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MOTIVATION

SWITZERLAND: LOGARITHMS AND LEVELS (1980/I-2017/IIT)
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MOTIVATION

SWITZERLAND: GROWTH RATES AND FIRST DIFFERENCES (1980/11-2017/III)
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MOTIVATION

SWITZERLAND: MOVING WINDOW ESTIMATION — COEFFICIENT TO INTEREST RATE
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FIGURE: The red solid line displays the FM-OLS estimates and the blue dashed
line displays the IM-OLS estimates for 32. The corresponding 95% confidence

bands are given by the red and blue shaded areas.
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MOTIVATION

MONITORING EURO AREA MONEY DEMAND (1980/1-2017/11T)
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FIGURE: Residuals based on estimation until 19981V. Detection time 20091V.
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MODEL AND THEORY



LINEAR COINTEGRATING REGRESSION

DEFINITION & LIMITATIONS BY CONSTRUCTION

LINEAR COINTEGRATING REGRESSION
ye = DlOp + X!0x + us = Z/0 + uy,
where Z; :=[D}, X!], 0 := [0}, 0], with:

o deterministic regressors Dy,

e a non-cointegrated I(1) vector X,

@ and a stationary error term u;.

Linear cointegration may — by construction — be too restrictive:
@ The parameters are assumed to be constant.

@ The setting is linear in parameters and I(1) variables.
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SMOOTH TRANSITION COINTEGRATION

FOR SIMPLIFIED PRESENTATION: SAME VARIABLES IN BOTH PARTS

SMOOTH TRANSITION COINTEGRATION

Vi = Z,_{@L + Z;_{QNL X G(S,_»7 9G) + ug
with Z;, us as above and:
@ a smooth and bounded transition function G(-)

@ and integrated variable or time trend as transition variable s;

EXAMPLE: LOGISTIC TRANSITION FUNCTIONS

1
LSTRL: Gu(st,0c) = =, with
S 1(51:, G) 1+ exp(—fy(st — C)) 5 with v >0
LSTR2Z Gz(st,ec) 1

= —, withy >0
1+ ep(— (s —c)?) 2 K
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SMOOTH TRANSITION COINTEGRATION

TRANSITION VARIABLE

@ For the transition variable s; we consider two cases:

(i) st is an element of X, or is an 1(1) process not cointegrated with X,
(||) St = t.

@ To have a unified notation we define:

X, in case s; is an element of X; or s; = t,
Xi = X . . . Y
‘ [st in case s; is I(1) and not cointegrated with X;.
t

[Where in the second case s; is ordered last w.l.0.g.]

o We furthermore define v; := AX; and denote its long-run variance
as usual by Q,,.

Detailed Assumptions
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TESTING FOR SMOOTH TRANSITION COINTEGRATION

NON-IDENTIFICATION UNDER THE NULL HYPOTHESIS

o Testing linear cointegration against the alternative of smooth
transition cointegration corresponds to testing:

HoZON[_:O VS. H1:0NL;£0.

@ Under the null hypothesis of linear cointegration with v = 0 some
parameters are unidentified, e. g., for LSTR1:

1 1
=270 Z'0 —— .
Ye = 0Lt £e0n X (l-i-exp(—O(St—C)) 2) Tt

=0

@ This identification problem is tackled by using Taylor approximations
of the transition function.
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TESTING FOR SMOOTH TRANSITION COINTEGRATION

TAYLOR APPROXIMATION

o A Taylor approximation of order n leads to a model of the form

ZﬂOJFZ ﬁj+ut

@ The null hypothesis of linearity of the cointegrating relationship is
tested in this auxiliary regression by testing:

Ho: [B1,-- B =0 vs. Hy:[By,.... 5] #0.

PROBLEMS
@ The asymptotic analysis of LS estimators is complicated by the
occurrence of terms of the form X;s!.

o Deriving consistency against fixed alternatives is non-trivial, both
with standard and “Saikkonen-triangular array” asymptotics.
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TESTING FOR SMOOTH TRANSITION COINTEGRATION

ORDER OF TAYLOR APPROXIMATION

@ As discussed in detail, e. g., in Luukkonen et al. (1988), there are
situations in which a first order Taylor approximation leads to tests
with trivial power.

o Consider the following smooth transition model with the “nonlinear”
part only containing the intercept and with s; = x;:

Yt = 0]_ + 02Xt + 03 X G(Xt,OG) + Uuy.
o A first order Taylor approximation leads to
ye = P1+ Boxe + Uy,

and therefore tests based on this approximation have trivial power.

