Uneven Firm Growth in a Globalized World

Xiaomei Sui

The University of Hong Kong

August 2023

Uneven firm growth in recent decades in OECD:

• Industry leaders grow faster in productivity and sales than followers within a country Andrews et al. (2016), Autor et al. (2020)...

Uneven firm growth in recent decades in OECD:

• Industry leaders grow faster in productivity and sales than followers within a country Andrews et al. (2016), Autor et al. (2020)...

Why do we care?

- Key for rising industrial concentration; "problem of bigness"...
- Impact on aggregate productivity growth: faster or slower?

Uneven firm growth in recent decades in OECD:

• Industry leaders grow faster in productivity and sales than followers within a country Andrews et al. (2016), Autor et al. (2020)...

Why do we care?

- Key for rising industrial concentration; "problem of bigness"...
- Impact on aggregate productivity growth: faster or slower?

Potential cause: globalization, e.g., decreasing trade cost, increasing international knowledge spillover...

Uneven firm growth in recent decades in OECD:

• Industry leaders grow faster in productivity and sales than followers within a country Andrews et al. (2016), Autor et al. (2020)...

Why do we care?

- Key for rising industrial concentration; "problem of bigness"...
- Impact on aggregate productivity growth: faster or slower?

Potential cause: globalization, e.g., decreasing trade cost, increasing international knowledge spillover...

• Limited empirical or quantitative evidence

Uneven firm growth in recent decades in OECD:

• Industry leaders grow faster in productivity and sales than followers within a country Andrews et al. (2016), Autor et al. (2020)...

Why do we care?

- Key for rising industrial concentration; "problem of bigness"...
- Impact on aggregate productivity growth: faster or slower?

Potential cause: globalization, e.g., decreasing trade cost, increasing international knowledge spillover...

- Limited empirical or quantitative evidence
- Gutierrez and Philippon (2020): U.S. leaders grow faster in foreign sales compared to domestic sales

- 1. Does globalization play a role in generating uneven firm growth in OECD?
 - If so, in what ways?
- 2. Effect on industrial concentration and aggregate productivity growth?

1. Develop a two-country endogenous growth model with **two new features**

1. Develop a two-country endogenous growth model with **two new features** based on Akcigit-Ates-Impullitti (2018), Liu-Mian-Sufi (2022), etc

- i. oligopolistic international and domestic competition
 - \rightarrow strategic interactions based on tech gaps

- 1. Develop a two-country endogenous growth model with **two new features** based on Akcigit-Ates-Impullitti (2018), Liu-Mian-Sufi (2022), etc

 - i. oligopolistic international and domestic competition
 - $\rightarrow~$ strategic interactions based on tech gaps
 - ii. flexible innovation process: lower (or higher) innovation probability if more left behind

1. Develop a two-country endogenous growth model with **two new features**

- i. oligopolistic international and domestic competition
 - $\rightarrow~$ strategic interactions based on tech gaps
- ii. flexible innovation process: lower (or higher) innovation probability if more left behind
 - * "innovation disadvantage(or advantage) of backwardness"

 $1. \ \mbox{Develop}$ a two-country endogenous growth model with two new features

- i. oligopolistic international and domestic competition
 - $\rightarrow~$ strategic interactions based on tech gaps
- ii. flexible innovation process: lower (or higher) innovation probability if more left behind
 - * "innovation *disadvantage*(or *advantage*) of backwardness"
- effects of globalization depend on innovation process
 - ▶ disadvantage: leaders innovates more than followers \rightarrow concentration \uparrow , TFPg could \downarrow
 - ▶ advantage: followers innovates more than leaders \rightarrow concentration \downarrow , TFPg \uparrow

 $1. \ \mbox{Develop}$ a two-country endogenous growth model with two new features

- i. oligopolistic international and domestic competition
 - $\rightarrow~$ strategic interactions based on tech gaps
- ii. flexible innovation process: lower (or higher) innovation probability if more left behind
 - * "innovation *disadvantage*(or *advantage*) of backwardness"
- effects of globalization depend on innovation process
 - ▶ disadvantage: leaders innovates more than followers \rightarrow concentration \uparrow , TFPg could \downarrow
 - advantage: followers innovates more than leaders \rightarrow concentration \downarrow , TFPg \uparrow
- 2. Provide suggestive evidence for innovation *disadvantage* of backwardness
 - fewer patents/citations if more left behind

