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Motivation



Motivation
Switzerland: Logarithms and Levels (1980/I–2017/III)
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Motivation
Switzerland: Growth Rates and First Differences (1980/II–2017/III)
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Motivation
Switzerland: Moving Window Estimation – Coefficient to Interest Rate

ln
(Mt

Pt

)
= c + δt + β1 ln(Yt) + β2rt + ut
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line displays the IM-OLS estimates for β2. The corresponding 95% confidence
bands are given by the red and blue shaded areas.
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Motivation
Monitoring Euro Area Money Demand (1980/I–2017/III)
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Figure: Residuals based on estimation until 1998IV. Detection time 2009IV.
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Model and Theory



Linear Cointegrating Regression
Definition & Limitations by Construction

Linear Cointegrating Regression

yt = D′tθD + X̃ ′tθX + ut = Z ′tθ + ut ,

where Zt := [D′t , X̃ ′t ]′, θ := [θ′D , θ′X ]′, with:
deterministic regressors Dt ,
a non-cointegrated I(1) vector X̃t ,
and a stationary error term ut .

Linear cointegration may – by construction – be too restrictive:
The parameters are assumed to be constant.
The setting is linear in parameters and I(1) variables.
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Smooth Transition Cointegration
For Simplified Presentation: Same Variables in Both Parts

Smooth Transition Cointegration

yt = Z ′tθL + Z ′tθNL × G(st , θG ) + ut

with Zt , ut as above and:
a smooth and bounded transition function G(·),
and integrated variable or time trend as transition variable st .

Example: Logistic Transition Functions

LSTR1: G1(st , θG ) = 1
1 + exp(−γ(st − c)) −

1
2 , with γ > 0

LSTR2: G2(st , θG ) = 1
1 + exp(−γ(st − c)2) −

1
2 , with γ > 0
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Smooth Transition Cointegration
Transition Variable

For the transition variable st we consider two cases:

(i) st is an element of X̃t or is an I(1) process not cointegrated with X̃t ,

(ii) st = t.

To have a unified notation we define:

Xt :=

 X̃t in case st is an element of X̃t or st = t,[
X̃t
st

]
in case st is I(1) and not cointegrated with X̃t .

[Where in the second case st is ordered last w.l.o.g.]

We furthermore define vt := ∆Xt and denote its long-run variance
as usual by Ωvv .

Detailed Assumptions
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Testing for Smooth Transition Cointegration
Non-Identification under the Null Hypothesis

Testing linear cointegration against the alternative of smooth
transition cointegration corresponds to testing:

H0 : θNL = 0 vs. H1 : θNL 6= 0.

Under the null hypothesis of linear cointegration with γ = 0 some
parameters are unidentified, e. g., for LSTR1:

yt = Z ′tθL + Z ′tθNL ×
(

1
1 + exp (−0(st − c)) −

1
2

)
︸ ︷︷ ︸

=0

+ut .

This identification problem is tackled by using Taylor approximations
of the transition function.
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Testing for Smooth Transition Cointegration
Taylor Approximation

A Taylor approximation of order n leads to a model of the form

yt = Z ′tβ0 +
n∑

j=1
(Zts j

t )′βj + u∗t .

The null hypothesis of linearity of the cointegrating relationship is
tested in this auxiliary regression by testing:

H0 : [β′1, . . . , β′n]′ = 0 vs. H1 : [β′1, . . . , β′n]′ 6= 0.

Problems
The asymptotic analysis of LS estimators is complicated by the
occurrence of terms of the form Xts j

t .

Deriving consistency against fixed alternatives is non-trivial, both
with standard and “Saikkonen-triangular array” asymptotics.
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Testing for Smooth Transition Cointegration
Order of Taylor Approximation

As discussed in detail, e. g., in Luukkonen et al. (1988), there are
situations in which a first order Taylor approximation leads to tests
with trivial power.

Consider the following smooth transition model with the “nonlinear”
part only containing the intercept and with st = xt :

yt = θ1 + θ2xt + θ3 × G(xt , θG ) + ut .

A first order Taylor approximation leads to

yt = β1 + β2xt + u∗t ,

and therefore tests based on this approximation have trivial power.

In such cases higher order Taylor approximations, typically third
order, are used.
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Testing for Smooth Transition Cointegration
Multi-Collinearity by Design

Another issue that requires some care is multi-collinearity of
regressors in the Taylor approximation.

