Testing Linear Cointegration Against Smooth Transition Cointegration

Oliver Stypka ${ }^{1}$ Martin Wagner ${ }^{2,3,4}$
${ }^{1}$ Flossbach von Storch, Cologne
${ }^{2}$ Department of Economics, University of Klagenfurt
${ }^{3}$ Bank of Slovenia, Ljubljana
${ }^{4}$ Institute for Advanced Studies, Vienna
Econometric Society European Meeting
Barcelona, 28. August - 1. September, 2023

The views expressed are not necessarily those of the Bank of Slovenia, the ESCB or Flossbach von Storch.

A WARNING...

Overview

(1) Motivation
(2) Model and Theory
(3) Finite Sample Performance
(4) Illustration with Long-Run Money Demand
(5) Summary and Conclusions

Motivation

Motivation

Switzerland: Logarithms and Levels (1980/I-2017/III)
Seasonally adjusted, in bn CHF

Motivation

Switzerland: Growth Rates and First Differences (1980/II-2017/III)
Growth rate (in \%)

First difference of interest rate

Motivation

$$
\ln \left(\frac{M_{t}}{P_{t}}\right)=c+\delta t+\beta_{1} \ln \left(Y_{t}\right)+\beta_{2} r_{t}+u_{t}
$$

Figure: The red solid line displays the FM-OLS estimates and the blue dashed line displays the IM-OLS estimates for β_{2}. The corresponding 95% confidence bands are given by the red and blue shaded areas.

Motivation

Monitoring Euro Area Money Demand (1980/I-2017/III)

Figure: Residuals based on estimation until 1998IV. Detection time 2009IV.

Model and Theory

Linear Cointegrating Regression

Linear Cointegrating Regression

$$
y_{t}=D_{t}^{\prime} \theta_{D}+\tilde{X}_{t}^{\prime} \theta_{X}+u_{t}=Z_{t}^{\prime} \theta+u_{t}
$$

where $Z_{t}:=\left[D_{t}^{\prime}, \tilde{X}_{t}^{\prime}\right]^{\prime}, \theta:=\left[\theta_{D}^{\prime}, \theta_{X}^{\prime}\right]^{\prime}$, with:

- deterministic regressors D_{t},
- a non-cointegrated $\mathrm{I}(1)$ vector \tilde{X}_{t},
- and a stationary error term u_{t}.

Linear cointegration may - by construction - be too restrictive:

- The parameters are assumed to be constant.
- The setting is linear in parameters and $\mathrm{I}(1)$ variables.

Smooth Transition Cointegration

For Simplified Presentation: Same Variables in Both Parts

Smooth Transition Cointegration

$$
y_{t}=Z_{t}^{\prime} \theta_{L}+Z_{t}^{\prime} \theta_{N L} \times G\left(s_{t}, \theta_{G}\right)+u_{t}
$$

with Z_{t}, u_{t} as above and:

- a smooth and bounded transition function $G(\cdot)$,
- and integrated variable or time trend as transition variable s_{t}.

Example: Logistic Transition Functions

LSTR1: $G_{1}\left(s_{t}, \theta_{G}\right)=\frac{1}{1+\exp \left(-\gamma\left(s_{t}-c\right)\right)}-\frac{1}{2}$, with $\gamma>0$
LSTR2: $G_{2}\left(s_{t}, \theta_{G}\right)=\frac{1}{1+\exp \left(-\gamma\left(s_{t}-c\right)^{2}\right)}-\frac{1}{2}$, with $\gamma>0$

Smooth Transition Cointegration

Transition Variable

- For the transition variable s_{t} we consider two cases:
(i) s_{t} is an element of \tilde{X}_{t} or is an I(1) process not cointegrated with \tilde{X}_{t},
(ii) $s_{t}=t$.
- To have a unified notation we define:
$X_{t}:=\left\{\begin{array}{cl}\tilde{X}_{t} & \text { in case } s_{t} \text { is an element of } \tilde{X}_{t} \text { or } s_{t}=t, \\ {\left[\begin{array}{c}\tilde{X}_{t} \\ s_{t}\end{array}\right]} & \text { in case } s_{t} \text { is I(1) and not cointegrated with } \tilde{X}_{t} .\end{array}\right.$
[Where in the second case s_{t} is ordered last w.l.o.g.]
- We furthermore define $v_{t}:=\Delta X_{t}$ and denote its long-run variance as usual by $\Omega_{v v}$.

Testing for Smooth Transition Cointegration

- Testing linear cointegration against the alternative of smooth transition cointegration corresponds to testing:

$$
H_{0}: \theta_{N L}=0 \quad \text { vs. } \quad H_{1}: \theta_{N L} \neq 0 .
$$

- Under the null hypothesis of linear cointegration with $\gamma=0$ some parameters are unidentified, e.g., for LSTR1:

$$
y_{t}=Z_{t}^{\prime} \theta_{L}+Z_{t}^{\prime} \theta_{N L} \times \underbrace{\left(\frac{1}{1+\exp \left(-0\left(s_{t}-c\right)\right)}-\frac{1}{2}\right)}_{=0}+u_{t} .
$$

- This identification problem is tackled by using Taylor approximations of the transition function.

Testing for Smooth Transition Cointegration

 Taylor Approximation- A Taylor approximation of order n leads to a model of the form

$$
y_{t}=Z_{t}^{\prime} \beta_{0}+\sum_{j=1}^{n}\left(Z_{t} s_{t}^{j}\right)^{\prime} \beta_{j}+u_{t}^{*}
$$

- The null hypothesis of linearity of the cointegrating relationship is tested in this auxiliary regression by testing:

$$
H_{0}:\left[\beta_{1}^{\prime}, \ldots, \beta_{n}^{\prime}\right]^{\prime}=0 \quad \text { vs. } \quad H_{1}:\left[\beta_{1}^{\prime}, \ldots, \beta_{n}^{\prime}\right]^{\prime} \neq 0
$$

Problems

- The asymptotic analysis of LS estimators is complicated by the occurrence of terms of the form $X_{t} s_{t}^{j}$.
- Deriving consistency against fixed alternatives is non-trivial, both with standard and "Saikkonen-triangular array" asymptotics.

Testing for Smooth Transition Cointegration

- As discussed in detail, e.g., in Luukkonen et al. (1988), there are situations in which a first order Taylor approximation leads to tests with trivial power.
- Consider the following smooth transition model with the "nonlinear" part only containing the intercept and with $s_{t}=x_{t}$:

$$
y_{t}=\theta_{1}+\theta_{2} x_{t}+\theta_{3} \times G\left(x_{t}, \theta_{G}\right)+u_{t}
$$

- A first order Taylor approximation leads to

$$
y_{t}=\beta_{1}+\beta_{2} x_{t}+u_{t}^{*}
$$

and therefore tests based on this approximation have trivial power.

