Technological Change and Demand for Redistribution: Micro Evidence and Macro Implications

Jiheum Yeon

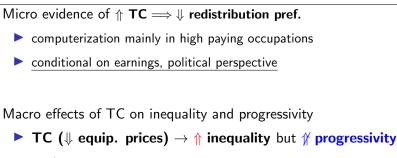
University of Minnesota and Korea Institute for International Economic Policy

August 29, 2023

Motivation: last four decades in US,

- Rising income inequality, non-increasing tax progressivity
 e.g. Piketty-Saez ('07), Heathcote et al. ('20), Saez-Zucman ('20)
- Biased Technical Change (TC) as a source of inequality
 e.g. Computerization following a sharp drop in equipment prices since 1980s

Conventional wisdom: \Uparrow inequality \implies \Uparrow redistribution


 Politicians respond to preferences of the median voter Large literature on positive framework, e.g. Meltzer-Richard (1981)

Question: Why did **progressivity** not increase when **inequality** went up? Focus on the role of **TC**, in particular, **computerization**

Approach

- 1. Evidence from pseudo-panel approach: $TC \implies \Downarrow$ redistribution pref.
- Exploit timing of computerization (decline in equipment prices)
- Link social survey, skill contents, labor market outcomes at occ level
- 2. Mechanism for rationalizing the micro evidence and macro trend
 ▶ Workers exposed to TC have ↑ returns to skill investment
 ⇒ Larger tax distortions ⇒ less desire for fiscal redistribution
 - 3. Tractable quantitative GE political economy model
 - Workers accumulate skill, and vote for desired tax progressivity
 - Estimate the model on micro data to quantify the mechanism

Findings

 \implies w/o skill investment: TC $\rightarrow \uparrow$ inequality and \uparrow progressivity

Contributions • Related Literature

- 1. Document novel empirical relationship between <u>computerization and</u> redistribution preferences at occupation level in the US
- 2. Study long-run impact of **TC** on inequality and redistribution by embedding structural change in estimated GE pol econ model

Empirics

Data sets and measurement

O*NET-APST ('20AEJ) skill content data

- Requirements, knowledge, skills, activity, context, tools, technology, etc.
- Computer, social in high paying occupation computer social
- ↑ Manual, routine in low paying occupation manual/routine

General Social Survey (GSS, 1978-2018) • GSS: data overview

- Political attitudes, social characteristics (e.g. socially liberal, abortion)
- Redistribution preferences measure responses to the GSS questionnaire

[7] The govt. in Washington should reduce income differences[1] The govt. in Washington should not concern itself with reducing income differences

Construct synthetic panel by age, occupation

How did synthetic cohorts respond to computerization?

Empirical strategy

Explore diff-in-diffs with the synthetic cohort (a, o):

: Different $\ensuremath{\text{TC}}$ exposure to different synthetic persons

a: age group; o: occupation group; t: time period

 $Redist_{aot} = \beta Task Intensity_{ot}$

+
$$\eta_t X'_o \delta + X'_{ot} \lambda + \gamma_a + \eta_t + \gamma_a \times \eta_t + \epsilon_{aot}$$

β is the coefficient of interest, answers how occupational exposure to technological change affected redistribution preferences

δ's are the coefficients of fixed-occ. characteristics interacted with time, control for
 (i) political spectrum and (ii) o × t shocks (e.g. old police officer, young developer)

λ's are the coefficients of time varying occ.-level characteristics; control for job ads and employment shares by construction of my measures

Wild cluster bootstrap to address (i) few clusters, (ii) generated regressor

	Redistribut	ive Preferences (Standardized): 19	978-2018 - Synth	netic Panel
	(1)	(2)	(3)	(4)	(5)
Earnings (Occ. Avg.)		-0.389***			
		[-0.667,-0.113]			
Computer	-0.549***	-0.312**	-0.524***		
	[-0.702,-0.437]	[-0.454,-0.113]	[-0.715,-0.376]		
Social			-0.076		
			[-0.228,0.106]		
Manual				0.057	
				[-0.282,0.371]	
Routine					0.065
					[-0.192,0.319]
Observations	108	108	108	108	108

Confidence intervals are estimated using the wild cluster bootstrap method, and clustering is performed at synthetic cohort groups. Fixed effects include age, year, and interaction of age and year in the synthetic panel. * p < 0.10, ** p < 0.05, *** p < 0.01.

