Ó.Vicente-Chirivella

Introduction

Theoretica model

Testable implications

Empirics

Data and descriptives Estimation Pa

Conclusions

Robots and Firms' Labour Search: the Role of Temporary Work Agencies

Pilar Beneito^a María García-Vega^b Óscar Vicente-Chirivella^c Guillaume Wilemme^d

^aUniversity of Valencia and ERI-CES ^bUniversity of Nottingham ^cUniversity of Valencia ^dUniversity of Leicester

EEA-ESEM 2023 - Barcelona

Ó.Vicente-Chirivella

Introduction

Theoretical model

Testable implications

Empirics

Data and descriptives Estimation Part Estimation Part

Conclusions

Motivation

The adoption of new 'automation-oriented' technologies, such as robots, is transforming production and labour organization. Impacts on:

Employment, wages

(Acemoglu and Restrepo 2021; Aghion et al. 2020, 2021; Bessen et al. 2020)

Skill composition of labour

(Acemoglu 2022; Autor 2015; Aghion et al. 2021; Bonfiglioli et al. 2020; Humlum 2021; Kock et al. 2021)

 Sales, productivity, production scale (Stiebale et al. 2020; Kock et al. 2021)

Ó.Vicente-Chirivella

Introduction

Theoretical model

Environment

Testable implications

Empirics

Data and descriptives Estimation Part I Estimation Part I

Conclusions

Technology & Firms' Labour Search

In this paper

- New technologies increase performance only when combined with competent workers
- Firms need to invest time/effort to find the workers that best complement the new technologies

In this paper

Ó.Vicente-Chirivella

Introduction

- Theoretica model
- Environment
- implications

Empirics

- Data and descriptives Estimation Par Estimation Par
- Conclusions

Robots increase the challenge

- *McKensey Global Institute* (DP 2018, 2022): 5 EU countries + US
 - the most automated functions: the largest skill mismatches (spc in production and manufacturing operations)
 - $\star\,$ need of advanced skills that are in short supply
 - $\star\,$ employees' skills as the factor with the biggest impact on automation outcomes

Robots increase the stakes

◇- bcs. entail large capital investments

In this paper

Ó.Vicente-Chirivella

Introduction

Theoretica model

Environment

Testable implications

Empirics

Data and descriptives Estimation Part

Conclusions

 Increased importance of efficient search and screening of workers

Temporary Work Agencies:

Save on searching costs, efficient screening, elicit info on skills difficult to observe (Autor, 2001)

 \diamond - improve matching (Neugart and Storrie, 2006)

[TWA advertising claims]

In this paper

Ó.Vicente-Chirivella

Introduction

Theoretical model Environment

Testable implications

Empirics

Data and descriptives Estimation Part I Estimation Part I

Conclusions

We address 2 Research Questions:

RQ1: How does automation technology (robot adoption) affect firms' labour search channels? Use of TWA?

RQ2: If TWA is a more efficient search/screening channel → productivity effects?

What we do

Ó.Vicente-Chirivella

Introduction

- Theoretical model
- Environment
- Testable implications

Empirics

- Data and descriptives Estimation Part Estimation Part
- Conclusions

- Theory: search model

Empirics:

- $\diamond\!$ i) impact of robots on use of TWA

Ó.Vicente-Chirivella

Introduction

- Theoretical model
- Environment
- Testable implications

Empirics

- Data and descriptives Estimation Part Estimation Part
- Conclusions

Related literature and paper's contribution

- Literature line 1: Robots and employment
 - $\diamond\mathchar`-$ our contribution: robots and search strategy/channel
- Literature line 2: Search models with temp vs perm jobs
 our contribution: distinction between directly-hired temps and TWA
- ► Literature line 3: Productivity
 - ◇- our contribution 1: productivity of TWA (as differentiated from regular temps)
 - $\diamond\!$ our contribution 2: productivity of combining robots and TWA

Ó.Vicente-Chirivella

Introduction

Theoretical model

Environment

Testable implication:

Empirics

Data and descriptives Estimation P

Conclusions

- Theoretical model -

Model Overview

Ó.Vicente-Chirivella

Introduction

Theoretica model

Environment

Testable implications

Empirics

Data and descriptives Estimation Part I Estimation Part I

Conclusions

- Firms search workers who best match a new production technology
- Theory distinguishes 2 recruitment channels
 ~ regular market vs. TWA
- Recruitment channel matters for learning
 TWA offer screening advantage <u>before</u> matching