First, consider st = t and Dt = (1, t, . . . , tp−1)′ with p > 1, then
Dt ⊗ st = Dt ⊗ t = (t, t2, . . . , tp)′.

Clearly, for p > 1 at least the linear trend appears in Dt and Dt ⊗ st .

Second, if a constant is included (in the “linear” term) and st is
already an element of the regressors Xt,L the regressor st appears
twice.

This “multi-collinearity by construction” is easily overcome by
excluding the corresponding regressor(s) in the Taylor approximation
term(s).
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OLS Asymptotics

Asymptotic Behavior of the “X ′u-Term”
In case that st is an I(1) process:

T−
j+2
2

T∑
t=1

xti s
j
t ut ⇒

∫ 1

0
Bvi (r)Bj

s(r)dBu(r)

+ j∆su

∫ 1

0
Bvi (r)Bj−1

s (r)dr

+ ∆vu

∫ 1

0
Bj

s(r)dr

In case that st = t:

T−(j+1)
T∑

t=1

xti t
jut ⇒

∫ 1

0
Bvi (r)r jdBu(r)

+ ∆vu

∫ 1

0
r jdr
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Fully Modified OLS Estimation

The idea of FM-OLS is to correct for bias terms arising in the OLS
limit and to correct for the correlation between Xt , st and ut .

The auxiliary model can be written in more compact form:

yt = F ′t β + u∗t ,

with Ft = [1, st , . . . , sn
t ]′ ⊗ Zt and β = [β′0, . . . , β′n]′.

Fully Modified OLS
The FM-OLS estimator of β in the above model is given by

β̂+ =
( T∑

t=1
FtF ′t

)−1( T∑
t=1

Fty+
t −M∗

)
,

with y+
t := yt − v ′t Ω̂−1vv Ω̂vu and model specific correction term M∗.
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Integrated Modified OLS Estimation

Integrated Modified OLS
IM-OLS estimation is OLS estimation of the partial summed auxiliary
model augmented by Xt , i. e.,

Sy
t = SF

t
′β + X ′tγ + Su∗

t ,

= S F̃ ′
t β∗ + Su∗

t ,

where Sy
t :=

∑t
i=1 yi and similarly for SF

t and Su∗
t .

Adding Xt “soaks up” all dynamic correlation between the regressors and
the errors.

Partial summation lets us get rid of “integrated×stationary”-terms.

For IM-OLS estimation no choices with respect to tuning parameters have
to be made.

By using properly modified residuals fixed-b inference is possible.
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Integrated Modified OLS Estimation
Further Orthogonalization of the Residuals

As in Vogelsang and Wagner (2014) construct some additional
regressors:

at := t
T∑

j=1
S F̃

j −
t−1∑
j=1

j∑
s=1

S F̃
s , S F̃

t := [SF
t
′,X ′t ]′.

The fixed-b long-run variance estimator is based on the residuals
from the IM-OLS regression augmented by at :

Sy
t = S F̃

t
′β∗ + a′tκ+ Su∗

t .

Denoting the residuals with S̃u∗
t we use:

ω̂∗u·v := T−1
T∑

i=2

T∑
j=2

k
(
|i − j |

M

)
∆S̃u∗

i ∆S̃u∗
j .
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Testing for Smooth Transition Cointegration
FM-OLS: Wald-Type Test

The Wald-type test is based on FM-OLS estimation of:

yt = Z ′tβ0 + Q′tβQ + ut

The null hypothesis is H0 : βQ = 0; and the corresponding test
statistic is given by:

WFM :=
β̂+

Q
′(Q̃′Q̃)β̂+

Q
ω̂u·v

,

with Q̃ := Q − Z (Z ′Z )−1Z ′Q.
The conditional long-run variance estimator used is given by:

ω̂u·v := Ω̂uu − Ω̂uv Ω̂−1vv Ω̂vu,

using the OLS residuals of the above Taylor approximation and
vt = ∆Xt .
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Testing for Smooth Transition Cointegration
FM-OLS: LM-Type Test

The starting point is FM-OLS estimation of the null model:

yt = Z ′tβ0 + ut

The resulting FM-OLS residuals û+
t := y+

t − Z ′t β̂+
0 are then used as

dependent variable in:

û+
t = Q̃′tβQ̃ + ψt ,

with Q̃ := Q − Z(Z ′Z)−1Z ′Q.
The parameter βQ̃ needs to be estimated with a suitable correction to
FM-OLS; similar to Wagner and Hong (2016, Proposition 4).
This results in the test statistic:

LMFM :=
β̂+′

Q̃ (Q̃′Q̃)β̂+
Q̃

ω̃u·v
,

with ω̃u·v based on the residuals from the linear (null) model.
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Testing for Smooth Transition Cointegration
IM-OLS Tests: Only the Variance Estimator Differs

For IM-OLS testing is based on the equation:

Sy
t = SZ ′

t β0 + SQ′
t βQ + X ′t γ + Su

t ,

with the null being again H0 : βQ = 0, which is now part of a “bigger”
parameter vector β∗, i.e.,

βQ = RQβ∗ =
[
0 Idim(βQ ) 0

] [ β0
βQ
γ

]
= 0.