Synthetic persons faced w/ <u>computer task intensity</u> want less redistribution
 Computerization effect is sizeable with controlling for earnings, spectrum

Macro Effect of TC on Inequality and Redistribution

Quantitative Model: Summary

- 1. Task-based sorting + progressive tax + electoral competition
- 2. Goods are produced by combining tasks and equipment
- 3. Workers choose occupation-equipment and produce tasks
 - ▶ In occupations, workers accumulate skills and produce tasks better
 - Before entering labor market, young consider college
- 4. Earnings are taxed; workers vote for their most preferred tax policy
 - Politicians propose tax policy that maximizes expected vote share
 - (1) indirect utility for policy; (2) political weight of voter groups
 e.g. old police officer conservative; young developer liberal

o: occupation; e: equipment; g: demographic group; s: task

▶ Final output Y is a CES aggregator of occupational outputs Y_o:

$$Y = \left(\sum_{o} Y_{o}^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}}$$

Occupations are output sum of efficiency hours weighted prod. units:

$$\underbrace{Y_{oeg}}_{\text{prod. unit}} = \underbrace{\left[\prod_{s} \left(T_{oegs}\right)^{\alpha_{oes}} k_e^{1-\sum_{s} \alpha_{oes}}\right]}_{\text{bundle of tasks and equipment}} \quad \text{where} \quad \underbrace{T_{oegs}}_{\text{task unit}} = \underbrace{H_g \times h^{\phi_o} \times I_{oegs}}_{\text{returns to skill} \times \text{time}}$$

- 1. "Ricardian-Roy" task-based assignment framework
- 2. *E*-type equipment k_e is supplied by $k_e = q_e Y_e$; q_e is equipment efficiency
- 3. α_{oes} captures heterogeneous task importance by equipment and occupation

Politicians' primitives and fiscal institution

• Office-motivated candidates from party $x \in \{L, R\}$ has preferences:

$$U_x = egin{cases} 1 & ext{if } x ext{ wins} \ 0 & ext{otherwise} \end{cases}$$

- Forecast R_{igt} , propose policy (λ_x, τ_x)
- (λ_x, τ_x) parameters of HSV tax function (Benabou '02, HSV '17)
- ▶ $\psi_g \in (0,1)$ frac. of voter group g participates in voting (i.e., turnout)
- Subject to constraints

Market clearing Balanced government budget

 $\underbrace{y_i - \mathcal{T}(y_i; \lambda, \tau)}_{i} = \underbrace{(1 - \lambda) y_i^{1 - \tau}}_{i}$

pre-gov income - (net tax) post-gov income

Individual preferences and demographics

Atomistic worker *i* is endowed with productivity H_g and preferences:

$$U_{i} = \underbrace{\log c_{i} - \varphi \frac{h_{i}^{1+\frac{1}{\xi}}}{1+\frac{1}{\xi}} - \chi_{d,g=y} + \zeta_{id,g=y}}_{\text{economic}} + \underbrace{R_{igt} + \eta_{ig} + \eta_{i}}_{\text{political}}$$

• g: defined by age/gender/education; population share π_g

- Education choice *d* for young g = y: costs χ , shocks ζ
- Political preferences (e.g. same-sex marriage)
 - $\blacktriangleright R_{igt} \sim \texttt{normal} \left(\mu_{gt}, \sigma_{gt}^2 \right); \ \eta_{ig} \sim \texttt{normal} \left(0, \sigma_g^2 \right); \ \eta_i \sim \texttt{normal} \left(0, \sigma^2 \right)$
 - Induce politicians to trade-off economic vs. social policy
 e.g. old police officer conservative; young developer liberal

