## Inflation Surprises and Equity Returns

Antonio Gil de Rubio Cruz Emilio Osambela

Dino Palazzo Francisco Palomino Gustavo Suarez

EEA 2023

The views expressed are those of the authors and do not necessarily reflect those of the Federal Reserve System.

## Motivation

- What are the drivers of stock prices' response to inflation surprises? Long standing research question!
- We focus on the "high frequency" response of stock prices to better identify the sensitivity to inflation surprises
- Use a large panel of U.S. publicly traded firms
- to explore the average response of equity prices to inflation surprises and its time-varying nature
$\Rightarrow$ When do inflation surprises matter for stock returns?
- to identify firm-level characteristics that explain differences in the response to inflation surprises
$\Rightarrow$ What are the stocks that react more?


## Main findings

- Stock prices' response to inflation surprises is robustly negative
- The response to positive surprises exhibits more time variation than the response to negative surprises
- The time variation in the response is partly explained by deviations of inflation and output from policy targets
- Firms with low leverage, large market capitalization, high market beta, low book-to-market, and low markups are especially sensitive to inflation surprises


## Core inflation surprises

- Inflation is month-on-month change in CPI excluding food and energy (core inflation) from August 1989 to March 2023
- surprise $=$ realized inflation net of inflation survey median
- The modal outcome is no surprise (36\%)
- Negative surprises account for $36 \%$ of the observations
- Positive surprises account for $28 \%$ of the observations



## Inflation Announcement Window



## Average equity response robustly negative

|  | $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| surprise core | $-1.807^{* * *}$ |  | $-1.486^{* * *}$ | $-1.860^{* * *}$ | 0.049 |
| surprise headline | $(-4.484)$ |  | $(-3.653)$ | $(-4.743)$ | $(0.307)$ |
|  |  | $-1.100^{* * *}$ | -0.478 |  |  |
| Close-to-825 (SP500) |  | $(-3.409)$ | $(-1.516)$ |  |  |
|  |  |  |  | $0.600^{* * *}$ | $0.634^{* * *}$ |
| $915-$ to-930 (SP500) |  |  |  | $(8.013)$ | $(17.117)$ |
|  |  |  |  | 0.121 | $0.470^{* * *}$ |
| ret $_{t-1}$ |  |  | $(0.324)$ | $(2.786)$ |  |
|  |  |  | $-0.051^{* * *}$ | $-0.048^{* * *}$ |  |
| $825-$ to-915 (SP500) |  |  | $(-8.609)$ | $(-11.132)$ |  |
|  |  |  |  | $0.877^{* * *}$ |  |
| Obs | 802,487 | 802,487 | 802,487 | 802,487 | 802,487 |
| $R^{2}$ | 0.015 | 0.012 | 0.016 | 0.052 | 0.093 |

A 0.1 inflation surprise is associated, on average, with a $0.18 \%$ decrease in stock prices.

## Related results

- Inflation news fully incorporated at opening
- Negative reaction robust across industries
- Firms in industries that adjust prices more frequently react significantly less (in absolute value) to inflation surprises


## Significant time variation in sensitivity

Stocks sensitivity to inflation surprises
18-month rolling estimation


## Positive surprises

Stocks sensitivity to positive inflation surprises
18-month rolling estimation


The sensitivity to positive surprises is sometimes positive in the sample, usually around recessions

## Negative surprises

Stocks sensitivity to negative inflation
18 -month rolling estimation


| $\square$ |
| :--- | Sensitivity - $\quad 90 \%$ C.I. $\quad-----$ Sensitivity +

The sensitivity to negative surprises fluctuates less than the sensitivity to positive surprises; their correlation is only 0.19