- In such cases higher order Taylor approximations, typically third order, are used.

Testing for Smooth Transition Cointegration

 Multi-Collinearity by Design- Another issue that requires some care is multi-collinearity of regressors in the Taylor approximation.
- First, consider $s_{t}=t$ and $D_{t}=\left(1, t, \ldots, t^{p-1}\right)^{\prime}$ with $p>1$, then $D_{t} \otimes s_{t}=D_{t} \otimes t=\left(t, t^{2}, \ldots, t^{p}\right)^{\prime}$.
- Clearly, for $p>1$ at least the linear trend appears in D_{t} and $D_{t} \otimes s_{t}$.
- Second, if a constant is included (in the "linear" term) and s_{t} is already an element of the regressors $X_{t, L}$ the regressor s_{t} appears twice.
- This "multi-collinearity by construction" is easily overcome by excluding the corresponding regressor(s) in the Taylor approximation term(s).

OLS Asymptotics

Asymptotic Behavior of the " $X^{\prime} u$-Term"

In case that s_{t} is an $\mathrm{I}(1)$ process:

$$
\begin{aligned}
T^{-\frac{j+2}{2}} \sum_{t=1}^{T} x_{t_{i}} s_{t}^{j} u_{t} \Rightarrow & \int_{0}^{1} B_{v_{i}}(r) B_{s}^{j}(r) d B_{u}(r) \\
& +j \Delta_{s u} \int_{0}^{1} B_{v_{i}}(r) B_{s}^{j-1}(r) d r \\
& +\Delta_{v u} \int_{0}^{1} B_{s}^{j}(r) d r
\end{aligned}
$$

In case that $s_{t}=t$:

$$
\begin{aligned}
T^{-(j+1)} \sum_{t=1}^{T} x_{t_{i}} t^{j} u_{t} \Rightarrow & \int_{0}^{1} B_{v_{i}}(r) r^{j} d B_{u}(r) \\
& +\Delta_{v u} \int_{0}^{1} r^{j} d r
\end{aligned}
$$

Fully Modified OLS Estimation

- The idea of FM-OLS is to correct for bias terms arising in the OLS limit and to correct for the correlation between X_{t}, s_{t} and u_{t}.
- The auxiliary model can be written in more compact form:

$$
y_{t}=F_{t}^{\prime} \beta+u_{t}^{*}
$$

with $F_{t}=\left[1, s_{t}, \ldots, s_{t}^{n}\right]^{\prime} \otimes Z_{t}$ and $\beta=\left[\beta_{0}^{\prime}, \ldots, \beta_{n}^{\prime}\right]^{\prime}$.

Fully Modified OLS

The FM-OLS estimator of β in the above model is given by

$$
\hat{\boldsymbol{\beta}}^{+}=\left(\sum_{t=1}^{T} F_{t} F_{t}^{\prime}\right)^{-1}\left(\sum_{t=1}^{T} F_{t} y_{t}^{+}-M^{*}\right)
$$

with $y_{t}^{+}:=y_{t}-v_{t}^{\prime} \hat{\Omega}_{v v}^{-1} \hat{\Omega}_{v u}$ and model specific correction term M^{*}.

Integrated Modified OLS Estimation

Integrated Modified OLS

IM-OLS estimation is OLS estimation of the partial summed auxiliary model augmented by X_{t}, i. e.,

$$
\begin{aligned}
S_{t}^{y} & =S_{t}^{F \prime} \boldsymbol{\beta}+X_{t}^{\prime} \gamma+S_{t}^{u *}, \\
& =S_{t}^{\widetilde{F} \prime} \boldsymbol{\beta}_{*}+S_{t}^{u *},
\end{aligned}
$$

where $S_{t}^{y}:=\sum_{i=1}^{t} y_{i}$ and similarly for S_{t}^{F} and $S_{t}^{u *}$.

- Adding X_{t} "soaks up" all dynamic correlation between the regressors and the errors.
- Partial summation lets us get rid of "integrated \times stationary"-terms.
- For IM-OLS estimation no choices with respect to tuning parameters have to be made.
- By using properly modified residuals fixed- b inference is possible.

Integrated Modified OLS Estimation

- As in Vogelsang and Wagner (2014) construct some additional regressors:

$$
a_{t}:=t \sum_{j=1}^{T} S_{j}^{\tilde{F}}-\sum_{j=1}^{t-1} \sum_{s=1}^{j} S_{s}^{\tilde{F}}, \quad S_{t}^{\tilde{F}}:=\left[S_{t}^{F \prime}, X_{t}^{\prime}\right]^{\prime}
$$

- The fixed- b long-run variance estimator is based on the residuals from the IM-OLS regression augmented by a_{t} :

$$
S_{t}^{y}=S_{t}^{\tilde{F} \prime} \boldsymbol{\beta}_{*}+a_{t}^{\prime} \kappa+S_{t}^{u *} .
$$

- Denoting the residuals with $\tilde{S}_{t}^{\text {u* }}$ we use:

$$
\hat{\omega}_{u \cdot v}^{*}:=T^{-1} \sum_{i=2}^{T} \sum_{j=2}^{T} k\left(\frac{|i-j|}{M}\right) \Delta \tilde{S}_{i}^{u *} \Delta \tilde{S}_{j}^{u *} .
$$

Testing for Smooth Transition Cointegration

 FM-OLS: Wald-Type Test- The Wald-type test is based on FM-OLS estimation of:

$$
y_{t}=Z_{t}^{\prime} \beta_{0}+Q_{t}^{\prime} \beta_{Q}+u_{t}
$$

- The null hypothesis is $H_{0}: \beta_{Q}=0$; and the corresponding test statistic is given by:

$$
W_{F M}:=\frac{\hat{\beta}_{Q}^{+\prime}\left(\tilde{Q}^{\prime} \tilde{Q}\right) \hat{\beta}_{Q}^{+}}{\hat{\omega}_{u \cdot v}},
$$

with $\tilde{Q}:=Q-Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} Q$.

- The conditional long-run variance estimator used is given by:

$$
\hat{\omega}_{u \cdot v}:=\hat{\Omega}_{u u}-\hat{\Omega}_{u v} \hat{\Omega}_{v v}^{-1} \hat{\Omega}_{v u},
$$

using the OLS residuals of the above Taylor approximation and $v_{t}=\Delta X_{t}$.