Worker allocation and occupation choice

 P_{oeg} : wage per efficiency hour units from workers in group g who chooses (o, e) pair

- ▶ Worker *i* supplies h_i time to (o, e) pair, based on earnings $P_{oeg}h_i\epsilon_{ioe}$
- Worker *i* draws $\{\epsilon_{ioe}\}_{oe}$ from i.i.d. $\epsilon_{ioe} \sim \texttt{Frechet}(\theta)$

$$\max_{(o,e),h_i} V_{ioeg} \left(\lambda_x, \tau_x \right) = \log \underbrace{\left(1 - \lambda_x \right) \left(P_{oeg} h_i \epsilon_{ioe} \right)^{1 - \tau_x}}_{\text{post-tax labor income}} - \varphi \frac{h_i^{1 + \frac{1}{\xi}}}{1 + \frac{1}{\xi}}$$

Poeg reflects worker's comparative advantage

1

$$\begin{split} \mathcal{P}_{oeg}\left(\tau_{\mathsf{x}}\right) &= \bar{\alpha}_{e}\left(1 - \bar{\alpha}_{e}\right)^{\frac{1 - \bar{\alpha}_{e}}{\bar{\alpha}_{e}}} : \text{ factor income share} \\ &\times \mathcal{P}_{o}^{\frac{1}{\bar{\alpha}_{e}}} : \text{ GE effect via occupation prices} \\ &\times q_{e}^{\frac{1 - \bar{\alpha}_{e}}{\bar{\alpha}_{e}}} : \text{ equipment efficiency} \\ &\times \prod_{s} \left(\mathcal{H}_{g}h^{\phi_{o}}\frac{\alpha_{oes}}{\sum_{s}\alpha_{oes}}\left(\frac{1 - \tau_{\mathsf{x}}}{\varphi}\right)^{\frac{\zeta}{\zeta+1}}\right)^{\frac{\alpha_{oes}}{\bar{\alpha}_{e}}} : \text{ task-labor productivity} \end{split}$$

Education choice of young workers

Before entering the labor market:

- Young consider whether or not to attend college $d \in \{HS, Coll\}$
- **Young** compare expected utility from post-tax earnings $V_{d,g=y}(\lambda_x,\tau_x)$

 \uparrow redistribution & HS versus \downarrow redistribution & College

- d depends on (λ_x, τ_x) , determined by voter distribution $\pi_g(\lambda_x, \tau_x)$
- ► College share of young $\pi_{g=y}$ is implied by education choice *d*

$$\pi_{g=y} (\lambda_{x}, \tau_{x}) = \arg \max_{d} \underbrace{V_{d,g=y} (\lambda_{x}, \tau_{x}) - \chi_{d,g=y}}_{\text{where}} + \zeta_{id,g=y} + \zeta_{id,g=y} \left(\lambda_{x}, \tau_{x}\right) = \mathbb{E}_{\epsilon} \left[\max_{oe} \left\{ V_{ioe,g=y} (\lambda_{x}, \tau_{x}) \right\} \right]$$

Dissecting demand for redistribution **PE intuition**

Proposition: expected indirect utilities up to policy proposal (λ_x, τ_x)

$$\begin{split} V_g\left(\lambda_x,\tau_x\right) &= \log\sum_{o,e} P_{oeg}\left(\tau_x\right)^{1-\tau_x}: \text{ compress comp.adv. ("hard work")} \\ &+ \frac{\gamma_{em}}{\theta}\left(1-\tau_x\right): \text{ compress idiosyn.productivity ("luck")} \\ &+ \log h\left(\tau_x\right)^{1-\tau_x}: \text{ counteracting effects on hours} \\ &- \left(1-\tau_x\right)\frac{\xi}{1+\xi}: \text{ utility gains from less hours} \\ &+ \log\left(1-\lambda_x\right): \text{ net transfer gains from redistribution} \end{split}$$