@ In such cases higher order Taylor approximations, typically third
order, are used.
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TESTING FOR SMOOTH TRANSITION COINTEGRATION

MULTI-COLLINEARITY BY DESIGN

@ Another issue that requires some care is multi-collinearity of
regressors in the Taylor approximation.

o First, consider s, = t and D; = (1,t,...,tP~ 1) with p > 1, then
D ® s = Dt®t:(t,t2,...,tp)l.

o Clearly, for p > 1 at least the linear trend appears in D; and D; ® s;.

@ Second, if a constant is included (in the “linear” term) and s; is
already an element of the regressors X;  the regressor s; appears
twice.

@ This “multi-collinearity by construction” is easily overcome by
excluding the corresponding regressor(s) in the Taylor approximation
term(s).
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OLS ASYMPTOTICS

ASYMPTOTIC BEHAVIOR OF THE “X'u-TERM”

In case that s; is an I(1) process:
ey el 1
T th,s{ut;»/ B.,(r)Bi(r)dBu(r)
t=1 0
1
+jAsu/ B, (r)B.*(r)dr
0

1
+ Ay / BL(r)dr
0

In case that s; = t:

T 1
T—muzxnﬂutj/ By, (r)r'dBu(r)
0

=1
1 .
—I—Avu/ rdr
0
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FuLrLy MobpiriED OLS ESTIMATION

@ The idea of FM-OLS is to correct for bias terms arising in the OLS
limit and to correct for the correlation between X;, s; and u;.

@ The auxiliary model can be written in more compact form:
Y = Ft{B + u;:ka
with Fr =[1,s;,...,s7]' ® Z; and B =[5}, ..., 5]

Furry Mobiriep OLS
The FM-OLS estimator of 3 in the above model is given by

T -1, 7
oo (S (S )
=1 =1

with y; == y; — v/Q;:1Q,,, and model specific correction term M*.
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INTEGRATED MODIFIED OLS ESTIMATION

INTEGRATED MODIFIED OLS

IM-OLS estimation is OLS estimation of the partial summed auxiliary
model augmented by X, i.e.,

S{ = S['B+ Xy + 5",
= SI'Bu+ SI™,

where S} := 37 | y; and similarly for S/ and S¢*.

@ Adding X: “soaks up” all dynamic correlation between the regressors and
the errors.

@ Partial summation lets us get rid of “integrated x stationary”-terms.

@ For IM-OLS estimation no choices with respect to tuning parameters have
to be made.

@ By using properly modified residuals fixed-b inference is possible.
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INTEGRATED MODIFIED OLS ESTIMATION

FURTHER ORTHOGONALIZATION OF THE RESIDUALS

@ As in Vogelsang and Wagner (2014) construct some additional

regressors:
T . t—1 j . .
a=ty ST-Y"N"sb sf=[S{"X].
Jj=1 j=1s=1

@ The fixed-b long-run variance estimator is based on the residuals
from the IM-OLS regression augmented by a;:

Sy = SF'B, + alr + S,

e Denoting the residuals with 5¥* we use:
T T
=TS k() asrasy
i=2 j=2
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TESTING FOR SMOOTH TRANSITION COINTEGRATION

FM-OLS: WALD-TYPE TEST
o The Wald-type test is based on FM-OLS estimation of:

ve = ZBo + QiBo + u:

@ The null hypothesis is Hp : Sg = 0; and the corresponding test
statistic is given by:

I3}

By (Q'Q)B
Wem = u,
Wy.v
with Q .= Q — Z(Z2'2)"'Z'Q.
@ The conditional long-run variance estimator used is given by:

N

. oA A 1A
Doy 1= Quu — quQW Qvua

using the OLS residuals of the above Taylor approximation and
Ve = AXt
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TESTING FOR SMOOTH TRANSITION COINTEGRATION

FM-OLS: LM-TYPE TEST

@ The starting point is FM-OLS estimation of the null model:
vi = ZiBo + u

o The resulting FM-OLS residuals i := y;” — Z{3; are then used as
dependent variable in:

Ut = Qt/BQ + P,

with Q := Q— 2(Z2'2)"*7'Q.
@ The parameter 3 needs to be estimated with a suitable correction to
FM-OLS; similar to Wagner and Hong (2016, Proposition 4).