3. Quantify effects of globalization on concentration and productivity growth

- 3. Quantify effects of globalization on concentration and productivity growth
 - an OECD country V.S. ROW
 - globalization: int'l knowledge spillover \uparrow , trade iceberg cost \downarrow

- 3. Quantify effects of globalization on concentration and productivity growth
 - an OECD country V.S. ROW
 - $\blacktriangleright\,$ globalization: int'l knowledge spillover $\uparrow,$ trade iceberg cost $\downarrow\,$

- explain concentration \uparrow (\approx 70%) and TFPg \downarrow (\approx 40%) in the OECD data

- 3. Quantify effects of globalization on concentration and productivity growth
 - an OECD country V.S. ROW
 - $\blacktriangleright\,$ globalization: int'l knowledge spillover $\uparrow,$ trade iceberg cost $\downarrow\,$

- explain concentration \uparrow (\approx 70%) and TFPg \downarrow (\approx 40%) in the OECD data
 - mainly via market size effect
 as opposed to foreign competition effect (import competition, int'l business stealing)

- 3. Quantify effects of globalization on concentration and productivity growth
 - an OECD country V.S. ROW
 - $\blacktriangleright\,$ globalization: int'l knowledge spillover $\uparrow,$ trade iceberg cost $\downarrow\,$

- explain concentration \uparrow (\approx 70%) and TFPg \downarrow (\approx 40%) in the OECD data
 - mainly via market size effect
 as opposed to foreign competition effect (import competition, int'l business stealing)
- explain OECD's global output share

- 3. Quantify effects of globalization on concentration and productivity growth
 - an OECD country V.S. ROW
 - globalization: int'l knowledge spillover \uparrow , trade iceberg cost \downarrow

- explain concentration \uparrow (\approx 70%) and TFPg \downarrow (\approx 40%) in the OECD data
 - mainly via market size effect
 as opposed to foreign competition effect (import competition, int'l business stealing)
- explain OECD's global output share
- front-loaded welfare gains, ROW benefits more

- 3. Quantify effects of globalization on concentration and productivity growth
 - an OECD country V.S. ROW
 - globalization: int'l knowledge spillover \uparrow , trade iceberg cost \downarrow

- explain concentration \uparrow (\approx 70%) and TFPg \downarrow (\approx 40%) in the OECD data
 - mainly via market size effect
 as opposed to foreign competition effect (import competition, int'l business stealing)
- explain OECD's global output share
- front-loaded welfare gains, ROW benefits more

- keys to my findings: two new model features
 - ★ strategic domestic competition in an open economy
 - ★ innovation disadvantage of backwardness

Model Mechanism

Globalization brings larger foreign market size

• Leader export profits & innovation \uparrow by more \Rightarrow concentration \uparrow , short-run growth \uparrow

Model Mechanism

Globalization brings larger foreign market size

 Leader export profits & innovation ↑ by more ⇒ concentration ↑, short-run growth ↑
 innovation disadvantage of backwardness
 follower innovation ↓
 less competition from followers
 leader innovation ↓

Model Mechanism

Globalization brings larger foreign market size

 Leader export profits & innovation ↑ by more ⇒ concentration ↑, short-run growth ↑
 innovation disadvantage of backwardness
 follower innovation ↓
 less competition from followers
 leader innovation ↓

Globalization brings harsher foreign competition

• leader innovation \downarrow by more

Contribution to the Literature

The rise in industrial concentration and productivity growth slowdown in OECD

- Olmstead-Rumsey (2022), Liu et al. (2022), Peters and Walsh (2022), Aghion et al. (2021), Cavenaile et al. (2019); Akcigit and Ates (2019, 2021), Gutiérrez and Philippon (2020)...
- new perspective: globalization plays a (unique) role

Trade, innovation, knowledge spillover, and heterogeneous firms

- Akcigit-Ates-Impullitti (2018), Cavenaile et al. (2022), Perla et al. (2021), Aghion et al. (2018), Atkeson and Burstein (2010), Akcigit and Melitz (2021); Hsieh-Klenow-Nath (2021), Rivera-Batiz and Romer (1991), Berkes et al. (2022)...
- new model features: market size effect decreases productivity growth

Schumpeterian growth and advantage of backwardness

- Peters (2020), Peters and Zilibotti (2021), Perla et al. (2021), Akcigit et al. (2018), Aghion et al. (2005)...
- new facts: innovation disadvantage of backwardness in domestic and int'l markets