Testing for Smooth Transition Cointegration

 FM-OLS: LM-Type Test- The starting point is FM-OLS estimation of the null model:

$$
y_{t}=Z_{t}^{\prime} \beta_{0}+u_{t}
$$

- The resulting FM-OLS residuals $\hat{u}_{t}^{+}:=y_{t}^{+}-Z_{t}^{\prime} \hat{\beta}_{0}^{+}$are then used as dependent variable in:

$$
\hat{u}_{t}^{+}=\tilde{Q}_{t}^{\prime} \beta_{\tilde{Q}}+\psi_{t}
$$

with $\tilde{Q}:=Q-Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} Q$.

- The parameter $\beta_{\tilde{Q}}$ needs to be estimated with a suitable correction to FM-OLS; similar to Wagner and Hong (2016, Proposition 4).
- This results in the test statistic:

$$
L M_{F M}:=\frac{\hat{\beta}_{\tilde{Q}}^{+\prime}\left(\tilde{Q}^{\prime} \tilde{Q}\right) \hat{\beta}_{\tilde{Q}}^{+}}{\tilde{\omega}_{u \cdot v}}
$$

with $\tilde{\omega}_{u \cdot v}$ based on the residuals from the linear (null) model.

Testing for Smooth Transition Cointegration

IM-OLS Tests: Only the Variance Estimator Differs

- For IM-OLS testing is based on the equation:

$$
S_{t}^{y}=S_{t}^{Z \prime} \beta_{0}+S_{t}^{Q^{\prime \prime}} \beta_{Q}+X_{t}^{\prime} \gamma+S_{t}^{u}
$$

with the null being again $H_{0}: \beta_{Q}=0$, which is now part of a "bigger" parameter vector $\boldsymbol{\beta}_{*}$, i.e.,

$$
\beta_{Q}=R_{Q} \boldsymbol{\beta}_{*}=\left[\begin{array}{lll}
0 & I_{\operatorname{dim}\left(\beta_{Q}\right)} & 0
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{Q} \\
\gamma
\end{array}\right]=0
$$

- Since we use OLS in a linear regression model, Wald- and LM-type tests only differ by the variance estimator chosen, and we end up with:

$$
\{W, L M, F b\}_{I M}:=\frac{\hat{\beta}_{Q, *}^{\prime}\left(R_{Q} \hat{V}_{I M} R_{Q}^{\prime}\right)^{-1} \hat{\beta}_{Q, *}}{\omega_{u \cdot v}}
$$

with $\omega_{u \cdot v} \in\left\{\hat{\omega}_{u \cdot v}, \tilde{\omega}_{u \cdot v}, \hat{\omega}_{u \cdot v}^{*}\right\}$ and $\hat{V}_{I M}$ an estimator of the " $X^{\prime} X$ "-part of the estimator variance.

Testing for Smooth Transition Cointegration

 Standard Limit Null Distributions
Proposition

Under the null hypothesis of linear cointegration it holds that:

$$
W_{\mathrm{FM}}, L M_{\mathrm{FM}}, W_{\mathrm{IM}}, L M_{\mathrm{IM}} \xrightarrow{d} \chi_{q}^{2},
$$

with $q=\operatorname{dim}\left(\beta_{Q}\right)$ depending on the model and the Taylor approximation order.

Testing for Smooth Transition Cointegration

 Fixed-b Limit Null Distribution
Proposition

If $M=b T$ with $b \in(0,1]$ being held fixed as $T \rightarrow \infty$, then it holds for the fixed- b test statistic under the null hypothesis that:

$$
F b_{\mathrm{IM}} \xrightarrow{d} \frac{\chi_{g}^{2}}{N\left(\tilde{P}^{*}\right)},
$$

with χ_{q}^{2} independent of $N\left(\tilde{P}^{*}\right)$, where $N(\cdot)$ is a function of (a function of) standard Wiener processes \tilde{P} that depends upon bandwidth and kernel function.

The Test Statistics

Proposition

Under the alternative hypothesis of smooth transition cointegration:

$$
y_{t}=Z_{t}^{\prime} \theta_{L}+Z_{t}^{\prime} \theta_{N L} \times G\left(s_{t, T}, \theta_{G}\right)+u_{t}
$$

with $\theta_{N L} \neq 0, \gamma \neq 0$ and $s_{t, T}:=\frac{T_{0}}{T} t$ for time as transition variable and $s_{t, T}:=\sqrt{\frac{T_{0}}{T}} s_{t}$ otherwise it holds that:

$$
L M_{\mathrm{FM}}, L M_{\mathrm{IM}}=O_{\mathbb{P}}\left(T / M_{T}\right)
$$

with M_{T} denoting the bandwidth used for long-run covariance estimation.

Finite Sample Performance

Finite Sample Performance

Simulation Design: Size

Under the null hypothesis we generate data according to:

$$
y_{t}=\theta_{0}+\theta_{1} x_{1 t}+\theta_{2} x_{2 t}+u_{t}
$$

with the errors u_{t} and $v_{t}=\Delta x_{t}$ generated as:

$$
\begin{aligned}
u_{t} & =\rho_{1} u_{t-1}+\varepsilon_{t}+\rho_{2}\left(e_{1 t}+e_{2 t}\right), \quad u_{0}=0 \\
v_{i t} & =e_{i t}+0.5 e_{i, t-1}, \quad i=1,2
\end{aligned}
$$

with $\left(\varepsilon_{t}, e_{1 t}, e_{2 t}\right)^{\prime} \sim \mathcal{N}\left(0, I_{3}\right)$.

- ρ_{1} controls the level of serial correlation in the error term u_{t}, and ρ_{2} controls regressor endogeneity.
- The parameter values are set to $\theta_{0}=\theta_{1}=\theta_{2}=1$.
- $T \in\{100,200,500\}$ and $\rho_{1}=\rho_{2} \in\{0,0.3,0.6,0.8\}$.
- The number of replications is 5,000 in all cases and all tests are carried out at the nominal 5% level.
- We use the Bartlett kernel and the Andrews (1991) bandwidth.

