ_a	0.3	Tax on assets	Tax rate in Box 3
premium _t	EUR 1164	Health insurance premium	Avg. premium (2015)
ded	EUR 375	Health insurance deductible	2015 minimum deductible

References

- Mariacristina DeNardi, Eric French, and John B. Jones. Why do the elderly save? the role of medical expenses. *Journal of Political Economy*, 118(1):39–75, 2010.
- Mariacristina DeNardi, Svetlana Pashchenko, and Ponpoje Porapakkarm. The lifetime costs of bad health. Technical report, National Bureau of Economic Research, 2017.
- Pilar García-Gómez, Hans Van Kippersluis, Owen ODonnell, and Eddy Van Doorslaer. Long-term and spillover effects of health shocks on employment and income. *Journal of Human Resources*, 48(4):873–909, 2013.
- Eskil Heinesen and Christophe Kolodziejczyk. Effects of breast and colorectal cancer on labour market outcomesaverage effects and educational gradients. *Journal of health economics*, 32(6):1028–1042, 2013.
- Ralph S.J. Koijen, Stijn Nieuwerburgh, and Motohiro Yogo. Health and mortality delta: Assessing the welfare cost of household insurance choice. *Journal of Finance*, 71(2):957–1010, 2016.
- Jens Soerlie Kvaerner. How large are bequest motives? estimates based on health shocks. *The Review of Financial Studies*, page hhac093, 2022.
- Allison Larg and John R Moss. Cost-of-illness studies. Pharmacoeconomics, 29(8):653-671, 2011.
- Petter Lundborg, Martin Nilsson, and Johan Vikström. Heterogeneity in the impact of health shocks on labour outcomes: evidence from swedish workers. *Oxford Economic Papers*, 67(3):715–739, 2015.