Mechanism:

 $\begin{array}{ccc} \nearrow & \mbox{redistribution role for "hard work"} \\ \mbox{progressve taxes} & \rightarrow & \mbox{counteracting effects on hours} \\ & \searrow & \mbox{insurance role for "luck"} \end{array}$

Political process: estimable probabilistic voting CE block

Proposition: symmetric best responses of candidates in electoral game

$$\begin{aligned} (\lambda^*, \tau^*) &= \arg\max_{(\lambda_x, \tau_x)} \sum_g \underbrace{\omega_g}_{\text{pol weight}} \times \underbrace{\psi_g}_{\text{voter turnout}} \times \underbrace{\pi_g(\lambda_x, \tau_x)}_{\text{pop. share}} \times \underbrace{V_g(\lambda_x, \tau_x)}_{\text{policy pref.}} \\ s.t. \text{ balanced government budget} \\ \text{indirect utility}: \ V_g(\lambda_x, \tau_x) \equiv \mathbb{E}_{\epsilon} \left[\max_{oe,h} \{V_{ioeg}(\lambda_x, \tau_x)\} \right] \\ \text{political weight}: \ \omega_g = \text{std. normal} \left[\sigma_{gt}^{-1} \left(-\mu_{gt} - \eta_g - \eta \right) \right] \end{aligned}$$

1. (λ^*, τ^*) is the behavioral rule of utility-maximizing politicians 2. Politicians weigh groups' redist. pref. differently with ψ_g, ω_g 3. (λ^*, τ^*) and $CE(\lambda^*, \tau^*)$ are mutually consistent in equilibrium

Parametrization

Estimation overview • external • internal

Match patterns in US micro & macro data in 1978-1980

Two-step procedure

- Estimate parameters directly observed and/or use standard values
- MLE politician's trade-off using social survey
- Calibrate the rest of parameters using method of moments
- Model exactly fits targeted moments
- Model generates untargeted moments close to data

Object	Description	Data Value	
au	Tax progressivity	0.186	0.168
$Var(log(w_g))$	Income Inequality	3.3455	2.4817

	Inequality	Progressivity		
Baseline calibration	2.4871	0.168		
(1) Change q_e (\Downarrow equip. price) (2) Change q_e , $\omega_g = \psi_g = 1$	3.7726 (↑) 3.7340 (↑)	0.168 (†) 0.173 (†)		
TC leads to (\uparrow) inequality but (\uparrow) progressivity				
(3) Change q_e , $\phi_o = 1$ (w/o skill inv.) (4) Change q_e , $\omega_g = \psi_g = \phi_o = 1$	4.4944 (↑) 4.4526 (↑)	0.259 (↑) 0.265 (↑)		

w/o skill investment, back to conv puzzle: (\uparrow) inequality, (\uparrow) progressivity

Mechanism behind quantitative results

 $\begin{array}{c} \nearrow & & & \\ & & & \\ \hline & & \\ & &$

Conclusion

Puzzle: tax progressivity has not gone up, despite surge in inequality

This paper explains the puzzling trends by:

- 1. document **TC** is associated with lower redistribution pref.
- 2. different exposure and returns by \mathbf{TC} is quantitatively important

Policy implications

- Call for comprehensive redistribution policy design
- Incorporate skill investment in redistribution (ex. educ, job training)

Extra slides

Related Literature Back

Technical change, inequality, redistribution

Katz, Murphy ('92QJE); Krueger ('93QJE); Krusell, Ohanion, Rios-Rull, Violante ('00EMA); Autor, Levy, Murnane ('03QJE); Acemoglu, Autor (2011); Deming ('17QJE); Braxton, Taska ('23AER); Acemoglu, Aghion, Violante (2001); Benabou (2005); [political science] Iversen, Soskice ('00 American Political Science Review); Cusack, Iversen, Rehm (2005)