Innovation, misallocation, and firm dynamics

- Hsieh and Klenow (2009), Acemoglu et al. (2018), König et al. (2020)...
- resource reallocation to more productive firms could generate long-run growth losses

Contents

1 Model

2 Facts for Innovation Disadvantage of Backwardness

⁽³⁾ Quantitative Analysis

④ Conclusion

- oligopolistic competition within and across countries
 - > à la Atkeson and Burstein (2008)
- innovation investment
- domestic and int'l knowledge spillovers

Model Setup

- continuous time, infinite horizon, country $c \in \{H, F\}$, industry $j \in [0, 1]$
- in each *c* : representative consumer, perfect competition in final good market • HH • Final good
- two intermediate firms per c-j: leader (i = 1) VS follower (i = 2)
 - static production + dynamic innovation

Intermediate Good Production

For firm *i* in industry *j*, country *c*, and time *t*,

•
$$y_{ijct}^T = q_{ijct} l_{ijct}$$
, $q_{1jct} \ge q_{2jct}$

- $y_{ijct}^{T} = y_{ijct}^{\text{domestic sales}} + y_{ijct}^{\text{exports}}$, iceberg cost $\tau_{c} > 1$
- imperfectly substitutable varieties within j, with $\epsilon > 1$
- choose price to maximize production profits

Intermediate Good Production

For firm *i* in industry *j*, country *c*, and time *t*,

- $y_{ijct}^T = q_{ijct} l_{ijct}$, $q_{1jct} \ge q_{2jct}$
- $y_{ijct}^{T} = y_{ijct}^{\text{domestic sales}} + y_{ijct}^{\text{exports}}$, iceberg cost $\tau_{c} > 1$
- imperfectly substitutable varieties within j, with $\epsilon > 1$
- choose price to maximize production profits

Model property:

Lemma A.1. Proposition A.1 Proposition 1.2

• strategic interactions take place within *j*, depend on relative productivity

Technology Gap (Relative Productivity)

3 technology gaps $oldsymbol{m}\equiv(m_H,m_F,m_G)$

•
$$\frac{q_{1jH}}{q_{2jH}} = \lambda^{m_H}$$

• m represents industry j, state variables \frown

• pay innovation cost $R_{ict}(m)$ to choose prob. $x_{ict}(m)$ s.t. innovate successfully

- pay innovation cost $R_{ict}(m)$ to choose prob. $x_{ict}(m)$ s.t. innovate successfully
 - prob. x captures innovation incentive

- pay innovation cost $R_{ict}(m)$ to choose prob. $x_{ict}(m)$ s.t. innovate successfully
 - prob. x captures innovation incentive

$$R_{ict}(\boldsymbol{m}) \equiv \frac{\alpha_{ic}}{\gamma_{ic}} x_{ict}(\boldsymbol{m})^{\gamma_{ic}} f_{ic}(\boldsymbol{m}) Y_{ct}, \quad \alpha_{ic} > 0, \gamma_{ic} > 1$$

- pay innovation cost $R_{ict}(m)$ to choose prob. $x_{ict}(m)$ s.t. innovate successfully
 - prob. x captures innovation incentive
 - $\blacktriangleright R_{ict}(\boldsymbol{m}) \equiv \frac{\alpha_{ic}}{\gamma_{ic}} x_{ict}(\boldsymbol{m})^{\gamma_{ic}} f_{ic}(\boldsymbol{m}) Y_{ct}, \quad \alpha_{ic} > 0, \gamma_{ic} > 1$
 - $f_{ic}(\boldsymbol{m}) \equiv \exp(m_H)^{\bar{\varphi}_{ic}} \exp(m_F)^{\bar{\psi}_{ic}} \exp(m_G)^{\bar{\chi}_{ic}}$
 - * $\bar{\varphi}_{2H}(\bar{\chi}_{iH}) < 0$: pay higher R when more left behind \rightarrow lower x when more left-behind
 - * $\bar{\varphi}_{2H}(\bar{\chi}_{iH}) > 0$: pay lower R when more left behind \rightarrow higher x when more left-behind