Ó.Vicente-Chirivella

Introduction

Theoretica model

Environment

Testable implications

Empirics

Data and descriptives Estimation Part Estimation Part

Conclusions

A firm has a vacant job of characteristics ξ and π determined by its production technology

A firm with a vacancy

↔ ξ, labour efficiency, productivity of a job fully operational ↔ π, share of competent workers (∼ prior probability)

▶ New production technologies: $\xi \nearrow$ but $\pi \searrow$

jobs are more productive but harder to fill

Ó.Vicente-Chirivella

Introduction

Theoretical model

Environment

Testable implications

Empirics

Data and descriptives Estimation Part I Estimation Part I

Conclusions

Agents' decisions:

Recruitment channel and type of contract

- Firm chooses a recruitment channel

 - ◇- or TWA: firm pays a fee C but higher arrival rate of workers and info advantage
- When a firm and a worker meet, they jointly decide whether to match
 - ↔ based on available info
- When matched, the firm and the worker can separate at anytime or upgrade the contract from temp to perm

- Robots and Firms' Labour Search
- Ó.Vicente-Chirivella

Introduction

- Theoretical model
- Environment
- Testable implication:

Empirics

Data and descriptives Estimation Part I Estimation Part I

Conclusions

Testable Implications: bringing model to data

Implication 1:

 $\mathbb{P}(\text{`agency'}|\text{`new tech.'}) \geq \mathbb{P}(\text{`agency'}|\text{`no new tech.'})$

Implication 2:

The gains from using TWA are higher when firms use new technologies. Model shows complementarity between TWA and tech.

Ó.Vicente-Chirivella

Introduction

Theoretical model

Environment

Testable implications

Empirics

Data and descriptives

Esumation Part I

Conclusions

- Data and descriptives -

Empirical section: Data

Ó.Vicente-Chirivella

Introduction

Theoretical model

Environment

Testable implications

Empirics

Data and descriptives Estimation Part

Conclusions

 ESEE (Encuestra Estrategias Empresariales, Fundación SEPI).

- \diamond Survey (panel) data
- Sample: unbalanced panel, from 1997-2016, around 3,400 firms.
- \diamond Temporary workers and TWA (yearly). TWA users: 27%
- $\diamond\!$ Use of robots (4-year basis). Robot users: 30%

Introduction

Theoretical model

Environment

Testable implication

Empirics

Data and descriptives Estimation Part I Estimation Part I

Conclusions

Ó.Vicente-Chirivella

Firms' Labour Composition after Robot Adoption (Basic DiD. - RA: Robot-Adopters -)

$$y_{it} = \alpha + \beta RA_i + \gamma RA_i \times Post_{it} + \eta_t + u_{it}$$

17 / 31

Ó.Vicente-Chirivella

Introduction

Theoretical model

Environment

Testable implication:

Empirics

Data and descriptives

Estimation Part I

Estimation Part I

Conclusions

- Estimation Part I -

Probability of TWA after Robot Adoption

Ó.Vicente-Chirivella

Introduction

Theoretical model

Environment

Testable implications

Empirics

Data and descriptives Estimation Pa

Estimation Part I

Conclusions

Methodology Part I. Robots and TWA use

Identification Strategy:

Staggered DiD estimation, Callaway and Sant'Anna (2021)

General and flexible framework for staggered DiD

- firms variation in treatment timing (staggered adoption)
 allows for 'conditional parallel pre-trends'
- Building block:

 $ATT(g,t) = \mathbb{E}[Y_t(g) - Y_t(0)|G_g = 1]$

◇- and weighted aggregation of the group-time ATTs to construct causal parameters