Empirical Null Rejection Probabilities

Transition variable $s_{t}=x_{2 t}$

T	ρ_{1}, ρ_{2}	D-OLS		FM-OLS		IM-OLS		
		$W_{\text {D,AIC }}$	$W_{\text {D,BIC }}$	$\mathrm{W}_{\text {FM }}$	LM FM	WIM	LM $\mathrm{IM}^{\text {m }}$	$\mathrm{Fb}_{\mathrm{IM}}$
Panel A: First order Taylor approximation ($n=1$)								
100	. 0	. 0872	. 0770	. 1460	. 0582	. 1168	. 0542	. 0548
	. 3	. 1474	. 1392	. 1540	. 0672	. 1526	. 0800	. 1304
	. 6	. 2348	. 1822	. 1826	. 0586	. 1976	. 1006	. 2502
	. 8	. 4256	. 2630	. 2536	. 0610	. 3028	. 1544	. 5190
200	. 0	. 0660	. 0654	. 1100	. 0530	. 0974	. 0598	. 0532
	. 3	. 1116	. 1112	. 1260	. 0636	. 1164	. 0780	. 0936
	. 6	. 1690	. 1506	. 1538	. 0574	. 1454	. 0892	. 1394
	. 8	. 2742	. 1948	. 1940	. 0498	. 1960	. 1020	. 2918
Panel B: Third order Taylor approximation $(n=3)$								
100	. 0	. 1756	. 1530	. 3136	. 0884	. 2426	. 0372	. 0704
	. 3	. 2588	. 2380	. 3006	. 0578	. 3128	. 0690	. 2350
	. 6	. 4146	. 3056	. 3080	. 0312	. 3868	. 0736	. 6072
	. 8	. 6482	. 3916	. 3874	. 0678	. 5590	. 1110	. 9030
200	. 0	. 0964	. 0884	. 2058	. 0566	. 1658	. 0386	. 0538
	. 3	. 1784	. 1742	. 2096	. 0510	. 2178	. 0686	. 1346
	. 6	. 2764	. 2452	. 2358	. 0274	. 2770	. 0742	. 3202
	. 8	. 4490	. 3126	. 3022	. 0286	. 3976	. 0720	. 6646

Empirical Null Rejection Probabilities

Transition variable $s_{t}=t$

T	ρ_{1}, ρ_{2}	D-OLS		FM-OLS		IM-OLS		
		$\mathrm{W}_{\text {D,AIC }}$	$W_{\text {D, BIC }}$	$\mathrm{W}_{\text {FM }}$	LM $\mathrm{FM}^{\text {m }}$	$\mathrm{W}_{1 \mathrm{M}}$	LM IM	$\mathrm{Fb}_{\mathrm{IM}}$
Panel A: First order Taylor approximation ($n=1$)								
100	. 0	. 1168	. 1014	. 1260	. 0542	. 0926	. 0546	. 0592
	. 3	. 1982	. 1876	. 2448	. 1254	. 1784	. 1110	. 1676
	. 6	. 4100	. 3312	. 4622	. 2344	. 2824	. 1346	. 3676
	. 8	. 7182	. 5972	. 6778	. 3822	. 5170	. 2628	. 7334
200	. 0	. 0598	. 0568	. 0592	. 0476	. 0544	. 0512	. 0498
	. 3	. 1002	. 0984	. 1054	. 0584	. 0940	. 0730	. 0672
	. 6	. 1788	. 1750	. 1568	. 0460	. 1024	. 0740	. 1060
	. 8	. 3448	. 3530	. 2686	. 0288	. 1242	. 0666	. 1946
Panel B: Third order Taylor approximation ($n=3$)								
100	. 0	. 3040	. 2620	. 3352	. 0808	. 2404	. 0498	. 0862
	. 3	. 4734	. 4444	. 5250	. 2542	. 4406	. 1048	. 3308
	. 6	. 8300	. 7438	. 8578	. 4638	. 6844	. 0932	. 8158
	. 8	. 9794	. 9434	. 9704	. 6338	. 9312	. 2102	. 9884
200	. 0	. 1352	. 1272	. 1650	. 0616	. 1146	. 0486	. 0588
	. 3	. 2914	. 2854	. 4182	. 2038	. 2960	. 0968	. 1664
	. 6	. 6146	. 5542	. 7010	. 3656	. 4432	. 0732	. 4900
	. 8	. 9202	. 8804	. 9130	. 5344	. 7738	. 1712	. 8800

Finite Sample Performance

Simulation Design: Power

For the alternative we use the following DGP:

$$
y_{t}=Z_{t}^{\prime} \theta_{L}+Z_{t}^{\prime} \theta_{N L} \times G\left(s_{t}, \gamma, c\right)+u_{t},
$$

with $Z_{t}=\left[1, x_{t}^{\prime}\right]^{\prime}$ and errors $u_{t}, v_{t}=\Delta x_{t}$ as generated for the null.

- The parameter values are set again to $\theta_{L}=[1,1,1]^{\prime}$.
- As transition function we consider $G(\cdot) \in\left\{G_{1}(\cdot), G_{2}(\cdot)\right\}$ and transition variable $s_{t} \in\left\{x_{2 t}, t\right\}$.
- We consider location parameter $c=0$ for $s_{t}=x_{2 t}$ and $c=T / 2$ for $s_{t}=t$ and use the scaling parameters $\gamma \in\{0.01,0.1,1,10\}$.
- We consider a grid of (including the null) 21 points for $\theta_{N L}:=\kappa \theta_{L}$, with values for κ chosen from the interval $[0,2]$ on an equidistant grid with mesh 0.1.

Finite Sample Performance

Size-Corrected Power: LSTR1 with $s_{t}=x_{2 t}$

Figure: Size-corrected power for $T=100$, Taylor approximation of order $q=1$ and $\rho_{1}=\rho_{2}=0.3$.

Finite Sample Performance

Size-Corrected Power: LSTR2 with $s_{t}=x_{2 t}$

Figure: Size-corrected power for $T=100$, Taylor approximation of order $q=1$ and $\rho_{1}=\rho_{2}=0.3$.

Finite Sample Performance

Size-Corrected Power: LSTR2 with $s_{t}=x_{2 t}$

Figure: Size-corrected power for $T=100$, Taylor approximation of order $q=3$ and $\rho_{1}=\rho_{2}=0.3$.

Finite Sample Performance

Size-Corrected Power: LSTR1 with $s_{t}=t$

Figure: Size-corrected power for $T=100$, Taylor approximation of order $q=1$ and $\rho_{1}=\rho_{2}=0.3$.

Finite Sample Performance

Size-Corrected Power: LSTR2 with $s_{t}=t$

Figure: Size-corrected power for $T=100$, Taylor approximation of order $q=1$ and $\rho_{1}=\rho_{2}=0.3$.

Illustration with Long-Run Money
 DEmand

Long-Run Money Demand

A Simple Model

We consider the simple long-run money demand equation:

$$
\ln \left(\frac{M_{t}}{P_{t}}\right)=c+\delta t+\beta_{1} \ln \left(Y_{t}\right)+\beta_{2} r_{t}+u_{t}
$$

with (non-cointegrated) I(1) processes $\ln \left(Y_{t}\right)$ and r_{t}.

- M_{t} is given by M_{3}.
- P_{t} is the consumer price index.
- Y_{t} is real gross domestic product.
- r_{t} is a 3-month interest rate.