Determinants of redistribution/political preferences

Benabou, Ok ('02AER); Hassler, Mora, Storesletten, Zilibotti ('03AER); Karabarbounis ('10EJ); Alesina, Giuliano (2011); Giuliano, Spilimbergo ('14ReStud); Fuchs-Schundeln, Schundeln ('15 Science), Kuziemko, Norton, Saez, Stantcheva ('15AER); Autor, Dorn, Hanson, Majlesi ('20AER); [political science] Thewissen, Rueda ('17 Comparative Political Studies (CPS)); Kurer ('20 CPS)

This paper:

- 1. Document novel empirical relationship between <u>computerization and</u> redistribution preferences at occupation level in the US
- 2. Study long-run impact of **TC** on inequality and redistribution by embedding structural change in estimated GE pol econ model

GSS: summary statistics <- Back

Sample: ages 25-64		
Demographics		
Age (Avg./Stdev.)	42.1	10.7
Female	0.49	
Married	0.64	
White	0.78	
Black	0.14	
Work, Education		
Full Time	0.53	
HS Dropout	0.13	
HS Diploma	0.49	
Some College	0.07	
College Degree	0.31	
Political Identity		
Political Spectrum (Avg./Stdev.)	3.90	1.38
(1-Conservative, 7-Liberal)		
Party affiliation (Avg./Stdev.)	4.27	1.94
(1-Republican, 7-Democrat)		
Observations	21312	

9. Computers and Electronics Knowledge of circuit boards, processors, chips, electronic equipment, and computer hardware and software, including applications and programming.

A. How important is knowledge of COMPUTERS AND ELECTRONICS to the performance of *your* current job?

* If you marked Not Important, skip LEVEL below and go on to the next knowledge area.

B. What <u>level</u> of knowledge of <u>COMPUTERS AND ELECTRONICS</u> is needed to perform *your* current job?

Work with Computers: e.g. "Enter employee information into a computer database"
 APST: e.g. "(mini)computer", "software", "website", "microprocessor" Back

<u>Computer</u> - Computer & Electronics Knowledge Requirement, Working with Computers
 Software developer, Economist, Broadcast technician

Social - Social Perceptiveness, Coordination, Persuasion, Negotiation (Deming '17)
Lawyer, Salesperson, Personal service

Manual - "Routine Manual" + "Non-routine Manual Physical" (SO '06; AA '11)

Home appliance repairers, Building maintenance

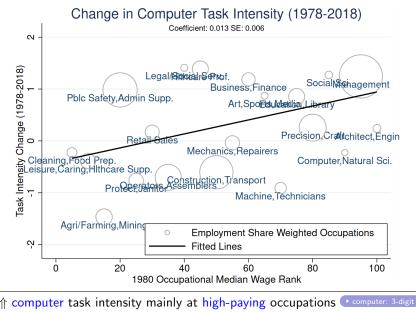
Routine - "Routine Cognitive" (SO '06; AA '11)

Secretaries, Bookkeepers, Bank tellers

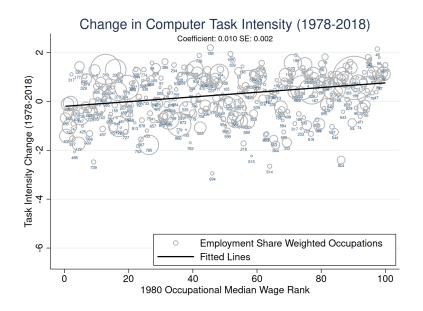
Measuring technological exposure

Technological exposure of skill s at OCC groups o'sWithin-occupation skill intensity level, relative to all other occupations

