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Introduction

▶ Predictive accuracy, market selection, and asset pricing are deeply
connected.

▶ Intuition in pure-exchange complete-markets Arrow-Debreu economies under
general equilibrium, bounded endowments, and discount factor homogeneity:

1. i learns the true model (data generating process) better than j ,

2. i allocates more wealth than j to events that actually are more likely to happen,

3. i becomes richer than j ,

4. i drives the price toward the truth.
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Introduction

▶ When the learning problems are correctly specified:
▶ a Bayesian agent learns the true model,
▶ it drives anyone who forecasts differently out of the market and sets prices,
▶ thus, long-run prices are consistent with rational expectations,
▶ hence, the ecology of traders and selection dynamics do not matter.

▶ Correct specification is a strong assumption...
▶ What happens if correct specification does not hold?
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Introduction

▶ Box (1976) : “all models are wrong”,

▶ Cox (1995): “...does not seem helpful just to say that all models are wrong.
The very word “model” implies simplification and idealization. The idea that
complex physical, biological or sociological systems can be exactly described
by a few formulae is patently absurd”.

▶ All models agents use to learn are approximations: model misspecification
(Hansen, 2014; Fudenberg et al., 2017; Marinacci and Massari, 2019;
Cerreia-Vioglio et al., 2020; Hansen and Sargent, 2022).
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Introduction

▶ Under model misspecification, Bayesian updating loses its formal justification
(Massari, 2021).

▶ Evidence that traders showing cognitive biases may dominate a Bayesian
learner (Massari, 2020; Antico et al., 2023).

▶ Consider an ecology of traders characterized by heterogeneous learning
rules,
▶ how are the emerging selection outcomes influenced by model misspecification?
▶ Can particular survival learning mechanisms be identified?
▶ How general are they?

▶ We study selection outcomes considering 4 learning processes (Bayes,
underreaction, moving average, limited memory Bayes) and 2 cases of model
misspecification (parametric and structural).
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The Model

Arrow-Debreu economy in discrete time with infinite horizon, a homogeneous
consumption good, and complete markets.

▶ st ∈ {1,2, . . . ,S} is the state realized at time t , σ = (s1, s2, . . . , st , . . .) is a
path, and σt = (s1, s2, . . . , st) is a partial history until time t ;

▶ the economy is populated by N agents with subjective beliefs pi(σt), receiving
a stream of non-zero and uniformly bounded endowments (ei(σt))

∞
t=0;

▶ each agent maximizes its geometrically discounted expected utility of
consumption ci(σt).
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Problem of the agent, equilibrium, asymptotic outcomes
Given q(σt), each agent i = 1, . . . ,N solves

max
{ci (σt ), ∀t ,σ}

Epi

[ ∞∑
t=0

βt
i ui(ci(σt))

]
s.t.

∞∑
t=0

∑
σt∈Σt

q(σt) (ei(σt)− ci(σt)) ≥ 0,

with βi ∈ (0,1) and ui a continuously differentiable, increasing, strictly concave,
and satisfies the Inada condition at zero. At equilibrium,

N∑
i=1

ci(σt) =
N∑

i=1

ei(σt) = e(σt),∀σt .

Considering a true probability p and assuming that any pi is absolutely continuous
w. r. t. p, the equilibrium exists.

Definition
An agent i vanishes if, p-almost surely, limt→∞ ci(σt) = 0. It survives if it does not
vanish.



Problem of the agent, equilibrium, asymptotic outcomes
Given q(σt), each agent i = 1, . . . ,N solves

max
{ci (σt ), ∀t ,σ}

Epi

[ ∞∑
t=0

βt
i ui(ci(σt))

]
s.t.

∞∑
t=0

∑
σt∈Σt

q(σt) (ei(σt)− ci(σt)) ≥ 0,

with βi ∈ (0,1) and ui a continuously differentiable, increasing, strictly concave,
and satisfies the Inada condition at zero. At equilibrium,

N∑
i=1

ci(σt) =
N∑

i=1

ei(σt) = e(σt),∀σt .