Firms' Labour Search	Probabili	ty of usin	g TWA	A after	r robot	adop
Ó.Vicente- Chirivella			Uncond. PT sample 1	Cond. PT sample 1	Uncond. PT sample 2	Cond. PT sample 2
			(1)	(2)	(3)	(4)
		Total ATT	0.058^{***} (0.020)	0.083^{***} (0.021)	0.062^{***} (0.023)	0.087*** (0.023)
		Event windows:	()	()	()	()
		-8, +4	0.026^{*} (0.013)	0.052^{***} (0.015)	0.020 (0.015)	0.042*** (0.016)
		-8, +8	0.035^{***} (0.015)	0.061^{***} (0.017)	0.032** (0.016)	0.054^{***} (0.017)
Estimation Part I Estimation Part II		-8, +12	0.040^{***} (0.015)	0.066^{***} (0.017)	0.038** (0.017)	0.061^{***} (0.018)
		-8, +16	0.042^{***} (0.015)	0.067^{***} (0.017)	0.039^{***} (0.017)	0.062*** (0.018)
		Pre-trends (Chi-sq) (p-value)	0.775 [0.992]	1.207 [0.976]	0.775 [0.992]	1.061 [0.983]

6,851

N Obs.

tion

Notes: Uncond. PT refers to unconditional parallel trends estimation; Cond. PT: conditional parallel trends estimation (previous experience using TWA and firm's size interval). Sample 1 uses all observations from robot adopters until they stop using robots (around 5% of cases). Sample 2 discards all the observations coming from robot adopters that at some point stop using robots. Estimation method: Sant'Anna and Zhao (2020)'s improved doubly robust DiD estimator based on inverse probability of tilting and weighted least squares (drimp in csdid in Stata). Bootstrapped errors in parenthesis. * p-value<0.10 ** p-value<0.05 *** p-value<0.01.

6,851

6,447

6,447

Probability of using TWA after robot adoption

Ó.Vicente-Chirivella

Theoretica model

Testable implication

Empirics

Data and descriptives

Estimation Part

Conclusions

Share of temporary work after RA

Is it just an intensification of the use of temps?

Ó.Vicente-Chirivella

Excluding the years of the Great Recession (from 2008 to 2013)

		Uncond. PT sample 1 (1)	Cond. PT sample 1 (2)	Uncond. PT sample 2 (3)	Cond. PT sample 2 (4)
	Total ATT	0.070***	0.073***	0.074***	0.087***
		(0.022)	(0.023)	(0.027)	(0.026)
		0.005	0.070	0.005	0.070
ation Part I	Pre-trends (Cni-sq)	0.285	0.979	0.285	0.979
	(p-value)	[0.997]	[0.964]	[0.997]	[0.964]
	N Obs.	5,234	5,234	4,951	4,951

Notes: Years 2008 to 2013 - both included- are out of estimation. Notes: Uncond. PT refers to unconditional parallel trends estimation; Cond. PT: conditional parallel trends estimation (previous experience using TWA and firm's size interval). Sample 1 uses all observations from robot adopters until they stop using robots (around 5% of cases). Sample 2 discards all the observations coming from robot adopters that at some point stop using robots. Estimation method: [Sant'Anna and Zhao] (2020]'s improved doubly robust DiD estimator based on inverse probability of tilting and weighted least squares (drimp in csdid in Stata). Bootstrapped errors in parenthesis. * p-value<0.05 *** p-value<0.01.

Ó.Vicente-Chirivella

Introduction

Theoretical model

Testable implication

Empirics

Data and descriptives

Estimation Part I

Conclusions

4 4 e e, N N τ. Ξ. 0 0 000400 $\overline{\gamma}$ 7 Ņ Ň ņ. ő 12 16 -12 -8 -4 12 16 -12 -8 8 0 4 8 -4 0 Years from robot adoption Years from robot adoption

Comparing CS-DiD with 4 alternative DiD

- OLS TWFE
- De Chaisemartin and d'Haultfoeuille (2020)
- Sun and Abraham (2021)

- Borusyac, Javarel and Spiess (2021)
- Callaway and Sant'Anna (2021)

Ó.Vicente-Chirivella

Introduction

Theoretical model

Environment

Testable implication:

Empirics

Data and descriptives Estimation P

Estimation Part II

Conclusions

- Estimation Part II -

Productivity of TWA and robots

Ó.Vicente-Chirivella

Introduction

Theoretical model Environment Testable

Empirics

Data and descriptives Estimation Part Estimation Part

Conclusions

Methods Part II. Productivity of Robots and TWA. Endogeneity of robot adoption:

TWFE DiD estimation with propensity score reweighting (Guadalupe, et al. 2012; DiNardo et al. 1996; Koch et al. 2021).