Endogenous Innovation: Outcome

successful innovation increases relative productivity by one step or more •

Endogenous Innovation: Outcome

successful innovation increases relative productivity by one step or more

► $F^{H}(m_{H}, m_{G}, n_{H}, n_{G}) \equiv c_{0} \times (n_{H} + \bar{m}_{H} + 1)^{-\phi_{H}^{\text{Dgap}}} \times (n_{G} + \bar{m}_{G} + 1)^{-\phi_{H}^{\text{Ggap}}} \times \mathbb{1}_{(m_{H}, m_{G}) \to (n_{H}, n_{G})},$ where $c_{0}(m_{H}, m_{G}, n_{H}, n_{G}) \equiv c_{0}$ is such that $\sum_{n_{H}} \sum_{n_{G}} F^{H}(m_{H}, m_{G}, n_{H}, n_{G}) = 1$
Endogenous Innovation: Outcome

- successful innovation increases relative productivity by one step or more
 - ► $F^H(m_H, m_G, n_H, n_G) \equiv c_0 \times (n_H + \bar{m}_H + 1)^{-\phi_H^{\text{Dgap}}} \times (n_G + \bar{m}_G + 1)^{-\phi_H^{\text{Ggap}}} \times \mathbb{1}_{(m_H, m_G) \to (n_H, n_G)},$ where $c_0(m_H, m_G, n_H, n_G) \equiv c_0$ is such that $\sum_{n_H} \sum_{n_G} F^H(m_H, m_G, n_H, n_G) = 1$
 - ★ ϕ_H^{Dgap} (ϕ_H^{Ggap}) > 0: more likely to jump one step → lower x when more left-behind e.g., Liu et al. (2022), Aghion et al. (2005)...
 - ★ ϕ_H^{Dgap} (ϕ_H^{Ggap}) < 0: more likely to jump more steps → higher x when more left-behind e.g., Akcigit et al. (2018), Peters (2020), Peters and Zilibotti (2021), Olmstead-Rumsey (2022)...

Endogenous Innovation: Outcome

- successful innovation increases relative productivity by one step or more
 - ► $F^H(m_H, m_G, n_H, n_G) \equiv c_0 \times (n_H + \bar{m}_H + 1)^{-\phi_H^{\text{Dgap}}} \times (n_G + \bar{m}_G + 1)^{-\phi_H^{\text{Ggap}}} \times \mathbb{1}_{(m_H, m_G) \to (n_H, n_G)},$ where $c_0(m_H, m_G, n_H, n_G) \equiv c_0$ is such that $\sum_{n_H} \sum_{n_G} F^H(m_H, m_G, n_H, n_G) = 1$
 - * $\phi_H^{\text{Dgap}}(\phi_H^{\text{Ggap}}) > 0$: more likely to jump one step \rightarrow lower x when more left-behind e.g., Liu et al. (2022), Aghion et al. (2005)...
 - * $\phi_H^{\text{Dgap}}(\phi_H^{\text{Ggap}}) < 0$: more likely to jump more steps \rightarrow higher x when more left-behind e.g., Akcigit et al. (2018), Peters (2020), Peters and Zilibotti (2021), Olmstead-Rumsey (2022)...
- lower x when more left-behind: "innovation disadvantage of backwardness"
 - counterpart of innovation advantage of backwardness in the literature see, e.g., Akcigit et al. (2018)

Exogeneous Knowledge Spillovers

Spillovers from competitors

- followers get domestic knowledge spillover with prob. κ
- leaders and followers get international knowledge spillover with prob. ι
 - if productivity lower than foreign leaders

Exogeneous Knowledge Spillovers

Spillovers from competitors

- followers get domestic knowledge spillover with prob. κ
- leaders and followers get international knowledge spillover with prob. *i*
 - if productivity lower than foreign leaders

Knowledge spillovers lead to higher relative productivity

• same as endogenous innovation

Balanced Growth Path (BGP) Equilibrium

Definition 1. A balanced growth path equilibrium of the two-country open economy consists of an allocation $\{y_{ict}, y_{ict}^*, l_{ict}, l_{ict}^*, x_{ict}, Y_{ct}, C_{ct}, L_c, R_{ct}, \{\mu_t(\boldsymbol{m}), Q_{ct}(\boldsymbol{m})\}_{\boldsymbol{m} \equiv (m_c, m_{c'}, m_G)}\}_{i \in \{1,2\}, j \in [0,1]}^{c,c' \in \{H,F\}, t \in [0,\infty)}$, and prices $\{r_{ct}, w_{ct}, P_{ct}, p_{ict}\}_{i \in \{1,2\}, j \in [0,1]}^{c \in \{H,F\}, t \in [0,\infty)}$ such that for any $m_c \in \{0, ..., \bar{m}_c\}$, $m_G \in \{-\bar{m}_G, ..., 0, ..., \bar{m}_G\}$ and all t,