Since we use OLS in a linear regression model, Wald- and LM-type tests
only differ by the variance estimator chosen, and we end up with:

{W , LM,Fb}IM :=
β̂′Q,∗

(
RQV̂IMR ′Q

)−1
β̂Q,∗

ωu·v
,

with ωu·v ∈ {ω̂u·v , ω̃u·v , ω̂
∗
u·v} and V̂IM an estimator of the “X ′X”-part of

the estimator variance.
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Testing for Smooth Transition Cointegration
Standard Limit Null Distributions

Proposition
Under the null hypothesis of linear cointegration it holds that:

WFM, LMFM,WIM, LMIM
d→ χ2q,

with q = dim(βQ) depending on the model and the Taylor approximation
order.
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Testing for Smooth Transition Cointegration
Fixed-b Limit Null Distribution

Proposition
If M = bT with b ∈ (0, 1] being held fixed as T →∞, then it holds for
the fixed-b test statistic under the null hypothesis that:

FbIM
d→

χ2q

N(P̃∗)
,

with χ2q independent of N(P̃∗), where N(·) is a function of (a function
of) standard Wiener processes P̃ that depends upon bandwidth and
kernel function.
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The Test Statistics
Consistency Against Fixed Alternatives: Triangular Array Asymptotics

Proposition
Under the alternative hypothesis of smooth transition cointegration:

yt = Z ′tθL + Z ′tθNL × G(st,T , θG ) + ut ,

with θNL 6= 0, γ 6= 0 and st,T := T0
T t for time as transition variable and

st,T :=
√

T0
T st otherwise it holds that:

LMFM, LMIM = OP(T/MT ),

with MT denoting the bandwidth used for long-run covariance estimation.
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Finite Sample Performance



Finite Sample Performance
Simulation Design: Size

Under the null hypothesis we generate data according to:

yt = θ0 + θ1x1t + θ2x2t + ut ,

with the errors ut and vt = ∆xt generated as:

ut = ρ1ut−1 + εt + ρ2(e1t + e2t), u0 = 0,
vit = eit + 0.5ei,t−1, i = 1, 2,

with (εt , e1t , e2t)′ ∼ N (0, I3).
ρ1 controls the level of serial correlation in the error term ut , and ρ2
controls regressor endogeneity.
The parameter values are set to θ0 = θ1 = θ2 = 1.
T ∈ {100, 200, 500} and ρ1 = ρ2 ∈ {0, 0.3, 0.6, 0.8}.
The number of replications is 5,000 in all cases and all tests are
carried out at the nominal 5% level.
We use the Bartlett kernel and the Andrews (1991) bandwidth.
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Empirical Null Rejection Probabilities
Transition variable st = x2t

D-OLS FM-OLS IM-OLS

T ρ1, ρ2 WD,AIC WD,BIC WFM LMFM WIM LMIM FbIM
Panel A: First order Taylor approximation (n = 1)

100 .0 .0872 .0770 .1460 .0582 .1168 .0542 .0548
.3 .1474 .1392 .1540 .0672 .1526 .0800 .1304
.6 .2348 .1822 .1826 .0586 .1976 .1006 .2502
.8 .4256 .2630 .2536 .0610 .3028 .1544 .5190

200 .0 .0660 .0654 .1100 .0530 .0974 .0598 .0532
.3 .1116 .1112 .1260 .0636 .1164 .0780 .0936
.6 .1690 .1506 .1538 .0574 .1454 .0892 .1394
.8 .2742 .1948 .1940 .0498 .1960 .1020 .2918

Panel B: Third order Taylor approximation (n = 3)

100 .0 .1756 .1530 .3136 .0884 .2426 .0372 .0704
.3 .2588 .2380 .3006 .0578 .3128 .0690 .2350
.6 .4146 .3056 .3080 .0312 .3868 .0736 .6072
.8 .6482 .3916 .3874 .0678 .5590 .1110 .9030