## Sub-sample analysis

|  | $(1)$ | $(2)$ | $(3)$ | $(4)$ | $(5)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | $1993 \mathrm{~m} 10-$ | $1993 \mathrm{~m} 10-$ | $2008 \mathrm{~m} 1-$ | $2008 \mathrm{~m} 3-$ | $2021 \mathrm{~m} 10-$ |
|  | 2023 m 3 | 2007 m 12 | 2023 m 3 | 2009 m 8 | 2023 m 3 |
| -surprise | $-2.416^{* * *}$ | $-1.240^{* * *}$ | $-3.388^{* * *}$ | $-3.415^{* *}$ | $-9.810^{* * *}$ |
|  | $(-4.178)$ | $(-3.011)$ | $(-3.764)$ | $(-2.317)$ | $(-3.096)$ |
| +surprise | $-1.408^{* *}$ | $-2.062^{* *}$ | $-1.316^{*}$ | $4.904^{*}$ | $-7.490^{* * *}$ |
|  | $(-2.277)$ | $(-1.982)$ | $(-1.758)$ | $(2.023)$ | $(-3.279)$ |
| Close-to-825 (SP500) | $0.599^{* * *}$ | $0.490^{* * *}$ | $0.794^{* * *}$ | $0.962^{* * *}$ | 0.477 |
|  | $(8.041)$ | $(6.559)$ | $(6.744)$ | $(7.997)$ | $(0.925)$ |
| $915-$ to-930 (SP500) | 0.140 | -0.350 | 0.760 | -0.095 | 1.944 |
|  | $(0.361)$ | $(-0.793)$ | $(1.465)$ | $(-0.169)$ | $(1.256)$ |
| ret ${ }_{t-1}$ | $-0.051^{* * *}$ | $-0.069^{* * *}$ | $-0.027^{* * *}$ | $-0.039^{* *}$ | $-0.064^{*}$ |
|  | $(-8.666)$ | $(-12.077)$ | $(-2.702)$ | $(-2.753)$ | $(-1.998)$ |
| Obs | 802,487 | 399,284 | 403,187 | 40,823 | 47,507 |
| $R^{2}$ | 0.052 | 0.036 | 0.094 | 0.106 | 0.248 |

## Inflation surprises and monetary policy expectations

|  | $(1)$ | $(4)$ | $(5)$ | $(6)$ |
| :--- | :---: | :---: | :---: | :---: |
|  | Full | Full | $1993-$ | $2022 \mathrm{~m} 3-$ |
|  | Sample | Sample | 2022 m 2 | 2023 m 3 |
| $\Delta 2$ YR | $-0.075^{* * *}$ | 0.003 | 0.01 | -0.033 |
|  | $(-6.481)$ | -0.192 | -0.863 | $(-1.628)$ |
| negativeX $\Delta 2$ YR |  | $-0.079^{* * *}$ | -0.024 | $-0.100^{* * *}$ |
|  |  | $(-3.596)$ | $(-1.521)$ | $(-3.445)$ |
| positiveX $\Delta 2$ YR |  | $-0.097^{* * *}$ | -0.029 | $-0.125^{* * *}$ |
|  |  | $(-4.362)$ | $(-1.037)$ | $(-3.684)$ |
| negative surprise dummy |  | $0.105^{* *}$ | $0.142^{* * *}$ | 0.010 |
|  |  | -2.188 | -3.215 | $(0.018)$ |
| positive surprise dummy |  | 0.033 | -0.1 | 0.757 |
|  |  | -0.334 | $(-1.080)$ | $(1.612)$ |
| Close-to-825 (SP500) | $0.629^{* * *}$ | $0.634^{* * *}$ | $0.631^{* * *}$ | $0.953^{* * *}$ |
|  | -8.301 | -8.674 | -8.903 | $(4.888)$ |
| $915-$ to-930 (SP500) | -0.195 | -0.222 | -0.219 | $1.584^{* * *}$ |
|  | $(-0.472)$ | $(-0.562)$ | $(-0.572)$ | $(3.322)$ |
| ret ${ }_{t-1}$ | $-0.047^{* * *}$ | $-0.049^{* * *}$ | $-0.047^{* * *}$ | $-0.053^{* *}$ |
|  | $(-8.134)$ | $(-8.812)$ | $(-9.040)$ | $(-2.623)$ |
| Obs | 751,724 | 751,724 | 717,031 | 34,679 |
| $R^{2}$ | 0.064 | 0.07 | 0.047 | 0.417 |

Co-movement of stock returns and Treasury yield changes only if there is an inflation surprise

## Inflation surprises and monetary policy expectations

Changes in 2-year Treasury yield vs Inflation Surprises


Equity Returns vs Inflation Surprises


## What drives the time-variation in sensitivity?

Stock price reaction to inflation surprises may depend on the anticipated policy response to the news

$$
F F R_{t}=r_{t}^{*}+\pi_{t}^{*}+\beta_{\pi}\left(\pi_{t}-\pi_{t}^{*}\right)+\beta_{x} x_{t}+\varepsilon_{t}
$$

- $\pi_{t}-\pi_{t}^{*}$ : Deviations from inflation target (TargetDev)
- Inflation target $\left(\pi_{t}^{*}\right)$ proxied by 30-year inflation expectations from the Cleveland Fed
- Output gap $\left(x_{t}\right)$ proxied by total capacity utilization (TCU)