(i) all agents' decisions optimize;

(ii) asset market clears, pinning down r_{ct} via the household's Euler equation;

(iii) labor market clears, pinning down the wage rate w_{ct} ;

(iv) final good market clears;

(v) trade is balanced in intermediate good sector; and

(vi) $\mu_t(m)$ and $Q_{ct}(m)$ evolve as specified and are consistent with firms' choices of x_{ict} .

 \bullet evolution of distribution $\mu(m)$ \bullet growth \bullet market clearing

Contents

1 Model

2 Facts for Innovation Disadvantage of Backwardness

⁽³⁾ Quantitative Analysis

④ Conclusion

Data

Define industry leaders and followers: cf. Kroen-Liu-Mian-Sufi (2021)...

- leaders: top 5% firms by sales in 2-digit industry in each country-year
- followers: other firms
 - data source: Orbis 1999-2004; European countries

Data

Define industry leaders and followers: cf. Kroen-Liu-Mian-Sufi (2021)...

- leaders: top 5% firms by sales in 2-digit industry in each country-year
- followers: other firms
 - data source: Orbis 1999-2004; European countries

Measure firm innovation incentive by standardized number of patent citations:

• innovation incentive \propto patent value \propto patent citations Kogan et al. (2017)...

Data

Define industry leaders and followers: cf. Kroen-Liu-Mian-Sufi (2021)...

- leaders: top 5% firms by sales in 2-digit industry in each country-year
- followers: other firms
 - data source: Orbis 1999-2004; European countries

Measure firm innovation incentive by standardized number of patent citations:

• innovation incentive \propto patent value \propto patent citations Kogan et al. (2017)...

Measure tech gaps by sales difference:

- domestic gap: log difference in sales between leaders and followers (leader premium)
- foreign gap: log difference in sales in other countries
- global gap: global output share of OECD

Firm Innovation Incentive Over Tech Gaps

For firm i in industry j, country c, and year t,

measured innovation $_{ijct} = \beta_0 + \beta_1$ leader premium $_{jct} + \beta_2$ global output share $_{jct} + \beta_3$ leader premium $_{jc't} + \beta_2$ global output share $_{jct} + \beta_3$ leader premium $_{jc't} + \beta_2$ global output share $_{jct} + \beta_3$ leader premium $_{jc't} + \beta_3$ leader p

 $+\beta_4 \text{leader premium}_{jct}^2 + \beta_5 \text{global output share}_{jct}^2 + \beta_6 \text{leader premium}_{jc't}^2 + \gamma_{c,t} + \frac{\delta_i}{\epsilon} + \epsilon_{ijct}$

Firm Innovation Incentive Over Tech Gaps

For firm i in industry j, country c, and year t,

 $\text{measured innovation}_{ijct} = \beta_0 + \beta_1 \text{leader premium}_{jct} + \beta_2 \text{global output share}_{jct} + \beta_3 \text{leader premium}_{jc't} + \beta_3 \text{leader premiu$

 $+\beta_4 \text{leader premium}_{jct}^2 + \beta_5 \text{global output share}_{jct}^2 + \beta_6 \text{leader premium}_{jc't}^2 + \gamma_{c,t} + \frac{\delta_i}{\delta_i} + \epsilon_{ijct}$

c fitted value over domestic gap

d fitted value over global gap

• Lower innovation incentive when more left behind the domestic or global technology frontier

Robustness

- Alternative definition of leaders
 - ▶ top 10%, top 25%
- Alternative data sample
 - drop firms that never have patents
- Alternative measure of innovation
 - number of patents, citations per patent
 - TFPR growth, sales growth
- Alternative measure of technology gaps
 - lagged leader sales premium
 - ▶ leader market share among domestic firms, HHI; OECD global export share
 - TFPR, number of patents
- Alternative empirical specification
 - higher order terms, interaction terms
 - additional firm-level controls (leverage, sales)