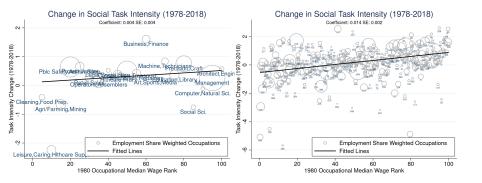
▶ Composite of skill contents $c \in s$ at disaggregated job $j \in o$

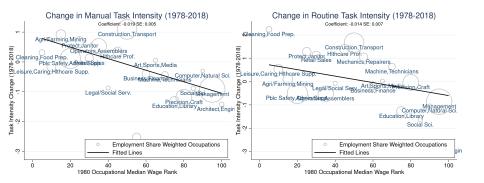

$$z_{o,t}^s \equiv \sum_{j \in o} \omega_{j,t}^s z_{j,t}^s$$
 where $z_{j,t}^s \equiv \sum_{c \in s} z_{j,t}^c$ $\omega_{j,t} \equiv rac{L_{j,t}}{\sum_{j'} L_{j',t}}$

 Across disaggregated OCC j's, weighted average of skill composite L_{j,t}: OCC employment from OES (O*NET); number of job ads (APST) as weights

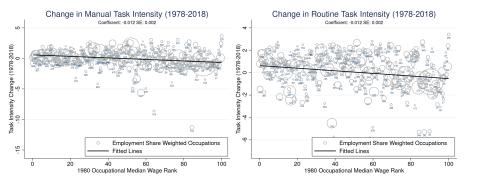

 Weighted studentization of skill measure for each year

Purge potential differences in data reporting standard (e.g. Acemoglu-Autor '11)

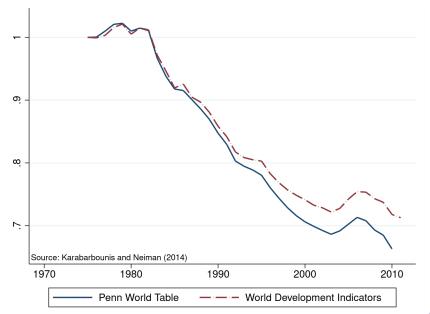

Biased technical change in computer •Back


Biased technical change in computer: 3-digit

Biased technical change in social: group/3-digit



Biased technical change in manual/routine •Back



↑ routine/manual task intensity concentrated at low-paying occupations
³-

Biased technical change in manual/routine: 3-digit

Decline in investment prices after since 1980s • Back

Conditional on h, allocate time to maximize profits:

$$\max_{l_{oegs}} P_o Y_{oeg}$$
 s.t. $\sum_s l_{oegs} = h$

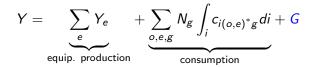
Allocated time across tasks:

$$\therefore I_{oegs} = \frac{\alpha_{oes}}{\sum_{s} \alpha_{oes}} h$$

Intuition in partial equilibrium

Size of earnings is determined by both level λ_x and progressivity τ_x :

$$w_{g}\left(\lambda_{x},\tau_{x}\right)=\left(1-\lambda_{x}\right)h\left(\tau_{x}\right)^{1-\tau_{x}}\Gamma\left(1-\frac{1-\tau_{x}}{\theta}\right)\left\{\sum_{oe}P_{oeg}\left(\tau_{x}\right)^{\theta}\right\}^{\frac{1-\tau_{x}}{\theta}}$$


• Progressive tax τ_x compresses comparative advantage:

$$\underbrace{\pi_{oeg}\left(\lambda_{\mathsf{x}},\tau_{\mathsf{x}}\right)}_{\text{worker alloc.}} = \frac{P_{oeg}\left(\tau_{\mathsf{x}}\right)^{\theta}}{\sum_{(o,e)'} P_{(o,e)'g}\left(\tau_{\mathsf{x}}\right)^{\theta}}$$

Government and resource constraints

 Ω_{oeg} : the set of workers from demographic group g who choose (o, e) pair

Final goods market clears:

• Govt. budget is respected by candidates $x \in \{L, R\}$:

$$G = \sum_{o,e,g} N_g \int_{i \in \Omega_{oeg}} \left[P_{oeg} h_i \epsilon_{ioe} - (1 - \lambda_x) \left(P_{oeg} h_i \epsilon_{ioe} \right)^{1 - \tau_x} \right] dF(\epsilon)$$

Bringing the model to the data (1)

Direct data measurement

	Parameter (#)	Data / Source	Details
α_{oes}	Task importance (48)	Task intensity, ICT usage (APST, O*NET)	► More
q_e	Equip. efficiency (2)	ICT usage, quality-adj. prices (CJK)	► More
π_g	Population shares (12)	Employment shares (ACS)	
ψ_{g}	Turnout rates (12)	Voter turnout (CPS-Vote)	► More
ξ	Labor hour elasticity	tax-adjusted Frisch elasticity	$\xi \left(1 - au ight) = 1$
θ	Wage dispersion	Caunedo et al. (2021)	1.24
α_e	Equipment share (2)	Burstein et al. (2013)	0.24
ho	Demand elasticity	Burstein et al. (2019)	1.78
G	Govt. expenditures	Krusell and Rios-Rull (1999)	0.191

ICT usage rate: APST/O*NET Tools & Technology

$$\mathsf{ICT} \ \mathsf{Usage}_{ot} = \begin{cases} \frac{\sum_k \mathsf{Mentions of Technology } k \text{ at job } j \text{ in occ } o}{\#\mathsf{Job ads at job } j \text{ in occ } o} & :\mathsf{APST} \\ \frac{\#\mathsf{Technology Used at job } j \text{ in occ } o}{\#\mathsf{All Types of Tools Used at job } j \text{ in occ } o} & :\mathsf{O*NET} \end{cases}$$

Project task intensity onto ICT usage, and factor out relative importance:

Task Intensity_{oest} = β_s ICT Usage_{ot} + γ Relative Imp_{ot} + δ_o + η_t + ϵ_{oest}

Use the predicted values as proxy for task importance:

$$\begin{aligned} \widetilde{\mathsf{Task Intensity}}_{oest} = & \hat{\beta}_s \mathsf{ICT Usage}_{ot} + \hat{\delta}_o \\ \text{where} \quad \mathsf{ICT Usage}_{ot} = \begin{cases} \overline{\mathsf{ICT Usage}} & \text{if } e = \mathsf{ICT} \\ 0 & \text{if } e = \mathsf{non-ICT} \end{cases} \end{aligned}$$

where predicted values are normalized to bridge from data to the model:

$$\alpha_{oest} = \bar{\alpha}_e \times \frac{\widehat{\text{Task Intensity}_{oest}}}{\sum_{s'} \widehat{\text{Task Intensity}_{oes't}}}$$

Equipment efficiency

In the model, profit maximization of equipment producers implies:

$$\max_{Y_e} P_e q_e Y_e - Y_e \implies \therefore q_e = \frac{1}{P_e}$$

In the data, define whether a job (3-digit) is ICT-intense or not:

$$j \in \begin{cases} o_{e=\mathsf{ICT}} & \text{if } j\text{'s rank} > p_{50} (\mathsf{ICT Intensity}_j) \\ o_{e=\mathsf{non-ICT}} & \text{if } j\text{'s rank} \le p_{50} (\mathsf{ICT Intensity}_j) \end{cases}$$

Weighted average of quality-adjusted prices

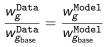
$$P_{j\in o_e}=rac{1}{q_e}$$

▶ from Caunedo et al.'s (2021) dataset and ICT usage measure

Bringing the model to the data (2) \blacksquare

	Parameter (#)	Data / Source	Details
Hg	Worker productivity (12)	Post-tax wage (CPS, NBER TAXSIM)	► More
ω_{g}	Political weight (12)	Stated economic/social preferences (GSS)	► More
ϕ_o	Returns to skill invest. (6)	Occupation employment share (ACS)	► More
χ_g	Education costs (2)	Young college share (CPS)	1.064, 1.439
φ	Disutility of work	Employment-population ratio (FRED)	1.405