@ This results in the test statistic:

with @,., based on the residuals from the linear (null) model.
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TESTING FOR SMOOTH TRANSITION COINTEGRATION

IM-OLS TESTS: ONLY THE VARIANCE ESTIMATOR DIFFERS

@ For IM-OLS testing is based on the equation:
S/ =S50+ S Bo + Xiv + St

with the null being again Hp : 8o = 0, which is now part of a “bigger”
parameter vector B, i.e.,

Bo
Boe=ReBe=[0 limpy O] [ Be ] =0.
Y

@ Since we use OLS in a linear regression model, Wald- and LM-type tests
only differ by the variance estimator chosen, and we end up with:

3. (ReViuRL) ™ B
{W, LM, Fb},, = Po.. (ReVimRa)  Po, ,

Wy-v

with wy., € {Dy.v, v, &y, } and Vim an estimator of the “X’X"-part of
the estimator variance.
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TESTING FOR SMOOTH TRANSITION COINTEGRATION

STANDARD LiMIT NULL DISTRIBUTIONS

PropPoOSITION
Under the null hypothesis of linear cointegration it holds that:

d
Wirnt, LM, Win, LM 5 2,

with g = dim(3¢) depending on the model and the Taylor approximation
order.

y
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TESTING FOR SMOOTH TRANSITION COINTEGRATION

FIXED-b LIMIT NULL DISTRIBUTION

PROPOSITION

If M= bT with b € (0,1] being held fixed as T — oo, then it holds for
the fixed-b test statistic under the null hypothesis that:
2
Fbpy % X4
N(P*)

with x2 independent of N(P*), where N(-) is a function of (a function

of) standard Wiener processes P that depends upon bandwidth and
kernel function.
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THE TEST STATISTICS

CONSISTENCY AGAINST FIXED ALTERNATIVES: TRIANGULAR ARRAY ASYMPTOTICS

PROPOSITION
Under the alternative hypothesis of smooth transition cointegration:

ye = Z{01 + Z0ni % G(st,1,06) + ur,

with Oy, # 0, v # 0 and s; 7 := T%t for time as transition variable and

S, T i= %st otherwise it holds that:

LMgn, LM = Op(T /M7),

with M1 denoting the bandwidth used for long-run covariance estimation.
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FINITE SAMPLE PERFORMANCE



FINITE SAMPLE PERFORMANCE

SIMULATION DESIGN: SIZE

Under the null hypothesis we generate data according to:
Ye = 0o + O1x1¢ + Oaxor + ue,
with the errors u; and v; = Ax; generated as:

ur = prup—1 +ee + po(err + ex), up =0,
vie = e + 0561, i=1,2,

Wlth (Et, €1t, ezt)l ~ N(O, /3)
@ p; controls the level of serial correlation in the error term u;, and p;
controls regressor endogeneity.

The parameter values are set to 6y = 6; = 6, = 1.
T € {100,200,500} and p; = p» € {0,0.3,0.6,0.8}.

@ The number of replications is 5,000 in all cases and all tests are
carried out at the nominal 5% level.

We use the Bartlett kernel and the Andrews (1991) bandwidth.
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EMPIRICAL NULL REJECTION PROBABILITIES

TRANSITION VARIABLE St = Xo¢

D-OLS FM-OLS IM-OLS
T P15 P2 Wpaic  Wpeic Wem LMem Wim LMim Fbim

Panel A: First order Taylor approximation (n = 1)