Contents

1 Model

2 Facts for Innovation Disadvantage of Backwardness

3 Quantitative Analysis

④ Conclusion

Parameterization

initial BGP + new BGP

- Foreign has larger market size L_c and lower innovation efficiency than Home
 - Home: an advanced OECD country; Foreign: ROW

- Foreign has larger market size L_c and lower innovation efficiency than Home
 - Home: an advanced OECD country; Foreign: ROW
- Initial BGP: calibrate to data moments in 1990s (1995-2000)
 - 1. aggregate variables: mean export intensity, TFPg, OECD's relative TFP, R&D/GDP...
 - 2. innovation decisions: patent citations/ R&D expenditures over 3 tech gaps (new)
 - 3. knowledge spillovers: isolate confounding factors for ι (new)

- Foreign has larger market size L_c and lower innovation efficiency than Home
 - Home: an advanced OECD country; Foreign: ROW
- Initial BGP: calibrate to data moments in 1990s (1995-2000)
 - 1. aggregate variables: mean export intensity, TFPg, OECD's relative TFP, R&D/GDP...
 - 2. innovation decisions: patent citations/ R&D expenditures over 3 tech gaps (new)
 - 3. knowledge spillovers: isolate confounding factors for ι (new)
- New BGP: reestimate parameters to 2010s (2010-2015)

- Foreign has larger market size L_c and lower innovation efficiency than Home
 - Home: an advanced OECD country; Foreign: ROW
- Initial BGP: calibrate to data moments in 1990s (1995-2000)
 - 1. aggregate variables: mean export intensity, TFPg, OECD's relative TFP, R&D/GDP...
 - 2. innovation decisions: patent citations/ R&D expenditures over 3 tech gaps (new)
 - 3. knowledge spillovers: isolate confounding factors for ι (new)
- New BGP: reestimate parameters to 2010s (2010-2015)
- Back out role of **globalization**: change $\{\iota, \tau\}$ to $\{\iota', \tau'\}$ holding others fixed

- Foreign has larger market size L_c and lower innovation efficiency than Home
 - Home: an advanced OECD country; Foreign: ROW
- Initial BGP: calibrate to data moments in 1990s (1995-2000)
 - 1. aggregate variables: mean export intensity, TFPg, OECD's relative TFP, R&D/GDP...
 - 2. innovation decisions: patent citations/ R&D expenditures over 3 tech gaps (new)
 - 3. knowledge spillovers: isolate confounding factors for ι (new)
- New BGP: reestimate parameters to 2010s (2010-2015)
- Back out role of **globalization**: change $\{\iota, \tau\}$ to $\{\iota', \tau'\}$ holding others fixed

Parameter	Initial BG	P New BGP	Targeted Mome		
				Data	Model
Trade iceberg cost τ	1.91	1.83	Δ Mean export intensity	0.07	0.07
Int'l knowledge spillover ι	0.01	0.05	$\Delta \text{OECD's}$ relative TFP	-12.4	-12.7

Standard Parameterization in Initial BGP

External Parame	External Parameter		Notation	Value	Identification	٦ ٦	
Fraction of lead	Fraction of leaders in a country			0.05	Empirical fac	ts	
Labor force in H	lome coui	ntry	L_H	1	Normalizatio	n	
Innovation cost	elasticity		γ_{ic}	2	Common est	imates	
Discount factor			ho	0.05	Real interest	rate	
nternal Parameter	Notation	n Value	!	Т	argeted Mom	ents	
						Data	Model
Panel A. Aggregate variable	:5						
labor force in Foreign	L_F	30	Mean gl	obal o	utput share	0.06	0.06
Elasticity of substitution	ϵ	5	Aggrega	te mai	rkup	1.20 - 1.3	0 1.30
Trade iceberg cost	$ au_c$	1.91	Mean ex	(port i	ntensity	0.17	0.17
Productivity step size	λ	1.08	TFP grov	wth ra	te,%	1.05	1.05
nnovation cost scale	α_{1H}	18.73	R&D/GE	DP in (DECD	2.27	2.30
	α_{1F}	109.5	6R&D/GE	DP in F	ROW	1.91	1.87
	α_{2H}	2.97	Mean le	ader ir	nno. premium	0.25	0.32
	α_{2F}	7.83	Std lead	er inno	o. premium	0.48	0.56