Long-Run Money Demand

Data Description

Variable	Description	Source
Y_{t}	Gross Domestic Product, Expenditure Approach, Chained Volume Estimates, National Currency, Quarterly Levels, Seasonally Adjusted, National Reference Year, Reference Period: 2015-16.	OECD
r_{t}	Nominal Short-Term Interest Rate, Per Cent per Annum, Quarterly.	OECD
M_{t}	Broad Money (M3), Seasonally Adjusted, National Currency, Quarterly.	FRED
P_{t}	Consumer Price Index (CPI), All Items, Reference Period: 2015-16=100, Quarterly.	OECD

- All variables quarterly, seasonally adjusted with country specific starting points and last observation 2017/III.
- Australia, Canada, Czech Republic, Denmark, Israel, New Zealand, Norway, South Korea, Sweden, Switzerland, UK, USA and Euro Area

Long-Run Money Demand

Augmented Dickey-Fuller and Phillips-Perron Tests

	$\ln (\mathrm{M} 3 / \mathrm{P})$			$\ln (\mathrm{GDP})$			Interest Rate		
	ADF	PP	PP(fb)	ADF	PP	PP(fb)	ADF	PP	PP(fb)
AUS	-1.76	-1.64	-1.61	-2.90	-3.74	-3.55	-2.92	-2.83	-2.84
CAN	-2.54	-2.08	-1.81	-2.17	-2.35	-2.38	-3.36	-2.82	-2.80
CHE	-1.59	-1.31	-1.05	-2.68	-2.58	-2.63	-2.95	-2.98	-2.97
CZE	-2.32	-2.19	-2.25	-2.28	-1.86	-1.83	-1.96	-1.75	-1.70
DEN	-2.25	-2.25	-2.26	-2.47	-1.99	-1.97	-2.62	-2.64	-2.66
ISR	-2.62	-2.59	-2.57	-2.67	-2.76	-2.70	-2.23	-2.47	-2.46
KOR	-3.61	-4.14	-4.49	-1.73	-1.56	-1.77	-2.70	-2.97	-2.95
NZL	-3.10	-2.93	-2.90	-2.11	-2.26	-2.26	-2.81	-4.56	-4.62
NOR	-1.93	-1.66	-1.57	-3.16	-3.16	-3.45	-2.82	-3.25	-3.22
SWE	-2.19	-2.01	-1.88	-1.81	-1.99	-2.01	-4.33	-2.91	-3.06
UK	-2.09	-1.08	-0.70	-1.49	-1.77	-1.71	-3.57	-2.72	-2.72
USA	-0.72	-0.94	-0.92	-1.32	-1.61	-1.60	-3.24	-2.96	-2.94
EA	-2.16	-1.18	-0.79	-2.18	-1.71	-1.81	-3.02	-2.79	-2.88

TABLE: Bold entries indicate rejection at the 5\% level. PP(fb) denotes the one-step version of the Vogelsang and Wagner (2013) test.

Long-Run Money Demand

	Shin Test			PU Test
	D-OLS	FM-OLS	IM-OLS	
AUS	$\mathbf{0 . 1 9 6 8}$	$\mathbf{0 . 1 6 7 0}$	$\mathbf{0 . 0 7 2 6}$	7.7920
CAN	$\mathbf{0 . 2 4 9}$	$\mathbf{0 . 1 1 3 9}$	$\mathbf{0 . 0 5 9 3}$	5.2664
CHE	$\mathbf{0 . 6 0 8 7}$	$\mathbf{0 . 6 4 4 0}$	$\mathbf{0 . 1 7 0 7}$	17.2928
CZE	$\mathbf{0 . 2 1 1 3}$	$\mathbf{0 . 1 4 7 9}$	$\mathbf{0 . 0 7 3 6}$	19.6403
DNK	$\mathbf{0 . 1 1 1 1}$	0.0848	0.0551	3.1702
ISR	$\mathbf{0 . 2 4 9 8}$	$\mathbf{0 . 1 5 3 3}$	0.0461	3.0915
KOR	$\mathbf{0 . 2 3 3 5}$	$\mathbf{0 . 2 2 7 0}$	$\mathbf{0 . 0 8 5 5}$	28.5091
NZL	$\mathbf{0 . 1 1 1 2}$	$\mathbf{0 . 1 0 1 5}$	$\mathbf{0 . 0 5 2 8}$	10.1979
NOR	$\mathbf{0 . 1 4 3 0}$	$\mathbf{0 . 1 3 5 1}$	$\mathbf{0 . 0 6 4 0}$	11.7283
SWE	0.0725	0.0572	$\mathbf{0 . 0 5 5 5}$	5.1052
UK	$\mathbf{0 . 5 9 2 2}$	$\mathbf{0 . 4 6 9 3}$	$\mathbf{0 . 2 3 2 5}$	6.3602
USA	0.0975	0.0418	0.0338	7.2720
EA	$\mathbf{0 . 1 6 4 2}$	0.0698	0.0430	8.2181

Table: Results of the cointegration test by Shin (1994) and the no-cointegration test of Phillips and Ouliaris (1990) for the linear regression using Andrews (1991) bandwidth and the Bartlett kernel. Bold entries indicate rejection at the 5% level.

Long-Run Money Demand

Moving Window Estimation - Coefficient to Interest Rate

Figure: The red solid line displays the FM-OLS estimates and the blue dashed line displays the IM-OLS estimates for β_{2}. The corresponding 95% confidence bands are given by the red and blue shaded areas.

Long-Run Money Demand

Moving Window Estimation - Coefficient to Interest Rate

Figure: The red solid line displays the FM-OLS estimates and the blue dashed line displays the IM-OLS estimates for β_{2}. The corresponding 95% confidence bands are given by the red and blue shaded areas.

Long-Run Money Demand: $s_{t}=r_{t}$

$s_{t}=r_{t}$	Start	D-OLS		FM-OLS		IM-OLS		
		$W_{\text {D,AIC }}$	$W_{\text {D, BIC }}$	$W_{\text {FM }}$	LM $\mathrm{F}_{\text {F }}$	W IM	LM IM	$\mathrm{Fb}_{\text {IM }}$
Panel A: First Order Taylor Approximation ($n=1$)								
CAN	1970Q1	36.15	35.45	87.49	9.91	55.65	7.84	375.95
CHE	1980Q1	13.23	13.23	11.52	13.55	18.64	31.89	615.11
DEN	1995Q1	8.83	8.83	19.24	7.82	18.75	9.11	105.36
ISR	1995Q1	20.10	20.10	27.44	4.62	22.77	10.55	169.55
KOR	1991Q1	208.03	191.31	202.21	31.86	128.72	16.17	504.30
UK	1987Q1	5.55	4.28	5.10	55.05	13.28	59.11	814.81
USA	1964Q1	18.83	18.83	12.65	6.37	20.25	9.76	760.90
EA	1995Q1	36.79	34.95	25.59	3.74	26.31	8.54	1058.57
Panel B: Third Order Taylor Approximation ($n=3$)								
CAN	1970Q1	40.95	40.95	106.06	30.41	114.92	14.78	4786.17
CHE	1980Q1	106.90	106.90	132.06	39.87	153.55	42.09	6411.93
DEN	1995Q1	33.45	33.45	28.08	15.58	34.38	12.87	299.86
ISR	1995Q1	344.29	344.29	453.20	33.11	405.33	26.91	1579.14
KOR	1991Q1	602.69	602.69	623.73	39.45	545.76	25.71	2085.52
UK	1987Q1	175.69	271.37	271.63	285.23	277.68	70.45	2968.68
USA	1964Q1	23.19	23.19	61.97	17.32	86.37	13.94	2951.75
EA	1995Q1	398.03	129.51	103.86	15.02	112.53	11.80	4735.91