100 .0 .0872 .0770 .1460 .0582 .1168 .0542 .0548
3 1474 1392 .1540 .0672 .1526 .0800 .1304
.6 .2348 .1822 .1826 .0586 .1976 .1006 .2502
.8 .4256 .2630 .2536 .0610 .3028 .1544 .5190
200 .0 .0660 .0654 .1100 .0530 .0974 .0598 .0532
3 1116 1112 .1260 .0636 .1164 .0780 .0936
.6 .1690 .1506 .1538 .0574 .1454 .0892 1394
.8 .2742 .1948 .1940 .0498 .1960 .1020 .2918

Panel B: Third order Taylor approximation (n = 3)

100 .0 .1756 .1530 .3136 .0884 .2426 .0372 .0704
3 .2588 .2380 .3006 .0578 .3128 .0690 .2350
.6 4146 .3056 .3080 .0312 .3868 .0736 .6072
.8 .6482 .3916 .3874 .0678 .5590 .1110 .9030
200 .0 .0964 .0884 .2058 .0566 .1658 .0386 .0538
3 .1784 1742 .2096 .0510 2178 .0686 .1346
.6 .2764 .2452 .2358 .0274 .2770 .0742 .3202
.8 .4490 .3126 .3022 .0286 .3976 .0720 .6646
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EMPIRICAL NULL REJECTION PROBABILITIES

TRANSITION VARIABLE sy = t

D-OLS FM-OLS IM-OLS
T P15 P2 Wpaic  Wpeic Wem LMem Wim LMim Fbim

Panel A: First order Taylor approximation (n = 1)

100 .0 .1168 .1014 .1260 .0542 .0926 .0546 .0592
3 .1982 .1876 .2448 .1254 .1784 1110 .1676
.6 4100 3312 4622 .2344 .2824 .1346 .3676
.8 7182 .5972 .6778 .3822 .5170 .2628 7334
200 .0 .0598 .0568 .0592 .0476 .0544 .0512 .0498
3 .1002 .0984 .1054 .0584 .0940 .0730 .0672
.6 .1788 .1750 .1568 .0460 .1024 .0740 .1060
.8 .3448 .3530 .2686 .0288 1242 .0666 .1946

Panel B: Third order Taylor approximation (n = 3)

100 .0 .3040 .2620 .3352 .0808 .2404 .0498 .0862
3 4734 4444 .5250 .2542 .4406 .1048 .3308
.6 .8300 7438 .8578 4638 .6844 .0932 .8158
.8 .9794 .9434 .9704 .6338 9312 .2102 .9884
200 .0 .1352 1272 .1650 .0616 .1146 .0486 .0588
3 29014 .2854 4182 .2038 .2960 .0968 .1664
.6 .6146 .5542 .7010 .3656 4432 .0732 4900
.8 .9202 .8804 .9130 .5344 7738 1712 .8800
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FINITE SAMPLE PERFORMANCE

SIMULATION DESIGN: POWER

For the alternative we use the following DGP:

Ve = 2,0, + Z,0n X G(s¢,7,¢) + ue,

with Z; = [1,x;']’ and errors u;, vy = Ax; as generated for the null.

The parameter values are set again to 6, = [1,1,1]'.

As transition function we consider G(-) € {Gi(+), Go(-)} and
transition variable s; € {xo, t}.

We consider location parameter ¢ = 0 for s; = xo; and ¢ = T/2 for
s¢ = t and use the scaling parameters v € {0.01,0.1,1,10}.

We consider a grid of (including the null) 21 points for Oy, := k6,
with values for x chosen from the interval [0, 2] on an equidistant
grid with mesh 0.1.
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FINITE SAMPLE PERFORMANCE

S1ZE-CORRECTED POWER: LSTRI1 WITH st = Xxo¢
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FIGURE: Size-corrected power for T = 100, Taylor approximation of order
g=1and p1 = p>=0.3.
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FINITE SAMPLE PERFORMANCE

S1ZE-CORRECTED POWER: LSTR2 WITH s; =
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1 1
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FIGURE: Size-corrected power for T = 100, Taylor approximation of order
g=1and p1 = p>=0.3.
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FINITE SAMPLE PERFORMANCE

S1ZE-CORRECTED POWER: LSTR2 WITH s; =
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FIGURE: Size-corrected power for T = 100, Taylor approximation of order
g=3and p1 = p2=0.3.
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FINITE SAMPLE PERFORMANCE