200 .0 .0964 .0884 .2058 .0566 .1658 .0386 .0538
.3 .1784 .1742 .2096 .0510 .2178 .0686 .1346
.6 .2764 .2452 .2358 .0274 .2770 .0742 .3202
.8 .4490 .3126 .3022 .0286 .3976 .0720 .6646
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Empirical Null Rejection Probabilities
Transition variable st = t

D-OLS FM-OLS IM-OLS

T ρ1, ρ2 WD,AIC WD,BIC WFM LMFM WIM LMIM FbIM
Panel A: First order Taylor approximation (n = 1)

100 .0 .1168 .1014 .1260 .0542 .0926 .0546 .0592
.3 .1982 .1876 .2448 .1254 .1784 .1110 .1676
.6 .4100 .3312 .4622 .2344 .2824 .1346 .3676
.8 .7182 .5972 .6778 .3822 .5170 .2628 .7334

200 .0 .0598 .0568 .0592 .0476 .0544 .0512 .0498
.3 .1002 .0984 .1054 .0584 .0940 .0730 .0672
.6 .1788 .1750 .1568 .0460 .1024 .0740 .1060
.8 .3448 .3530 .2686 .0288 .1242 .0666 .1946

Panel B: Third order Taylor approximation (n = 3)

100 .0 .3040 .2620 .3352 .0808 .2404 .0498 .0862
.3 .4734 .4444 .5250 .2542 .4406 .1048 .3308
.6 .8300 .7438 .8578 .4638 .6844 .0932 .8158
.8 .9794 .9434 .9704 .6338 .9312 .2102 .9884

200 .0 .1352 .1272 .1650 .0616 .1146 .0486 .0588
.3 .2914 .2854 .4182 .2038 .2960 .0968 .1664
.6 .6146 .5542 .7010 .3656 .4432 .0732 .4900
.8 .9202 .8804 .9130 .5344 .7738 .1712 .8800
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Finite Sample Performance
Simulation Design: Power

For the alternative we use the following DGP:

yt = Z ′tθL + Z ′tθNL × G(st , γ, c) + ut ,

with Zt = [1, xt
′]′ and errors ut , vt = ∆xt as generated for the null.

The parameter values are set again to θL = [1, 1, 1]′.

As transition function we consider G(·) ∈ {G1(·),G2(·)} and
transition variable st ∈ {x2t , t}.

We consider location parameter c = 0 for st = x2t and c = T/2 for
st = t and use the scaling parameters γ ∈ {0.01, 0.1, 1, 10}.

We consider a grid of (including the null) 21 points for θNL := κθL,
with values for κ chosen from the interval [0, 2] on an equidistant
grid with mesh 0.1.
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Finite Sample Performance
Size-Corrected Power: LSTR1 with st = x2t
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Figure: Size-corrected power for T = 100, Taylor approximation of order
q = 1 and ρ1 = ρ2 = 0.3.
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Finite Sample Performance
Size-Corrected Power: LSTR2 with st = x2t
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Figure: Size-corrected power for T = 100, Taylor approximation of order
q = 1 and ρ1 = ρ2 = 0.3.
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Finite Sample Performance
Size-Corrected Power: LSTR2 with st = x2t
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Figure: Size-corrected power for T = 100, Taylor approximation of order
q = 3 and ρ1 = ρ2 = 0.3.
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Finite Sample Performance
Size-Corrected Power: LSTR1 with st = t
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Figure: Size-corrected power for T = 100, Taylor approximation of order
q = 1 and ρ1 = ρ2 = 0.3.
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Finite Sample Performance
Size-Corrected Power: LSTR2 with st = t
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Figure: Size-corrected power for T = 100, Taylor approximation of order
q = 1 and ρ1 = ρ2 = 0.3.
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Illustration with Long-Run Money
Demand



Long-Run Money Demand
A Simple Model

We consider the simple long-run money demand equation:

ln
(

Mt
Pt

)
= c + δt + β1 ln(Yt) + β2rt + ut ,

with (non-cointegrated) I(1) processes ln(Yt) and rt .

Mt is given by M3.

Pt is the consumer price index.

Yt is real gross domestic product.

rt is a 3-month interest rate.
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Long-Run Money Demand
Data Description

Variable Description Source

Yt Gross Domestic Product, Expenditure Approach,
Chained Volume Estimates, National Currency,
Quarterly Levels, Seasonally Adjusted,
National Reference Year, Reference Period: 2015− 16.