Table: Bold numbers indicate rejection at the 5% level. For the standard tests the corresponding critical values of the χ_{3}^{2} - and χ_{9}^{2}-distribution are given by 7.81 and 16.92.

Long-Run Money Demand: $s_{t}=t$

$s_{t}=t$	Start	D-OLS		FM-OLS		IM-OLS		
		$\mathrm{W}_{\mathrm{D}, \mathrm{AIC}}$	$W_{\text {D, BIC }}$	$W_{\text {FM }}$	LM ${ }_{\text {FM }}$	W IM	LM ${ }_{\text {IM }}$	$\mathrm{Fb}_{\text {IM }}$
Panel A: First Order Taylor Approximation ($n=1$)								
CAN	1970Q1	49.04	54.99	126.11	5.98	87.54	9.96	673.71
CHE	1980Q1	18.20	18.20	32.26	33.34	40.60	34.88	483.29
DEN	1995Q1	22.68	22.68	23.98	6.39	34.03	11.65	153.86
ISR	1995Q1	41.06	41.06	49.23	6.98	44.79	14.72	375.84
KOR	1991Q1	288.21	288.21	289.45	20.67	171.98	17.10	525.56
UK	1987Q1	22.24	4.44	3.53	37.03	11.71	49.54	917.39
USA	1964Q1	24.90	24.90	13.74	1.58	16.28	9.30	618.54
EA	1995Q1	50.95	68.41	36.19	4.27	34.30	8.38	2035.80
Panel B: Third Order Taylor Approximation ($n=3$)								
CAN	1970Q1	135.49	138.93	253.43	33.96	242.83	15.97	6252.21
CHE	1980Q1	1271.84	256.79	-	64.73	358.60	41.50	6332.94
DEN	1995Q1	71.59	71.59	84.76	22.35	97.21	13.22	357.12
ISR	1995Q1	529.44	529.44	183.54	40.04	232.44	23.63	1334.70
KOR	1991Q1	662.97	662.97	623.19	44.82	530.29	24.85	1563.99
UK	1987Q1	242.11	349.44	292.65	322.31	316.10	69.50	2420.62
USA	1964Q1	163.31	163.31	433.14	10.58	381.73	15.02	6729.98
EA	1995Q1	355.05	355.05	208.76	25.15	164.12	11.15	5223.22

Table: Bold numbers indicate rejection at the 5% level. For the standard tests the corresponding critical values of the χ_{3}^{2} - and χ_{9}^{2}-distribution are given by 7.81 and 16.92.

Long-Run Money Demand

- A large amount of rejections throughout across n and s_{t}.

Panel A: First Order Taylor Approximation $(n=1)$

$$
\begin{array}{ll}
s_{t}=r_{t} & \\
\text { Canada, Denmark, South Korea, Switzerland } \\
s_{t}=t & \\
\text { South Korea, Switzerland }
\end{array}
$$

Panel B: Third Order Taylor Approximation $(n=3)$
$s_{t} \in\left\{r_{t}, t\right\} \quad$ Israel, South Korea, Switzerland, United Kingdom
TABLE: List of countries with rejections throughout.

Summary and Conclusions

Summary and Conclusions

- We have provided tests for the null of linear cointegration against the alternative of smooth transition cointegration.
- The tests are based on FM-OLS and IM-OLS estimators considered for this type of Taylor approximation polynomial.
- We face some limitations in the setting, both with respect to X_{t} and also s_{t}.
- Roughly, the LM-tests perform better than the Wald-tests.
- The next step is to develop FM- and IM-type estimation for smooth transition cointegration models.

Some References

Choi, I. and P. Saikkonen (2004). Testing Linearity in Cointegrating Smooth Transition Regressions. Econometrics Journal, 7, 341-365.
R
Luukkonen, R., P. Saikkonen and T. Teräsvirta (1988). Testing Linearity in Univariate Time Series Models. Scandinavian Journal of Statistics 15, 161-175.
R Phillips, P.C.B. and B.E. Hansen (1990). Statistical Inference in Instrumental Variables Regression with I(1) Processes. Review of Economic Studies, 57, 99-125.
國 Vogelsang, T. J. and M. Wagner (2014). Integrated Modified OLS Estimation and Fixed-b Inference for Cointegrating Regressions. Journal of Econometrics 178, 741-760.
R- Wagner, M. and S.H. Hong (2016). Cointegrating Polynomial Regressions: Fully Modified OLS Estimation and Inference. Econometric Theory, 32, 1289-1315.

Assumptions

Assumptions

- Let $\left\{\Delta X_{t}\right\}_{t \in \mathbb{Z}}=\left\{v_{t}\right\}_{t \in \mathbb{Z}}$ and denote with $\left.\left\{\xi_{t}\right\}_{t \in \mathbb{Z}}=\left\{\left[u_{t}, v_{t}^{\prime}\right]\right)^{\prime}\right\}_{t \in \mathbb{Z}}$ the process generated by:

$$
\xi_{t}=C(L) \xi_{t}=\sum_{j=0}^{\infty} c_{j} \xi_{t-j}^{0},
$$

with $\sum_{j=1}^{\infty} j\left\|C_{j}\right\|<\infty$ and $\operatorname{det}(C(1)) \neq 0$.

- The process $\left\{\xi_{t}^{0}\right\}_{t \in \mathbb{Z}}$ is a strictly stationary and ergodic martingale difference sequence (MDS) with natural filtration $\mathcal{F}_{t}=\sigma\left(\left\{\xi_{s}^{0}\right\}_{-\infty}^{t}\right)$.
- Moreover, we assume a positive definite covariance matrix $\Sigma_{\xi^{0} \xi^{0}}$ and $\sup _{t \in \mathbb{Z}} \mathbb{E}\left[\left\|\xi_{t}^{0}\right\|^{r} \mid \mathcal{F}_{t-1}\right]<\infty$ a.s. for some $r>4$.