S1ZE-CORRECTED POWER: LSTR1 WITH s; = t
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FIGURE: Size-corrected power for T = 100, Taylor approximation of order
g=1and p1 = p>=0.3.
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FINITE SAMPLE PERFORMANCE

S1ZE-CORRECTED POWER: LSTR2 WITH s; = t
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FIGURE: Size-corrected power for T = 100, Taylor approximation of order
g=1and p1 = p>=0.3.
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ILLUSTRATION WITH LONG-RUN MONEY

DEMAND




LONG-RUN MONEY DEMAND

A SIMPLE MODEL

We consider the simple long-run money demand equation:

M,
In (ﬁ) =c+0t+ BiIn(Ye) + Bart + uy,

t

with (non-cointegrated) I(1) processes In(Y;) and r;.

M; is given by Mjs.

@ P, is the consumer price index.

Y, is real gross domestic product.

@ r; is a 3-month interest rate.

31/41



LONG-RUN MONEY DEMAND

DATA DESCRIPTION

Variable  Description Source

Y: Gross Domestic Product, Expenditure Approach, OECD
Chained Volume Estimates, National Currency,
Quarterly Levels, Seasonally Adjusted,
National Reference Year, Reference Period: 2015 — 16.

re Nominal Short-Term Interest Rate, OECD
Per Cent per Annum, Quarterly.

M, Broad Money (M3), Seasonally Adjusted, FRED
National Currency, Quarterly.

P; Consumer Price Index (CPI), All ltems, OECD

Reference Period: 2015 — 16 = 100, Quarterly.

@ All variables quarterly, seasonally adjusted with country specific
starting points and last observation 2017/I1I.

o Australia, Canada, Czech Republic, Denmark, Israel, New Zealand,
Norway, South Korea, Sweden, Switzerland, UK, USA and Euro Area
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LONG-RUN MONEY DEMAND

AUGMENTED DICKEY-FULLER AND PHILLIPS-PERRON TESTS

In(M3/P) In(GDP) Interest Rate
ADF PP  PP(ft) ADF PP PP(fb) ADF PP  PP(fb)

AUS -176 -164 -161 -290 -3.74 -3.55 -292 -283 -2.84
CAN -254 -208 -181 -217 -235 -238 -336 -282 -2.80
CHE -159 -131 -1.05 -2.68 -258 -263 -295 -298 -2097
CZE -232 -219 -225 -228 -18 -1.83 -196 -1.75 -1.70
DEN -225 -225 -226 -247 -199 -197 -262 -264 -2.66
ISR -2.62 -259 257 -267 -276 -270 -223 -247 -2.46
KOR -3.61 -4.14 -449 -173 -156 -177 -270 -297 -2.95
NzL -310 -293 -290 -211 -226 -226 -281 -4.56 -4.62
NOR -1.93 -166 -157 -3.16 -3.16 -3.45 -282 -325 -3.22
SWE -219 -201 -188 -181 -199 -201 -433 -291 -3.06
UK -209 -108 -070 -149 -177 -171 -3.57 -272 -272
USA -0.72 -094 -092 -132 -161 -1.60 -324 -296 -294
EA -2.16 -118 -0.v9 -2.18 -1.71 -181 -3.02 -279 -2.88

TABLE: Bold entries indicate rejection at the 5% level. PP(fb) denotes the
one-step version of the Vogelsang and Wagner (2013) test.
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LoNG-RUN MONEY DEMAND

(NO-)COINTEGRATION TESTS

Shin Test PU Test
D-OLS FM-OLS [IM-OLS

AUS 0.1968 0.1670 0.0726  7.7920
CAN 0.2249 0.1139 0.0593 5.2664
CHE 0.6087 0.6440 0.1707 17.2928
CZE 0.2113 0.1479 0.0736 19.6403
DNK 0.1111 0.0848 0.0551  3.1702
ISR 0.2498 0.1533 0.0461  3.0915
KOR 0.2835 0.2270 0.0855 28.5091
NzZL 0.1112 0.1015 0.0528 10.1979
NOR 0.1430 0.1351 0.0640 11.7283
SWE 0.0725 0.0572  0.0555  5.1052
UK 0.5892 0.4693 0.2325 6.3602
USA 0.0975  0.0418 0.0338  7.2720
EA  0.1642 0.0698 0.0430  8.2181