Parameterization in Initial BGP: Innovation Cost

• directly discipline by the data

Parameter	Notation	Value	Targeted Moments					
			Data	Model				
Panel B. Sta	ite-depend	ent Inno	ovation Cost					
	$ar{arphi}_{1H},ar{\psi}_{1F}$	1.51 /	β_1^{leader} (R&D, OECD leader sales premium) 3.453***	3.322				
	$ar{arphi}_{2H},ar{\psi}_{2F}$	1.33 $m{\mu}$	$B_1^{follower}$ (R&D, OECD leader sales premium) 3.188***	3.127				
	$ar{\psi}_{1H}$, $ar{\psi}_{2H}$	0.0 β	$\mathcal{P}_{3}^{leader}(R\&D, ROW eader sales premium) 0.000^{***}$	0.000				
	$ar{arphi}_{1F}$, $ar{arphi}_{2F}$	0.0 β	$\mathcal{B}_3^{follower}$ (R&D, ROW leader sales premium) 0.000***	0.000				
	$ar{\chi}_{1H}$, $ig ar{\chi}_{1F}ig $	0.01 β	β_2^{leader} (R&D, OECD global output share) 0.054***	0.033				
	$ar{\chi}_{2H}$, $ig ar{\chi}_{2F}ig $	0.02 β	$B_2^{\text{follower}}(\text{R\&D, OECD global output share}) 0.372^{***}$	0.149				

Parameterization in Initial BGP: Innovation Step Size

• infer from patent data

Parameter	Notation	Value	Targeted Moments	5	
				Data	Model
Panel C. Ini	novation Ste	ep Size			
Domestic	$\phi_{H}^{Dgap}, \phi_{F}^{Dgap}$	5.61	β_1 (inno., OECD leader sales premium)	-0.495***	-0.442
Int'l	$\phi_H^{Ggap}, \phi_F^{Ggap}$	5.93	eta_2 (inno., OECD global output share)	72.973**	68.822
			eta_4 (inno., OECD leader sales premium ²)	0.021	0.024
			eta_5 (inno., OECD global output share 2) $-$	-525.275**	-436.145
			eta_3 (inno., ROW leader sales premium)	-1.803***	-1.291
			β_6 (inno., ROW leader sales premium ²)	0.096	0.083

Parameterization in Initial BGP: Knowledge Spillover

- follow the literature: spillovers explain "what cannot explained by innovation"
- spillovers are closely related to relative productivity across countries/firms
- measure relative productivity by relative sales/TFP in the data
 - control confounding effects

Internal Parameter	Notatio	nValue	Targeted Moments
			DataModel
Panel D. Knowledge spille	overs		
Domestic spillover	κ	0.09 M	lean leader sales premium 3.10 3.09
Int'l spillover	ι	0.01 M	lean OECD's relative TFP 1.29 1.29

Infer Int'l Knowledge Spillover Parameter ι

- estimate ι indirectly to match relative TFP across countries
 - à la Prato (2021), etc
- other factors affecting relative TFP contaminates ι estimation
 - reduced misallocation from reforms; R&D subsidy; price diff via exchange rate changes...
- construct new industry TFP level data set to control other factors
 - construct the multilateral TFP index suggested by Caves et al. (1982)
 - data from EU KLEMS, OECD, WB, IMF, FRED
 - compensation of employees, capital stock, value-added, financial development index, labor quality improvement index, R&D-GDP ratio...

Validate Int'l Knowledge Spillover Parameter ι

• ι nicely targets the industry density distribution over OECD relative TFP

e Data

f Model

BGP Analysis

	Data	Model	globalization ($\iota \uparrow, \tau \downarrow$)	$\iota \uparrow$	$\tau\downarrow$
Uneven Firm Growth					
Δ Leader premium in sales	0.52	0.52	0.40		
Δ Leader premium in exports	0.91	0.92	0.76		

- leaders grow faster in exports than domestic sales
 - \Rightarrow foreign market vital to uneven firm growth

	Data	Model	globalization ($\iota \uparrow, \tau \downarrow$)	$\iota \uparrow$	$\tau\downarrow$
Uneven Firm Growth					
Δ Leader premium in sales	0.52	0.52	0.40		
Δ Leader premium in exports	0.91	0.92	0.76		
Aggregates					
ΔTFP growth rate,%	-0.78	-0.79	-0.33		
Δ Industrial concentration	0.08	0.08	0.06		