OECD

rt Nominal Short-Term Interest Rate,
Per Cent per Annum, Quarterly.

OECD

Mt Broad Money (M3), Seasonally Adjusted,
National Currency, Quarterly.

FRED

Pt Consumer Price Index (CPI), All Items,
Reference Period: 2015− 16 = 100, Quarterly.

OECD

All variables quarterly, seasonally adjusted with country specific
starting points and last observation 2017/III.
Australia, Canada, Czech Republic, Denmark, Israel, New Zealand,
Norway, South Korea, Sweden, Switzerland, UK, USA and Euro Area
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Long-Run Money Demand
Augmented Dickey-Fuller and Phillips-Perron Tests

ln(M3/P) ln(GDP) Interest Rate
ADF PP PP(fb) ADF PP PP(fb) ADF PP PP(fb)

AUS -1.76 -1.64 -1.61 -2.90 -3.74 -3.55 -2.92 -2.83 -2.84
CAN -2.54 -2.08 -1.81 -2.17 -2.35 -2.38 -3.36 -2.82 -2.80
CHE -1.59 -1.31 -1.05 -2.68 -2.58 -2.63 -2.95 -2.98 -2.97
CZE -2.32 -2.19 -2.25 -2.28 -1.86 -1.83 -1.96 -1.75 -1.70
DEN -2.25 -2.25 -2.26 -2.47 -1.99 -1.97 -2.62 -2.64 -2.66
ISR -2.62 -2.59 -2.57 -2.67 -2.76 -2.70 -2.23 -2.47 -2.46
KOR -3.61 -4.14 -4.49 -1.73 -1.56 -1.77 -2.70 -2.97 -2.95
NZL -3.10 -2.93 -2.90 -2.11 -2.26 -2.26 -2.81 -4.56 -4.62
NOR -1.93 -1.66 -1.57 -3.16 -3.16 -3.45 -2.82 -3.25 -3.22
SWE -2.19 -2.01 -1.88 -1.81 -1.99 -2.01 -4.33 -2.91 -3.06
UK -2.09 -1.08 -0.70 -1.49 -1.77 -1.71 -3.57 -2.72 -2.72
USA -0.72 -0.94 -0.92 -1.32 -1.61 -1.60 -3.24 -2.96 -2.94
EA -2.16 -1.18 -0.79 -2.18 -1.71 -1.81 -3.02 -2.79 -2.88

Table: Bold entries indicate rejection at the 5% level. PP(fb) denotes the
one-step version of the Vogelsang and Wagner (2013) test.
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Long-Run Money Demand
(No-)Cointegration Tests

Shin Test PU Test
D-OLS FM-OLS IM-OLS

AUS 0.1968 0.1670 0.0726 7.7920
CAN 0.2249 0.1139 0.0593 5.2664
CHE 0.6087 0.6440 0.1707 17.2928
CZE 0.2113 0.1479 0.0736 19.6403
DNK 0.1111 0.0848 0.0551 3.1702
ISR 0.2498 0.1533 0.0461 3.0915
KOR 0.2835 0.2270 0.0855 28.5091
NZL 0.1112 0.1015 0.0528 10.1979
NOR 0.1430 0.1351 0.0640 11.7283
SWE 0.0725 0.0572 0.0555 5.1052
UK 0.5892 0.4693 0.2325 6.3602
USA 0.0975 0.0418 0.0338 7.2720
EA 0.1642 0.0698 0.0430 8.2181

Table: Results of the cointegration test by Shin (1994) and the
no-cointegration test of Phillips and Ouliaris (1990) for the linear regression
using Andrews (1991) bandwidth and the Bartlett kernel. Bold entries indicate
rejection at the 5% level.
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Long-Run Money Demand
Moving Window Estimation – Coefficient to Interest Rate
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Figure: The red solid line displays the FM-OLS estimates and the blue dashed
line displays the IM-OLS estimates for β2. The corresponding 95% confidence
bands are given by the red and blue shaded areas.
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Moving Window Estimation – Coefficient to Interest Rate
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Figure: The red solid line displays the FM-OLS estimates and the blue dashed
line displays the IM-OLS estimates for β2. The corresponding 95% confidence
bands are given by the red and blue shaded areas.
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Long-Run Money Demand: st = rt

st = rt D-OLS FM-OLS IM-OLS

Start WD,AIC WD,BIC WFM LMFM WIM LMIM FbIM
Panel A: First Order Taylor Approximation (n = 1)