Considering a true probability p and assuming that any pi is absolutely continuous
w. r. t. p, the equilibrium exists.

Definition
An agent i vanishes if, p-almost surely, limt→∞ ci(σt) = 0. It survives if it does not
vanish.



Connecting survival with beliefs
Consider the relative entropy of conditional probabilities and its partial average:

Dp|pi
(σt) =

S∑
s=1

p(s | σt) log
p(s | σt)

pi(s | σt)
and Dp|pi

(σt) =
1

t + 1

t∑
τ=0

Dp|pi
(στ ) .

Proposition
Given two agents i and j, assume that ∃L > 0 such that, p-almost surely,
∥ log p(· | σt)/ph(· | σt)∥∞ < L, h = i , j . Then, ∀α < 1/2, p-almost surely, for large t,

1
t
log

u′
i (ci(σt))

u′
j (cj(σt))

=
(
log βj − Dp|pj

(σt−1)
)
−

(
log βi − Dp|pi

(σt−1)
)
+ o

(
t−α

)
.

Moreover if, p-almost surely,

log βj − log βi + lim inf
t→∞

(
Dp|pi

(σt)− Dp|pj
(σt)

)
> 0,

then agent i vanishes.
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Belief formation

Consider K i.i.d. measures with conditional probabilities π1, . . . , πK such that
πk = (πk (1), πk (2), . . . , π(S)) ∈ ∆S−1

+ ; ∃ϵ,dπ > 0 such that πk (s) > ϵ and
∥πk − πh∥ > dπ, ∀s, k ,h.

Assumption
The individual conditional probabilities of the agents belong to the convex hull HK
generated by the conditional probabilities of the K models, ∀σt

(pi(1 | σt), . . . ,pi(S | σt)) ∈ HK =

{
K∑

k=1

ηkπk |
K∑

k=1

ηk = 1, ηk ≥ 0

}
⊆ ∆S−1

+ .

Moreover, ∃L > 0 such that, ∀k and ∀σt , ∥ log p(· | σt)/πk (·)∥∞ < L.



Belief formation

Let wi,k (σt) be the weight agent i attaches to model k after having observed the
partial history σt . Then, ∀s,

pi(s|σt) =
K∑

k=1

wi,k (σt)πk (s), with wi,k (σt) ≥ 0, ∀k , and
K∑

k=1

wi,k (σt) = 1.

Learning processes differ on how they compute the weights.



Learning processes I

▶ Bayesian and under-reaction learning (Epstein et al., 2010; Massari, 2020):

wi,k (σt) = λi wi,k (σt−1) + (1 − λi)
πk (st)wi,k (σt−1)

pi(st |σt−1)
∀k , t , σ ,

with λi ∈ [0,1). Setting λi = 0, Bayesian learning is recovered;



Learning processes II

▶ Moving average learning: the agent takes a reference learning process p∗

and applies a moving average of width Mi to the sequence of probabilistic
predictions generated by it,

pi(s | σt) =


p∗(s | σt) if t < Mi − 1 ,

M−1
i

Mi∑
m=1

p∗(s | σt−m+1) if t ≥ Mi − 1.

In terms of weights: wi,k (σt) = M−1
i

Mi∑
m=1

w∗
k (σt−m+1) if t ≥ Mi − 1.



Learning processes III

▶ Limited memory Bayesian learning:

wi,k (σt) =
πk (st)wi,k (σ0)∑K

k ′=1 πk ′(st)wi,k ′(σ0)
,

the agent deliberately forgets observations in the past (extreme short memory
case);



General Results

Proposition
Define π∗(σt) = maxk∈{1,...,K}{πk (σt)}. For any Bayesian agent i and ∀α < 1/2,
p-almost surely, for large t,

Dp|pi
(σt−1)− Dp|π∗(σt )(σt−1) = o

(
t−α

)
.