Assumptions

Deterministic Component

For the deterministic component we assume that there exists a sequence of $p \times p$ scaling matrices $A_{D}=A_{D}(T)$ and a p-dimensional vector of càdlàg functions $D(s)$, with $0<\int_{0}^{s} D(z) D(z)^{\prime} d z<\infty$ for $0<s \leq 1$, such that for $0 \leq s \leq 1$ it holds that:

$$
\lim _{T \rightarrow \infty} T^{1 / 2} A_{D} D_{[s T]}=D(s)
$$

[For the leading case of polynomial time trends, the deterministic component has the form $D_{t}=\left[1, t, t^{2}, \ldots, t^{q-1}\right]^{\prime}$ with
$G_{D}=\operatorname{diag}\left(T^{-1 / 2}, T^{-3 / 2}, T^{-5 / 2}, \ldots, T^{-(q-1 / 2)}\right)$ and $\left.D(s)=\left[1, s, s^{2}, \ldots, s^{q-1}\right]^{\prime}.\right]$

Assumptions

The kernel function $k(\cdot)$ satisfies:
(1) $k(0)=1, k(\cdot)$ is continuous at 0 and $\bar{k}(0):=\sup _{x \geq 0}|k(x)|<\infty$
(2) $\int_{0}^{\infty} \bar{k}(x) d x<\infty$, where $\bar{k}(x)=\sup _{y \geq x}|k(y)|$

The bandwidth satisfies $M_{T} \rightarrow \infty$ with $\lim _{T \rightarrow \infty}\left(M_{T}^{-1}+T^{-1 / 2} M_{T}\right)=0$.

Assumptions

Transition Function

- The transition function is given by

$$
G\left(s_{t}, \theta_{G}\right):=G_{*}\left(h\left(s_{t}, \theta_{G}\right)\right),
$$

where

$$
h\left(s_{t}, \theta_{G}\right):=\gamma \prod_{i=1}^{n}\left(s_{t}-c_{i}\right)
$$

with $c_{n} \geq \ldots \geq c_{1}, \gamma>0$.

- The function $G_{*}(\cdot): \mathbb{R} \mapsto \mathbb{R}$ is n-times continuously differentiable in an open interval including zero with $G_{*}(0)=0$ and bounded.
- With respect to the derivatives we assume that:

$$
\left.\frac{\partial G_{*}(s)}{\partial s}\right|_{s=0} \neq 0 \quad \text { and }\left.\quad \frac{\partial^{n} G_{*}(s)}{\partial^{n} s}\right|_{s=0} \neq 0
$$

Regression with

 Integrated Variables
Regression with Integrated Variables

OLS in Cointegrating Regression

$$
y_{t}=x_{t} \beta+u_{t}, x_{t}=x_{t-1}+v_{t}, \hat{\beta}-\beta=\left(\sum_{t=1}^{T} x_{t}^{2}\right)^{-1} \sum_{t=1}^{T} x_{t} u_{t}
$$

$$
\begin{aligned}
T(\hat{\beta}-\beta) \Rightarrow & \left(\int_{0}^{1} B_{v}^{2}(r) d r\right)^{-1}\left(\int_{0}^{1} B_{v}(r) d B_{u}(r)+\Delta_{v u}\right) \\
& \text { with } \Delta_{v u}:=\sum_{j=0}^{\infty} \mathbb{E} v_{t-j} u_{t} \quad\left[\mathbb{E} x_{t} u_{t}=\mathbb{E}\left(\sum_{j=0}^{t-1} v_{t-j}\right) u_{t}\right]
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\sqrt{T}} x_{\lfloor r T\rfloor} & =\frac{1}{\sqrt{T}} \sum_{t=1}^{\lfloor r T\rfloor} v_{t} \Rightarrow B_{v}(r)=\Omega_{v v}^{1 / 2} W_{v}(r) \\
\frac{1}{T^{2}} \sum_{t=1}^{T} x_{t}^{2} & =\frac{1}{T} \sum_{t=1}^{T}\left(\frac{x_{t}}{\sqrt{T}}\right)^{2} \Rightarrow \int_{0}^{1} B_{v}^{2}(r) d r \\
\frac{1}{T} \sum_{t=1}^{T} x_{t} u_{t} & =\frac{1}{\sqrt{T}} \sum_{t=1}^{T}\left(\frac{x_{t}}{\sqrt{T}}\right) u_{t} \Rightarrow \int_{0}^{1} B_{v}(r) d B_{u}(r)+\Delta_{v u}
\end{aligned}
$$

Regression with Integrated Variables

FM-OLS

$$
\begin{aligned}
& y_{t}=x_{t} \beta+u_{t}, \hat{\beta}^{+}:=\left(\sum_{t=1}^{T} x_{t}^{2}\right)^{-1}\left(\sum_{t=1}^{T} x_{t} y_{t}^{+}-\hat{\Delta}_{v u}^{+} T\right), \\
& y_{t}^{+}:=y_{t}-v_{t} \hat{\Omega}_{v v}^{-1} \hat{\Omega}_{v u}, \hat{\Delta}_{v u}^{+}:=\hat{\Delta}_{v u}-\hat{\Delta}_{v v} \hat{\Omega}_{v v}^{-1} \hat{\Omega}_{v u}
\end{aligned}
$$

$$
\begin{aligned}
& T\left(\hat{\beta}^{+}-\beta\right)=\left(\frac{1}{T^{2}} \sum_{t=1}^{T} x_{t}^{2}\right)^{-1}\left(\frac{1}{T} \sum_{t=1}^{T} x_{t} u_{t}^{+}-\hat{\Delta}_{v u}^{+}\right) \\
&=\left(\frac{1}{T^{2}} \sum_{t=1}^{T} x_{t}^{2}\right)^{-1}\left(\frac{1}{T} \sum_{t=1}^{T} x_{t} u_{t}-\frac{1}{T} \sum_{t=1}^{T} x_{t} v_{t} \hat{\Omega}_{v v}^{-1} \hat{\Omega}_{v u}-\hat{\Delta}_{v u}^{+}\right) \\
& \Rightarrow\left(\int_{0}^{1} B_{v}^{2}(r) d r\right)^{-1}\left(\int_{0}^{1} B_{v}(r) d B_{u}(r)+\Delta_{v u}-\int_{0}^{1} B_{v}(r) d B_{v}(r) \Omega_{v v}^{-1} \Omega_{v u}\right. \\
&\left.-\Delta_{v v} \Omega_{v v}^{-1} \Omega_{v u}-\Delta_{v u}^{+}\right) \\
&=\left(\int_{0}^{1} B_{v}^{2}(r) d r\right)^{-1} \int_{0}^{1} B_{v}(r) d B_{u \cdot v}(r), \quad B_{u \cdot v}(\cdot):=B_{u}(\cdot)-B_{v}(\cdot) \Omega_{v v}^{-1} \Omega_{v u}
\end{aligned}
$$