 $y_{it} = \alpha + \gamma \ \text{Robots}_{it_a} + \delta \ \text{TWA}_{it} + \theta \ \text{TWA}_{it} \times \text{Robots}_{it_a} + \\ + \lambda \ \text{Temps}_{it} + \eta_t + \eta_i + \eta_{it} + \eta_{rt} + u_{it}$

where y_{it} is (log of) the firm's value added divided by (effective) labour-hours and deflated with ESEE firm-level deflators; and where we check $t_a = t$ and/or $t_a = t - 4$.

(matching and weigthing based on lagged sales, sales growth, labour productivity, labour productivity growth, capital-,skill- and R&D intensity, indicators for exporter, importer and foreign ownership, and year dummies)

Entropy balancing: we balance the treated and control samples in terms of both the mean and the variance.

Robots and Firms'

Labour

Productivity of Robots and TWA

earch		p-score matching				entropy balancing		
icente- rivella		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	$Robots_{t_0}$	-0.001						
	$Robots_{t_{-4}}$	(0.022) 0.162^{***} (0.028)	0.162^{***}	0.155^{***}	0.141^{***}	0.104^{***}	0.100^{***}	0.077^{***}
	TWA	(0.020)	(0.013)	(0.013) 0.178^{***} (0.014)	(0.020) 0.137^{***} (0.016)	(0.013)	(0.013) 0.088^{***} (0.009)	(0.013) 0.053^{***} (0.011)
	$Robots_{t-4} \times TWA$			(0.014)	(0.010) 0.190^{***} (0.040)		(0.000)	(0.011) (0.137^{***}) (0.031)
	Temps			0.003 (0.029)	(0.040) (0.032)		-0.202^{***} (0.020)	-0.197^{***} (0.021)
tion Part II	Observations	2,584	2,584	2,584	2,584	2,368	2,368	2,368
	R-squared	0.833	0.833	0.835	0.836	0.828	0.829	0.830
	p-score weights	Yes	Yes	Yes	Yes	No	No	No
	Entropy weights	No	No	No	No	Yes	Yes	Yes
	Industry-year effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Regional-year effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Notes: outcome variable is labour productivity of firm *i* in period *t*, and it is constructed as the (log of) firm's value added deflated with ESEE firm-level deflators and divided by (effective) labour-hours; the outcome variable is averaged over the years between two consecutive ESEE response years, including the last one. $Robots_{t_0}$ is a dummy variable that takes the value of one in all post-robot adoption periods for robot adopters that report for the first time using robots in the current ESEE response year; $Robots_{t_{(-4)}}$ is similarly defined for firms reporting robot use for the first time in the previous ESEE response year - that is, 4 years before; TWA is the average of the binary indicator of TWA-use in period *t* comprised between two ESEE response years; Temps stands for the firm's share of temporary workers during that period. Bootstrapped standard errors clustered by firm in parenthesis.^{*} p-value<0.01 *** p-value<0.01.

Conclusion

Ó.Vicente-Chirivella

Introduction

- Theoretica model
- Environment
- Testable implications

Empirics

- Data and descriptives Estimation Part Estimation Part
- Conclusions

 Complementarity between firms' adoption of modern technologies and labour recruitment strategy

- Evidence that automation-oriented technologies
 - $\diamond\!$ push firms to use TWA
 - o- increase productivity even more when combined with TWA
- A theoretical mechanism

 - ↔ …which raise the stakes of recruiting the right workers

Ó.Vicente-Chirivella

Introduction

Theoretical model

Environment

Testable implications

Empirics

Data and descriptives Estimation Pa Estimation Pa

Conclusions

Thank you for your attention!!!

Ó.Vicente-Chirivella

Introduction

Theoretical model Environment

Empirics

Data and descriptives Estimation Part I Estimation Part I

Conclusions

New jobs and new workers

'It is essential to have good tools, but it is also essential that the tools should be used the right way.' [to the Intro]

Wallace D. Wattles, The Science of Getting Rich (1910).

Ó.Vicente-Chirivella

Introduction

Theoretical model

Environment

Testable implication:

Empirics

Data and descriptives Estimation I

Estimation Part II

Conclusions

Advertising claims of TWA (see also Autor, 2003)

"Randstad brings people closer to the job they are looking for and companies closer to the talent they need" [to the Intro].