Parameters estimated jointly (exact fit):


Maximum-likelihood estimation of political weight

- Trade-off between voters' economic and social preferences
- ▶ Need panel data ⇒ synthetic panel of voter groups (GSS)

(1) redistribution, (2) political spectrum, (3) controversial social issues

Productivity H_g , returns to HC invest., edu. cost χ_g

▶ H_g : Expected wage per demographic group (base: young, male, HS)

• ϕ_o : Occupation employment ratio (base: managers/professionals)

$$\frac{\pi_o^{\texttt{Data}}}{\pi_{o_{\texttt{base}}}^{\texttt{Data}}} = \frac{\pi_o^{\texttt{Model}}}{\pi_{o_{\texttt{base}}}^{\texttt{Model}}}$$

> χ_g : Population ratio between college grads vs. HS grads

$$\frac{\pi_{\{\text{Young}\}\times\text{Gender}\times\{\text{Coll}\}}{\pi_{\{\text{Young}\}\times\text{Gender}\times\{\text{HS}\}}} = \frac{\pi_{\{\text{Young}\}\times\text{Gender}\times\{\text{Coll}\}}{\pi_{\{\text{Young}\}\times\text{Gender}\times\{\text{HS}\}}}$$

Political bias (Back)

• Parametrize
$$\mu_{gt} = X_{1gt}\beta_{\mu}$$
 and $\sigma_{gt} = X_{2gt}\beta_{\sigma}$:
 $\Phi^{-1}(\omega_{gt}) = \gamma_{gt} = -\sigma_{gt}^{-1}[\mu_{gt} + \eta_{gt} + \eta_t]$

• Maximum likelihood to obtain $\{\hat{\mu}_{gt}, \hat{\sigma}_{gt}, \hat{\sigma}\}$

$$\log \mathcal{L}(\gamma_t) = -\frac{1}{2} \left\{ \log \left(1 + \sum_g \left(\frac{\sigma}{\sigma_g} \right)^2 \right) + \sum_g \log \left(\frac{\sigma_g}{\sigma_{gt}} \right)^2 + G \log (2\pi) + \sum_g \left(\frac{\gamma_{gt} \sigma_{gt} + \mu_{gt}}{\sigma_g} \right)^2 - \sigma^2 \frac{\left(\sum_g \frac{\left[\gamma_{gt} \sigma_{gt} + \mu_{gt} \right]}{\sigma_g^2} \right)^2}{1 + \sum_g \left(\frac{\sigma}{\sigma_g} \right)^2} \right\}$$

• Estimates of political weight $\hat{\omega}_{gt}$:

$$\hat{\omega}_{g} = \frac{1}{T} \sum_{t=1}^{T} \hat{\omega}_{gt}$$
 where $\hat{\omega}_{gt} = \phi \left(-\frac{\hat{\mu}_{gt}}{\hat{\sigma}_{gt}} \right)$

Groups	ω_{g}	$\psi_{\mathbf{g}}$	Groups	ω_{g}	$\psi_{\mathbf{g}}$
Young, Male, HS	0.0845	0.462	Middle, Male, Coll	0.0827	0.860
Young, Female, HS	0.0847	0.498	Middle, Female, Coll	0.0841	0.850
Young, Male, Coll	0.0837	0.752	Old, Male, HS	0.0824	0.718
Young, Female, Coll	0.0847	0.736	Old, Female, HS	0.0825	0.712
Middle, Male, HS	0.0836	0.613	Old, Male, Coll	0.0803	0.890
Middle, Female, HS	0.0841	0.647	Old, Female, Coll	0.0826	0.913