CAN 1970Q1 36.15 35.45 87.49 9.91 55.65 7.84 375.95
CHE 1980Q1 13.23 13.23 11.52 13.55 18.64 31.89 615.11
DEN 1995Q1 8.83 8.83 19.24 7.82 18.75 9.11 105.36
ISR 1995Q1 20.10 20.10 27.44 4.62 22.77 10.55 169.55
KOR 1991Q1 208.03 191.31 202.21 31.86 128.72 16.17 504.30
UK 1987Q1 5.55 4.28 5.10 55.05 13.28 59.11 814.81
USA 1964Q1 18.83 18.83 12.65 6.37 20.25 9.76 760.90
EA 1995Q1 36.79 34.95 25.59 3.74 26.31 8.54 1058.57

Panel B: Third Order Taylor Approximation (n = 3)

CAN 1970Q1 40.95 40.95 106.06 30.41 114.92 14.78 4786.17
CHE 1980Q1 106.90 106.90 132.06 39.87 153.55 42.09 6411.93
DEN 1995Q1 33.45 33.45 28.08 15.58 34.38 12.87 299.86
ISR 1995Q1 344.29 344.29 453.20 33.11 405.33 26.91 1579.14
KOR 1991Q1 602.69 602.69 623.73 39.45 545.76 25.71 2085.52
UK 1987Q1 175.69 271.37 271.63 285.23 277.68 70.45 2968.68
USA 1964Q1 23.19 23.19 61.97 17.32 86.37 13.94 2951.75
EA 1995Q1 398.03 129.51 103.86 15.02 112.53 11.80 4735.91

Table: Bold numbers indicate rejection at the 5% level. For the standard tests
the corresponding critical values of the χ2

3- and χ2
9-distribution are given by

7.81 and 16.92. 37 / 41



Long-Run Money Demand: st = t
st = t D-OLS FM-OLS IM-OLS

Start WD,AIC WD,BIC WFM LMFM WIM LMIM FbIM
Panel A: First Order Taylor Approximation (n = 1)

CAN 1970Q1 49.04 54.99 126.11 5.98 87.54 9.96 673.71
CHE 1980Q1 18.20 18.20 32.26 33.34 40.60 34.88 483.29
DEN 1995Q1 22.68 22.68 23.98 6.39 34.03 11.65 153.86
ISR 1995Q1 41.06 41.06 49.23 6.98 44.79 14.72 375.84
KOR 1991Q1 288.21 288.21 289.45 20.67 171.98 17.10 525.56
UK 1987Q1 22.24 4.44 3.53 37.03 11.71 49.54 917.39
USA 1964Q1 24.90 24.90 13.74 1.58 16.28 9.30 618.54
EA 1995Q1 50.95 68.41 36.19 4.27 34.30 8.38 2035.80

Panel B: Third Order Taylor Approximation (n = 3)

CAN 1970Q1 135.49 138.93 253.43 33.96 242.83 15.97 6252.21
CHE 1980Q1 1271.84 256.79 – 64.73 358.60 41.50 6332.94
DEN 1995Q1 71.59 71.59 84.76 22.35 97.21 13.22 357.12
ISR 1995Q1 529.44 529.44 183.54 40.04 232.44 23.63 1334.70
KOR 1991Q1 662.97 662.97 623.19 44.82 530.29 24.85 1563.99
UK 1987Q1 242.11 349.44 292.65 322.31 316.10 69.50 2420.62
USA 1964Q1 163.31 163.31 433.14 10.58 381.73 15.02 6729.98
EA 1995Q1 355.05 355.05 208.76 25.15 164.12 11.15 5223.22

Table: Bold numbers indicate rejection at the 5% level. For the standard tests
the corresponding critical values of the χ2

3- and χ2
9-distribution are given by

7.81 and 16.92. 38 / 41



Long-Run Money Demand
Summary of Test Findings

A large amount of rejections throughout across n and st .

Panel A: First Order Taylor Approximation (n = 1)

st = rt Canada, Denmark, South Korea, Switzerland
st = t South Korea, Switzerland

Panel B: Third Order Taylor Approximation (n = 3)

st ∈ {rt , t} Israel, South Korea, Switzerland, United Kingdom

Table: List of countries with rejections throughout.
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Summary and Conclusions



Summary and Conclusions

We have provided tests for the null of linear cointegration against
the alternative of smooth transition cointegration.