Proposition
For any underreacting agent i and ∀α < 1/2, it is p-almost surely, for large t,

Dp|pi
(σt−1)− Dp|πk

(σt−1) ≤ o
(
t−α

)
,∀k ∈ {1,2, . . . ,K}.
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Parametric misspecification

Assumption
The true measure p is an i.i.d. process whose conditional distribution is described
by the vector π = (π(1), π(2), . . . , π(S)) ∈ ∆S−1

+ , such that p(st | σt−1) = π(st)
and, ∀k ∈ {1,2, . . . ,K}, ∥πk − π∥ > 0.

Under this Assumption, p-almost surely

lim
t→∞

Dp|πk
(σt) = Dπ|πk

=
S∑

s=1

π(s) log
π(s)
πk (s)

> 0.
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Results

Proposition
If π ∈ Hk , then for any underreacting agent i and ∀α < 1/2, it is p-almost surely,
for large t,

Dp|pi
(σt) ≤

1 − λi

2(λi + ϵ)2 +
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1 − λi
.

Proposition
For any agent i that uses the limited memory Bayesian learning process, it is
Dp|pi

(σ) = limt→∞ Dp|pi
(σt) =

∑S
s=1 π(s)Dp|pi

(s) p-almost surely.
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Results

Proposition
Given a moving average learning process pi with the reference learning process
p∗, consider σ2(s, σt) =

∑M−1
m=0 (p

∗(s | σt−m)− pi(s, σt))
2 /M. Then,

σ2(σt)

2(1 − ϵ)
≤ 1

M

M−1∑
m=0

Dp|p∗(σt−m)− Dp|pi
(σt) ≤

σ2(σt)

2ϵ
.

If Dp|p∗(σ) = limt→∞ Dp|p∗(σt) exists, then lim supt→∞ Dp|pi
(σt) ≤ Dp|p∗(σ), with

strict inequality if ∃ε > 0 such that σ2(σt) > ε.



Example

Figure: S = K = 2, π1 = 0.3, π2 = 0.8, Mi = 10, π is the true probability of state 1.



Structural misspecification

Assumption
The true measure p follows a discrete-time Markov chain with transition matrix P:
p(st+1|σt) = Pst ,st+1 ∀t , σ and p(s|σ0) = ps,0 with ps,0 > 0 ∀s ∈ {1,2, . . . ,S}. For
any (s, s′) ∈ {1,2, . . . ,S} × {1,2, . . . ,S}, Ps,s′ > 0.

Proposition
For any k = 1, . . . ,K , p-almost surely,

lim
t→∞

Dp|πk
(σt) = Dp|πk

(σ) = Dπ|πk
(σ) + Dp|π(σ),

where

Dπ|πk
(σ) =

S∑
s=1

π(s) log
π(s)
πk (s)

and Dp|π(σ) =
S∑

s′=1

π(s′)
S∑

s=1

Ps′,s log
Ps′,s

π(s)
.
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Example

K = S = 2, π1 = (π1,1 − π1), π2 = (π2,1 − π2), and states of nature appear
according to a Markov chain with transition matrix

P =

[
P1,1 1 − P1,1
P2,1 1 − P2,1

]
.

The invariant distribution reads

π =

(
P2,1

1 − P1,1 + P2,1
,

1 − P1,1

1 − P1,1 + P2,1

)
.



Example:

Figure: Diff. in av. rel. entropy btw B, UR λ = 0.65, MA M = 20 on UR, LMB and invariant.



Conclusions

▶ Ranking learning processes with respect to their survival prospects (and
identifying general survival mechanisms) under model misspecification is
hard;

▶ Under parametric misspecification, learning processes build upon a
smoothing approach have a selection advantage over generic regions of the
parameter space;

▶ The advantage partially disappears when structural misspecification is
considered: a trade off between approximating the projection of the true
model on the space on which the agents learn and adapting to the part of the
true model that cannot be represented in that space emerges;

▶ The ecology of traders and type of model misspecification matter for
understanding selection outcomes and, thus, long-run asset valuation.
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