TABLE: Results of the cointegration test by Shin (1994) and the
no-cointegration test of Phillips and Ouliaris (1990) for the linear regression
using Andrews (1991) bandwidth and the Bartlett kernel. Bold entries indicate

rejection at the 5% level.
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LONG-RUN MONEY DEMAND

MovING WINDOW ESTIMATION — COEFFICIENT TO INTEREST RATE

Canada Denmark
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FIGURE: The red solid line displays the FM-OLS estimates and the blue dashed
line displays the IM-OLS estimates for 32. The corresponding 95% confidence
bands are given by the red and blue shaded areas.
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LONG-RUN MONEY DEMAND

MovING WINDOW ESTIMATION — COEFFICIENT TO INTEREST RATE
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FIGURE: The red solid line displays the FM-OLS estimates and the blue dashed
line displays the IM-OLS estimates for 32. The corresponding 95% confidence
bands are given by the red and blue shaded areas.
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LONG-RUN MONEY DEMAND: s; = r;

St = It D-OLS FM-OLS IM-OLS
Start Wpaic  Wpeic Wem LMem Wim LMim Fbim

Panel A: First Order Taylor Approximation (n = 1)

CAN 1970Q1  36.15 35.45 87.49 9.91 55.65 7.84 375.95
CHE 1980Q1  13.23 13.23 11.52 13.55 18.64 31.89 615.11
DEN 1995Q1 8.83 8.83 19.24 7.82 18.75 9.11 105.36
ISR 1995Q1  20.10 20.10 27.44 4.62 22.77 10.55 169.55
KOR 1991Q1 208.03 191.31 202.21 31.86 128.72 16.17 504.30
UK 1987Q1 5.55 4.28 5.10 55.05 13.28 59.11 814.81
USA 1964Q1  18.83 18.83 12.65 6.37 20.25 9.76 760.90
EA 1995Q1  36.79 34.95 25.59 3.74 26.31 8.54 1058.57

Panel B: Third Order Taylor Approximation (n = 3)

CAN 1970Q1  40.95 40.95 106.06 30.41 114.92 14.78 4786.17
CHE 1980Q1 106.90 106.90 132.06 39.87 153.55 42.09 6411.93
DEN 1995Q1  33.45 33.45 28.08 15.58 34.38 12.87 299.86
ISR 1995Q1  344.29  344.29  453.20 33.11 405.33 26.91 1579.14
KOR 1991Q1 602.69 602.69  623.73 39.45 545.76 25.71 2085.52
UK 1987Q1 175.69  271.37  271.63  285.23  277.68 70.45 2968.68
USA 1964Q1  23.19 23.19 61.97 17.32 86.37 13.94 2951.75
EA 1995Q1 398.03  129.51 103.86 15.02 112.53 11.80 4735.91

TABLE: Bold numbers indicate rejection at the 5% level. For the standard tests
the corresponding critical values of the x3- and y3-distribution are given by
7.81 and 16.92.
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LoNG-RUN MONEY DEMAND: s; =t

s =t D-OLS FM-OLS IM-OLS
Start Wpaic  Wpeic Wem LMem Wim LMim Fbim

Panel A: First Order Taylor Approximation (n = 1)

CAN 1970Q1  49.04 54.99 126.11 5.98 87.54 9.96 673.71
CHE 1980Q1  18.20 18.20 32.26 33.34 40.60 34.88 483.29
DEN 1995Q1  22.68 22.68 23.98 6.39 34.03 11.65 153.86
ISR 1995Q1  41.06 41.06 49.23 6.98 44.79 14.72 375.84
KOR 1991Q1 288.21  288.21 289.45 20.67 171.98 17.10 525.56
UK 1987Q1  22.24 4.44 3.53 37.03 11.71 49.54 917.39
USA 1964Q1  24.90 24.90 13.74 1.58 16.28 9.30 618.54
EA 1995Q1  50.95 68.41 36.19 4.27 34.30 8.38 2035.80

Panel B: Third Order Taylor Approximation (n = 3)