## What drives the time-variation in sensitivity?

|  | (7) | (8) | (9) |
| :---: | :---: | :---: | :---: |
|  | 1993m10- | 1993m10- | 2008m1- |
|  | 2023 m 3 | 2007 m 12 | 2023 m 3 |
| surprise | -2.175*** | -1.506*** | -2.524*** |
|  | (-6.414) | (-3.347) | (-5.777) |
| surpriseXTarget Dev | $-2.848^{* * *}$ | -1.222 | -3.568*** |
| TargetDev | (-4.457) | (-1.152) | (-5.181) |
|  | $-0.228^{* * *}$ | -0.229** | -0.201** |
|  | (-3.107) | (-2.473) | (-2.232) |
| surpriseXTCU | -0.644*** | -0.917*** | -0.615*** |
| $T C U$ | (-5.604) | (-2.838) | (-4.566) |
|  | -0.034*** | -0.01 | -0.040** |
|  | (-2.829) | (-0.557) | (-2.449) |
| surpriseXTargetDevXTCU | -0.639*** | -1.284* | -0.646 *** |
| TargetDevXTCU | (-6.602) | (-1.811) | (-6.569) |
|  | $-0.039^{* * *}$ | -0.038 | -0.043*** |
|  | (-3.022) | (-0.916) | (-2.725) |
| Close-to-825 (SP500) | $0.672^{* * *}$ | $0.484^{* * *}$ | $0.918^{* * *}$ |
|  | -12.52 | -6.504 | (12.898) |
| 915-to-930 (SP500) | 0.181 | -0.207 | $0.797^{* *}$ |
|  | -0.604 | (-0.590) | (2.096) |
| $\mathrm{ret}_{t-1}$ | $-0.050^{* * *}$ | -0.070*** | -0.024*** |
|  | (-9.267) | (-12.929) | (-2.638) |
| Obs | 799,844 | 399,284 | 400,544 |
| $R^{2}$ | 0.072 | 0.04 | 0.142 |

## What drives the time-variation in sensitivity?

|  | Positive 0.1 inflation surprise |  |  |
| :--- | :---: | :---: | :---: |
|  | TargetDev=-1 $\sigma$ | TargetDev=0 | TargetDev $=+1 \sigma$ |
| $T C U=-1 \sigma$ | $\mathbf{0 . 0 0}$ | -0.06 | -0.13 |
| $T C U=0$ | -0.08 | -0.22 | -0.36 |
| $T C U=+1 \sigma$ | -0.15 | -0.37 | -0.59 |

More significant positive deviations from output and inflation targets are associated with stronger stock price responses to inflation surprises

Reminder: A 0.1 inflation surprise is associated, on average, with a $0.18 \%$ decrease in stock prices in the baseline scenario.

## What drives the time-variation in sensitivity?

Predicted stocks sensitivity to inflation
18-month rolling window


What are the stocks that react more?

## Firm-level characteristics I

- Financial position of the corporation
- Cash-to-asset: $C H E Q / A T Q$
- Leverage: $L T Q / A T Q$
- Receivables: RECTQ/ATQ
- Real assets
- Inventories: $I N V T Q / A T Q$
- Tangibility: PPENTQ/ATQ
- Profitability
- Gross margin: $(S A L E Q-C O G S Q) / S A L E Q$
- Cash flow: $(I B Q+D P Q) / A T Q$
- Markup


## Firm-level characteristics II

- Market-based characteristics
- Equity return from the last trading day before the inflation announcement day (to control for short-term reversal)
- Market size: SHROUT $\times$ PRC measured the last trading day before the announcement day
- Market Beta, measured using the previous 24 months (minimum) to 60 months (maximum)
- Book-to-market: $(A T Q-L T Q) /(P R C C Q * C S H O Q)$


## Firm-level drivers

$$
\operatorname{Ret}_{i, t}^{C O}=\alpha_{i}+\nu_{t}+\beta_{S, k} X_{i, t, k} \times \text { Surprise }_{t}+\sum_{k=1}^{K} \beta_{k} X_{i, t, k}+\varepsilon_{i_{t}}
$$