- leaders grow faster in exports than domestic sales
 - \Rightarrow foreign market vital to uneven firm growth
- globalization explains around 70% industrial concentration $\uparrow,$ 40% TFP growth \downarrow

	Data	Model	globalization ($\iota \uparrow, \tau \downarrow$)	$\iota \uparrow$	$\tau\downarrow$
Uneven Firm Growth					
Δ Leader premium in sales	0.52	0.52	0.40	0.38	0.02
Δ Leader premium in exports	0.91	0.92	0.76	0.75	0.002
Aggregates					
ΔTFP growth rate,%	-0.78	-0.79	-0.33	-0.33	0.00
Δ Industrial concentration	0.08	0.08	0.06	0.05	0.01

- leaders grow faster in exports than domestic sales
 - \Rightarrow foreign market vital to uneven firm growth
- $\bullet\,$ globalization explains around 70% industrial concentration $\uparrow,$ 40% TFP growth $\downarrow\,$
- international knowledge spillover force ($\iota \uparrow$) dominates trade cost force ($\tau \downarrow$)
 - larger market size effect

Effects of Globalization on OECD: Mechanism Decomposition

- market size effect (MS): leaders increase innovation by more
 - MS: change of τ , $\frac{w_F}{w_H}$, or $\frac{PY_F}{PY_H}$ increases profits
- int'l business stealing effect (IS) + import competition effect (IC): opposite
 - IS: change of ι directly affects x
 - IC: change of τ , $\frac{w_F}{w_H}$, or $\frac{PY_F}{PY_H}$ decreases profits

	$\iota\uparrow$, $\tau\downarrow$	$\iota \uparrow$		$ au\downarrow$		
		all effects(MS,IS)	IS	all effects(MS,IC)	MS	IC
Uneven Firm Growth						
Δ Leader premium in TFPg, %	0.10	0.10	-0.03	0.002	0.005	-0.002
Aggregates						
Δ TFP growth rate,%	-0.33	-0.33	-0.25	0.00		
Δ Industrial concentration	0.06	0.05	-0.05	0.01		

Role of the Key Model Elements

The Role of the Two Key Model Elements

• oligopolistic domestic competition + innovation disadvantage of backwardness

The Role of the Two Key Model Elements

• oligopolistic domestic competition + innovation disadvantage of backwardness

	Globalization	No domestic competition	Domestic innovation advantage of backwardness
		(1 firm per j, c)	($\phi_{H}^{Dgap} < 0$)
Uneven Firm Growth			
Δ Leader prem. in sales	0.40		-0.08
Δ Leader prem. in exports	0.76		-0.20
Aggregates			
Δ Productivity growth rate,%	-0.33	-0.08	0.46
Δ Industrial concentration	0.06		-0.05

- weaker domestic competition: growth \downarrow more than harsher foreign competition
- innovation advantage of backwardness: growth \uparrow , concentration \downarrow Compare to Akcigit-Ates-Impulliti (2018) • More counterfactuals • Non-linear g over m_H • Non-linear g over m_H

Additional Discussion

- 1. Policy implications 🕑
- 2. Other secular trends 💽
 - declining interest rate/research productivity/domestic knowledge spillover
- 3. Transition dynamics 💌
- 4. Welfare implications 💽
- 5. Additional empirical evidence 🗩
- 6. Model assumptions and extensions
 - not all firms export
 - endogenous entry and exit
 - alternative way of modelling spillovers
 - ★ lower innovation costs of firms w/o tech advantage
 - ★ int'l knowledge spillovers endogenously vary with trade

Contents

1 Model

2 Facts for Innovation Disadvantage of Backwardness

⁽³⁾ Quantitative Analysis

4 Conclusion

Conclusion

A new perspective:

- globalization leads to concentration increase & productivity growth slowdown
 - mainly via weaker domestic competition instead of harsher foreign competition
Conclusion

A new perspective:

- globalization leads to concentration increase & productivity growth slowdown
 - mainly via weaker domestic competition instead of harsher foreign competition

Two new model features:

- strategic domestic competition in open economy
- innovation disadvantage of backwardness

Conclusion

A new perspective:

- globalization leads to concentration increase & productivity growth slowdown
 - ▶ mainly via weaker domestic competition instead of harsher foreign competition

Two new model features:

- strategic domestic competition in open economy
- innovation disadvantage of backwardness

New facts for innovation disadvantage of backwardness:

• in both domestic and global market