CAN 1970Q1 135.49  138.93  253.43 33.96 242.83 15.97 6252.21
CHE 1980Q1 1271.84 256.79 - 64.73 358.60 41.50 6332.94
DEN 1995Q1  71.59 71.59 84.76 22.35 97.21 13.22 357.12
ISR 1995Q1 529.44  529.44  183.54 40.04 232.44 23.63 1334.70
KOR 1991Q1 662.97  662.97  623.19 44.82 530.29 24.85 1563.99
UK 1987Q1  242.11  349.44 292,65 322.31  316.10 69.50 2420.62
USA 1964Q1 163.31 163.31  433.14 10.58 381.73 15.02 6729.98
EA 1995Q1 355.05  355.05  208.76 25.15 164.12 11.15 5223.22

TABLE: Bold numbers indicate rejection at the 5% level. For the standard tests
the corresponding critical values of the x3- and y3-distribution are given by
7.81 and 16.92.
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LONG-RUN MONEY DEMAND

SUMMARY OF TEST FINDINGS

@ A large amount of rejections throughout across n and s;.

Panel A: First Order Taylor Approximation (n = 1)

St =1t Canada, Denmark, South Korea, Switzerland
Ss =1t South Korea, Switzerland

Panel B: Third Order Taylor Approximation (n = 3)

st € {r,t} lsrael, South Korea, Switzerland, United Kingdom

TABLE: List of countries with rejections throughout.
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SUMMARY AND CONCLUSIONS

@ We have provided tests for the null of linear cointegration against
the alternative of smooth transition cointegration.

@ The tests are based on FM-OLS and IM-OLS estimators considered
for this type of Taylor approximation polynomial.

o We face some limitations in the setting, both with respect to X; and
also s;.

@ Roughly, the LM-tests perform better than the Wald-tests.

@ The next step is to develop FM- and IM-type estimation for smooth
transition cointegration models.
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ASSUMPTIONS

REGRESSORS AND ERRORS

o Let {AXt}tgz = {Vt}tEZ and denote with {gt}tGZ = {[Ut, Vé])l}tez the
process generated by:

& =C(L)& =) G&,
j=0

with >, jIIGi|| < co and det(C(1)) # 0.

@ The process {£2}+cz is a strictly stationary and ergodic martingale
difference sequence (MDS) with natural filtration F; = o({62}% ).

@ Moreover, we assume a positive definite covariance matrix Loz and
sup,ez E[|€2]|"| Fe-1] < oo a.s. for some r > 4.

2/18



ASSUMPTIONS

DETERMINISTIC COMPONENT

For the deterministic component we assume that there exists a sequence of
p x p scaling matrices Ap = Ap(T) and a p-dimensional vector of cadlag
functions D(s), with 0 < fos D(z)D(z)' dz < oo for 0 < s < 1, such that for
0 < s <1 it holds that:

lim T'?ApDjry = D(s).

T—oo

[For the leading case of polynomial time trends, the deterministic component
has the form D, = [1,t,t%,..., t97']" with

Gp = diag( ToY2 T3 782 Tf(q—l/’z)) and
D(s) = [L,5. 5%, ..., 57 ]']
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ASSUMPTIONS

KERNEL AND BANDWIDTH

The kernel function k(-) satisfies:
@ k(0) =1, k(-) is continuous at 0 and k(0) := sup, > |k(x)| < o
(2] fooo k(x)dx < oo, where k(x) = sup,>, [k(y)l

The bandwidth satisfies M+ — co with Tlim (M;1 + T_1/2M7—) =0. J
— 00
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ASSUMPTIONS

TRANSITION FUNCTION

@ The transition function is given by
G(st,06) := G.(h(st,06)),

where

h(s¢,0¢) == 'yH(st - q),
i=1
with ¢, > ... > ¢, v > 0.

@ The function G.(:): R — R is n-times continuously differentiable in an
open interval including zero with G,(0) = 0 and bounded.