The tests are based on FM-OLS and IM-OLS estimators considered
for this type of Taylor approximation polynomial.

We face some limitations in the setting, both with respect to Xt and
also st .

Roughly, the LM-tests perform better than the Wald-tests.

The next step is to develop FM- and IM-type estimation for smooth
transition cointegration models.
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Assumptions



Assumptions
Regressors and Errors

Let {∆Xt}t∈Z = {vt}t∈Z and denote with {ξt}t∈Z = {[ut , v ′t ])′}t∈Z the
process generated by:

ξt = C(L)ξt =
∞∑
j=0

Cjξ
0
t−j ,

with
∑∞

j=1 j||Cj || <∞ and det(C(1)) 6= 0.

The process {ξ0t }t∈Z is a strictly stationary and ergodic martingale
difference sequence (MDS) with natural filtration Ft = σ({ξ0s }t

−∞).

Moreover, we assume a positive definite covariance matrix Σξ0ξ0 and
supt∈Z E[‖ξ0t ‖r |Ft−1] <∞ a.s. for some r > 4.
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Assumptions
Deterministic Component

For the deterministic component we assume that there exists a sequence of
p × p scaling matrices AD = AD(T ) and a p-dimensional vector of càdlàg
functions D(s), with 0 <

∫ s
0 D(z)D(z)′dz <∞ for 0 < s ≤ 1, such that for

0 ≤ s ≤ 1 it holds that:

lim
T→∞

T 1/2ADD[sT ] = D(s).

[For the leading case of polynomial time trends, the deterministic component
has the form Dt = [1, t, t2, . . . , tq−1]′ with
GD = diag(T−1/2,T−3/2,T−5/2, . . . ,T−(q−1/2)) and
D(s) = [1, s, s2, . . . , sq−1]′.]
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Assumptions
Kernel and Bandwidth

The kernel function k(·) satisfies:
1 k(0) = 1, k(·) is continuous at 0 and k̄(0) := supx≥0 |k(x)| <∞
2
∫∞
0 k̄(x)dx <∞, where k̄(x) = supy≥x |k(y)|

The bandwidth satisfies MT →∞ with lim
T→∞

(M−1T + T−1/2MT ) = 0.
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Assumptions
Transition Function

The transition function is given by

G(st , θG ) := G∗(h(st , θG )),

where

h(st , θG ) := γ

n∏
i=1

(st − ci ),

with cn ≥ . . . ≥ c1, γ > 0.

The function G∗(·) : R 7→ R is n-times continuously differentiable in an
open interval including zero with G∗(0) = 0 and bounded.

With respect to the derivatives we assume that:

∂G∗(s)
∂s |s=0 6= 0 and ∂nG∗(s)

∂ns |s=0 6= 0.
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Regression with
Integrated Variables



Regression with Integrated Variables
OLS in Cointegrating Regression

yt = xtβ + ut , xt = xt−1 + vt , β̂ − β =
(∑T

t=1 x2
t

)−1∑T
t=1 xtut

T
(
β̂ − β

)
⇒
(∫ 1

0
B2

v (r)dr
)−1(∫ 1

0
Bv (r)dBu(r) + ∆vu

)
,

with ∆vu :=
∞∑
j=0

Evt−jut [Extut = E(
t−1∑
j=0

vt−j )ut ]

1
√

T
xbrTc =

1
√

T

brTc∑
t=1

vt ⇒ Bv (r) = Ω1/2
vv Wv (r)

1
T 2

T∑
t=1

x2
t =

1
T

T∑
t=1

(
xt√
T

)2
⇒

∫ 1

0

B2
v (r)dr

1
T

T∑
t=1

xt ut =
1
√

T

T∑
t=1

(
xt√
T

)
ut ⇒

∫ 1

0

Bv (r)dBu(r) + ∆vu
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Regression with Integrated Variables
FM-OLS

yt = xtβ + ut , β̂+ :=
(∑T

t=1 x2
t

)−1 (∑T
t=1 xty+

t − ∆̂+
vuT
)
,

y+
t := yt − vtΩ̂−1vv Ω̂vu, ∆̂+

vu := ∆̂vu − ∆̂vv Ω̂−1vv Ω̂vu

T
(
β̂

+ − β
)

=

(
1

T 2

T∑
t=1

x2
t

)−1(
1
T

T∑
t=1

xt u+
t − ∆̂+

vu

)