Some Asymptotic RESULTS

FM-OLS Limiting Distribution

Proposition

Under the assumptions given in the paper it holds under the null hypothesis, with $\boldsymbol{\beta}_{0}=\left[\beta_{0}^{\prime}, 0^{\prime}, \ldots, 0^{\prime}\right]^{\prime}$, that:

$$
A^{-1}\left(\hat{\beta}^{+}-\beta_{0}\right) \xrightarrow{d}\left(\int_{0}^{1} J(r) J(r)^{\prime} d r\right)^{-1} \int_{0}^{1} J(r) d B_{u \cdot v}(r)
$$

with $B_{u \cdot v}(r):=B_{u}(r)-B_{v}(r)^{\prime} \Omega_{v v}^{-1} \Omega_{v u}, A$ the scaling matrix, and

$$
J(r):= \begin{cases}\mathbf{B}_{s}^{(0, n)}(r) \otimes\left[\begin{array}{c}
D(r) \\
B_{v}(r)
\end{array}\right] & \text { in case (i) } \\
\mathbf{r}^{(0, n)} \otimes\left[\begin{array}{c}
D(r) \\
B_{v}(r)
\end{array}\right] & \text { in case (ii) }\end{cases}
$$

where $\mathbf{B}_{s}^{(0, n)}(r):=\left[1, B_{s}(r), \ldots, B_{s}^{n}(r)\right]^{\prime}$ and $\mathbf{r}^{(0, n)}:=\left[1, r, \ldots, r^{n}\right]^{\prime}$.

Correction Terms for FM-OLS Based Tests

The correction term $M^{*}:=\left[M_{0}^{* \prime}, M_{1}^{* \prime}, \ldots, M_{n}^{* \prime}\right]^{\prime}$ depends on the approximation order and transition variable and is given by:

$$
M_{j}^{*}:= \begin{cases}{\left[\begin{array}{cc}
j \hat{\Delta}_{s u}^{+} \sum_{t=1}^{T} D_{t} s_{t}^{j-1} \\
\hat{\Delta}_{v u}^{+} \sum_{t=1}^{T} s_{t}^{j}+j \hat{\Delta}_{s u}^{+} \sum_{t=1}^{T} X_{t} s_{t}^{j-1}
\end{array}\right]} & \text { in case (i) } \\
{\left[\begin{array}{cc}
0_{p} \\
\hat{\Delta}_{v u}^{+} \sum_{t=1}^{T} t^{j}
\end{array}\right]} & \text { in case (ii) }\end{cases}
$$

IM-OLS Limiting Distribution

Proposition

Under the assumptions given in the paper it holds under the null hypothesis, with $\beta_{*, 0}:=\left[\beta_{0}^{\prime},\left(\Omega_{v v}^{-1} \Omega_{v u}\right)^{\prime}\right]^{\prime}$, that:

$$
\begin{aligned}
\tilde{A}^{-1}\left(\hat{\boldsymbol{\beta}}_{*}-\boldsymbol{\beta}_{*, 0}\right) & \xrightarrow[\rightarrow]{d}\left(\int_{0}^{1} f(r) f(r)^{\prime} d r\right)^{-1} \int_{0}^{1} f(r) B_{u \cdot v}(r) d r \\
& =\left(\int_{0}^{1} f(r) f(r)^{\prime} d r\right)^{-1} \int_{0}^{1}[F(1)-F(r)] d B_{u \cdot v}(r),
\end{aligned}
$$

where

$$
f(r):=\left[\begin{array}{c}
\int_{0}^{r} J(s) d s \\
B_{v}(r)
\end{array}\right], \quad F(r):=\int_{0}^{r} f(s) d s
$$

and $J(r)$ as defined before.

Fixed-b Inference

Fixed-b Inference: Simple Example I

- Consider a simple "almost standard" (i.e. HAC) regression:

$$
y_{t}=x_{t} \beta+u_{t}
$$

with $T^{-1} \sum_{t=1}^{\lfloor r T\rfloor} x_{t}^{2} \rightarrow r Q, Q>0$ and $z_{t}=x_{t} u_{t}$ such that:

$$
\frac{1}{T^{1 / 2}} \sum_{t=1}^{\lfloor r T\rfloor} z_{t} \Rightarrow \omega^{1 / 2} W(r)
$$

- Then: $\sqrt{T}(\hat{\beta}-\beta) \Rightarrow \mathcal{N}\left(0, \omega Q^{-2}\right)$.
- With a consistent estimator $\hat{\omega} \rightarrow \omega$ it follows that:

$$
t_{\beta}=\frac{\hat{\beta}-\beta_{0}}{\sqrt{\hat{V} \operatorname{ar}(\hat{\beta})}}=\frac{\hat{\beta}-\beta_{0}}{\hat{\omega}^{1 / 2} \hat{Q}^{-1}} \Rightarrow \mathcal{N}(0,1)
$$

- Using a consistent estimator $\hat{\omega}=\hat{\Gamma}_{0}+2 \sum_{j=1}^{T-1} k(j / M) \hat{\Gamma}_{j}$, with $\hat{\Gamma}_{j}=T^{-1} \sum_{t=j+1}^{T} \hat{z}_{t} \hat{z}_{t-j}$ and $\hat{z}_{t}=x_{t} \hat{u}_{t}$, "hides" finite sample effects of kernel function $k(\cdot)$ and bandwidth M.

Fixed-b Inference: Simple Example II

- Consider a bandwidth proportional to sample size, i.e. $M=b T$.
- Then under appropriate assumptions it holds that $\hat{\omega} \Rightarrow \omega P(b, k)$, where $P(b, k)$ is a function of $W(r)$ that depends upon bandwidth b and kernel function $k(\cdot)$.
- This leads to a fixed- b limit distribution of the t-statistic of the form:

$$
t_{\beta} \Rightarrow \frac{W(1)}{P(b, k)}
$$

- See, e. g., Kiefer and Vogelsang (2005).
- Critical values can be tabulated for (a grid of) values of b and different kernel functions $k(\cdot)$.

Long-Run Money DEMAND

Long-Run Money Demand

Residuals from Linear Cointegrating Regression

Euro Area (19 countries)

Israel

Figure: The red dotted line shows the D-OLS residuals, the blue dashed dotted line the FM-OLS residuals and the black dashed line the IM-OLS residuals.

Long-Run Money Demand

Residuals from Linear Cointegrating Regression

Figure: The red dotted line shows the D-OLS residuals, the blue dashed dotted line the FM-OLS residuals and the black dashed line the IM-OLS residuals.