@ With respect to the derivatives we assume that:

9G.(s) 9" G (s)
Js o"s

|s:0 7é 0 and |s:0 7é 0.
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REGRESSION WITH INTEGRATED VARIABLES

OLS IN COINTEGRATING REGRESSION

n =i
Ye=XeS+ U, Xe =Xe—1+ Ve, B— B = (Z;r:l Xt2) Z;r:l Xt Ut

T (//3’ _ﬁ) = </ Bs(r)dr> </ B,,(r)dBu(r) +Avu> s

(o5} t—1
with Avu = Z]Evt_jut [EXth = E(Z Vi j)Ut]
j=0 Jj=0

Lr7]
1 1 1/2
TS E ve = B,(r) = 2 W, (r)
t=1

T

T 1
1 2 : 2 _ 1 § : x \? 2
T2 x; = - (—T) :>/0 B, (r)dr
t=1

t=1

T T 1
1 1 Xt
— Xl = —— ur = B,(r)dB,(r) + Ay
P S 230 (55) e [ miemen
t=1 t=1
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REGRESSION WITH INTEGRATED VARIABLES
FM-OLS

8/18



SOME ASYMPTOTIC
RESULTS




FM-OLS LIMITING DISTRIBUTION

PROPOSITION

Under the assumptions given in the paper it holds under the null
hypothesis, with By = [3},0’,...,0], that:

A—l( (/Jr)J( ) /J )dBu.(r

with By.,(r) := Bu(r) — B,(r)Q,,}Q,., A the scaling matrix, and

B (r) [ g((rr)) } in case (i)
=0 e [ D)
A [ B.(r)

where Bgo’")(r) = [1,Bs(r),...,BI(r)] and ¥rO") :=[1,r, ..., r".

in case (i)
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CORRECTION TERMS FOR FM-OLS BASED TESTS

The correction term M* := [M§', M;', ..., M}']" depends on the
approximation order and transition variable and is given by:

o T =1l
JAL 3 ey Dest - -
" g Lat= T ’ in case (i)
M — A7, Zt:lsijr +jAL, Zt:l Xest '
' O in (i)
ALY
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IM-OLS LIMITING DISTRIBUTION

PROPOSITION

Under the assumptions given in the paper it holds under the null
hypothesis, with B o := [B5, (2,1Qu)'], that:

l\‘l(ﬁ*—ﬂ*o (/fr)f ) /f( )Bu.(r)d
=(/f JF(r) ) /[F ()]dBun (1),

and J(r) as defined before.

where
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FIXED-b INFERENCE: SIMPLE EXAMPLE 1

@ Consider a simple “almost standard” (i.e. HAC) regression:
ye = xe3 + ut,

with 771 ZL'TJ x2 = rQ, Q@ > 0 and z: = x;u; such that:

Lr7]
m Z Zy = wl/QW(r).

t=1

@ Then: ﬁ(@ —B) = N(0,wQ7?).

@ With a consistent estimator & — w it follows that:

tg = b_b__ Aﬁ_ﬁo = N(0,1).
Var(f) —@/?Q!
@ Using a consistent estimator & = [y + 2 EJ.T:_II k(j/M)T;, with

fj =71 ZZ—:H_I 2:2,_j and 2; = x; ¢, "hides” finite sample effects of
kernel function k(-) and bandwidth M.
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FIXED-b INFERENCE: SIMPLE EXAMPLE 11

@ Consider a bandwidth proportional to sample size, i.e. M = bT.

@ Then under appropriate assumptions it holds that & = wP(b, k), where
P(b, k) is a function of W(r) that depends upon bandwidth b and kernel
function k(-).

@ This leads to a fixed-b limit distribution of the t-statistic of the form:

w(1)
P(b, k)

tg =

@ See, e. g., Kiefer and Vogelsang (2005).

o Critical values can be tabulated for (a grid of) values of b and different
kernel functions k(-).
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LONG-RUN MONEY DEMAND

RESIDUALS FROM LINEAR COINTEGRATING REGRESSION
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FIGURE: The red dotted line shows the D-OLS residuals, the blue dashed
dotted line the FM-OLS residuals and the black dashed line the IM-OLS

residuals.
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LONG-RUN MONEY DEMAND

RESIDUALS FROM LINEAR COINTEGRATING REGRESSION

Korea Switzerland
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FIGURE: The red dotted line shows the D-OLS residuals, the blue dashed
dotted line the FM-OLS residuals and the black dashed line the IM-OLS

residuals.
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