=

(
1

T 2

T∑
t=1

x2
t

)−1(
1
T

T∑
t=1

xt ut −
1
T

T∑
t=1

xt vt Ω̂−1
vv Ω̂vu − ∆̂+

vu

)

⇒

(∫ 1

0

B2
v (r)dr

)−1(∫ 1

0

Bv (r)dBu(r) + ∆vu −

∫ 1

0

Bv (r)dBv (r)Ω−1
vv Ωvu

−∆vv Ω−1
vv Ωvu −∆+

vu

)
=

(∫ 1

0

B2
v (r)dr

)−1 ∫ 1

0

Bv (r)dBu·v (r), Bu·v (·) := Bu(·)− Bv (·)Ω−1
vv Ωvu
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Some Asymptotic
Results



FM-OLS Limiting Distribution

Proposition
Under the assumptions given in the paper it holds under the null
hypothesis, with β0 = [β′0, 0′, . . . , 0′]′, that:

A−1
(

β̂+ − β0

)
d→
(∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v (r),

with Bu·v (r) := Bu(r)− Bv (r)′Ω−1vv Ωvu, A the scaling matrix, and

J(r) :=


B(0,n)

s (r)⊗
[

D(r)
Bv (r)

]
in case (i)

r(0,n) ⊗
[

D(r)
Bv (r)

]
in case (ii)

where B(0,n)
s (r) := [1,Bs(r), . . . ,Bn

s (r)]′ and r(0,n) := [1, r , . . . , rn]′.
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Correction Terms for FM-OLS Based Tests

The correction term M∗ := [M∗′0 ,M∗′1 , . . . ,M∗′n ]′ depends on the
approximation order and transition variable and is given by:

M∗j :=


[

j∆̂+
su
∑T

t=1 Dts j−1
t

∆̂+
vu
∑T

t=1 s j
t + j∆̂+

su
∑T

t=1 Xts j−1
t

]
in case (i)[

0p
∆̂+

vu
∑T

t=1 t j

]
in case (ii)
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IM-OLS Limiting Distribution

Proposition
Under the assumptions given in the paper it holds under the null
hypothesis, with β∗,0 := [β′0, (Ω−1vv Ωvu)′]′, that:

Ã−1
(

β̂∗ − β∗,0

)
d→
(∫ 1

0
f (r)f (r)′dr

)−1 ∫ 1

0
f (r)Bu·v (r)dr

=
(∫ 1

0
f (r)f (r)′dr

)−1 ∫ 1

0
[F (1)− F (r)]dBu·v (r),

where

f (r) :=
[∫ r

0 J(s)ds
Bv (r)

]
, F (r) :=

∫ r

0
f (s)ds

and J(r) as defined before.
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Fixed-b Inference



Fixed-b Inference: Simple Example I

Consider a simple “almost standard” (i.e. HAC) regression:

yt = xtβ + ut ,

with T−1
∑brTc

t=1 x2
t → rQ, Q > 0 and zt = xtut such that:

1
T 1/2

brTc∑
t=1

zt ⇒ ω1/2W (r).

Then:
√

T
(
β̂ − β

)
⇒ N (0, ωQ−2).

With a consistent estimator ω̂ → ω it follows that:

tβ = β̂ − β0√
V̂ ar(β̂)

= β̂ − β0
ω̂1/2Q̂−1

⇒ N (0, 1).

Using a consistent estimator ω̂ = Γ̂0 + 2
∑T−1

j=1 k(j/M)Γ̂j , with
Γ̂j = T−1

∑T
t=j+1 ẑt ẑt−j and ẑt = xt ût , “hides” finite sample effects of

kernel function k(·) and bandwidth M.
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Fixed-b Inference: Simple Example II

Consider a bandwidth proportional to sample size, i.e. M = bT .

Then under appropriate assumptions it holds that ω̂ ⇒ ωP(b, k), where
P(b, k) is a function of W (r) that depends upon bandwidth b and kernel
function k(·).

This leads to a fixed-b limit distribution of the t-statistic of the form:

tβ ⇒
W (1)

P(b, k)

See, e. g., Kiefer and Vogelsang (2005).

Critical values can be tabulated for (a grid of) values of b and different
kernel functions k(·).
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Long-Run Money Demand
Residuals from Linear Cointegrating Regression
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Figure: The red dotted line shows the D-OLS residuals, the blue dashed
dotted line the FM-OLS residuals and the black dashed line the IM-OLS
residuals.
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dotted line the FM-OLS residuals and the black dashed line the IM-OLS
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