|  | $(1)$ | $(2)$ | $(3)$ |
| :--- | :---: | :---: | :---: |
|  | Full Sample | $1993 \mathrm{~m} 10-2007 \mathrm{~m} 12$ | $2008 \mathrm{~m} 1-2023 \mathrm{~m} 3$ |
| surpriseXnet leverage | $0.252^{* * *}$ | $0.395^{* * *}$ | $0.195^{* * *}$ |
| surpriseXmarkup | $(3.832)$ | $(3.224)$ | $(2.940)$ |
|  | $0.241^{* * *}$ | $0.165^{*}$ | $0.249^{* * *}$ |
| surpriseXsize | $(4.897)$ | $(1.692)$ | $(4.263)$ |
|  | $-0.477^{* * *}$ | $-0.539^{* * *}$ | $-0.440^{* * *}$ |
| surpriseXbm | $(-4.844)$ | $(-4.103)$ | $(-3.224)$ |
|  | $0.200^{* * *}$ | $0.179^{*}$ | $0.200^{* * *}$ |
| surpriseXbeta | $(4.812)$ | $(1.893)$ | $(4.708)$ |
|  | $-0.422^{* * *}$ | $-0.316^{* * *}$ | $-0.551^{* * *}$ |
| ret $t-1$ | $(-4.440)$ | $(-3.015)$ | $(-3.722)$ |
|  | $-0.069^{* * *}$ | $-0.093^{* * *}$ | $-0.030^{* * *}$ |
| Obs | $(-16.938)$ | $(-19.087)$ | $(-5.307)$ |
| $R^{2}$ | 601,376 | 309,857 | 291,503 |

## Firm-level drivers

- Net leverage: Real value of cash balances is eroded by high inflation, while real debt obligations become smaller (e.g., Summers (1981), French, Ruback, and Schwert (1983), Bernard (1986), Pearce and Roley (1988), among many others)
- Size: Large firms react more to inflation surprises. Small stocks are more volatile and less likely to be traded around market opening (e.g., Adams, McQueen, and Wood (2004))
- BM: Firms with a higher book-to-market ratio are distressed and might benefit from lower real debt obligations (See also Wei (2009))
- CAPM beta: High systematic risk firms are more sensitive to inflation news (e.g., Bernard and Frecka (1983))
- Markup: "Firms with more market power are shielded from stagflationary stock returns" (e.g., Knox and Timmer (2023)).


## Inflation Sensitive vs Inflation Insensitive Firms

| Score $_{i, t}=$ | $-\left(0.252 \times\right.$ Net Leverage $_{i, t}+0.241 \times$ Markup $_{i, t}$ |  |  |
| :--- | :---: | :---: | :---: |
|  | $\left.-0.477 \times \mathrm{Size}_{i, t}+0.200 \times \mathrm{BM}_{i, t}-0.422 \times \mathrm{Beta}_{i, t}\right)$. |  |  |
|  |  |  |  |
|  | $(1)$ | $(2)$ | $(3)$ |
|  | Full Sample | $1993 \mathrm{~m} 10-2007 \mathrm{~m} 12$ | $2008 \mathrm{~m} 1-2023 \mathrm{~m} 3$ |
| surpriseXinsensitive | $1.004^{* * *}$ | $0.921^{* * *}$ | $1.073^{* * *}$ |
|  | $(4.897)$ | $(3.731)$ | $(3.562)$ |
| surpriseXsensitive | $-1.470^{* * *}$ | $-1.452^{* * *}$ | $-1.502^{* * *}$ |
|  | $(-5.283)$ | $(-3.091)$ | $(-4.237)$ |
| insensitive | 0.016 | 0.027 | 0.011 |
|  | $(0.764)$ | $(0.792)$ | $(0.479)$ |
| sensitive | 0.006 | 0.027 | 0.002 |
|  | $(0.350)$ | $(0.954)$ | $(0.085)$ |
| ret ${ }_{t-1}$ | $-0.069^{* * *}$ | $-0.093^{* * *}$ | $-0.030^{* * *}$ |
|  | $(-16.919)$ | $(-19.067)$ | $(-5.286)$ |
| Obs | 601,376 | 309,857 | 291,503 |
| $R^{2}$ | 0.115 | 0.060 | 0.227 |

Sensitive $_{t}$ (insensitive $_{t}$ ) top (bottom) $10 \%$ of score distribution at $t$

## Inflation-based excess returns by surprise

Sensitivity-based Excess Return


- No Surprise - Negative surprise - Positive surprise


## Average inflation-based excess returns

Average Excess EW Return by Inflation Surprise


## Cumulative inflation-based excess returns


$\square$ Inflation surprise (left) $\quad$ _ Inflation premium ( right)

## Out-of-sample performance

## Inflation-Based Excess Returns (2022m3-2023m3)



## Conclusion

- The stock price response to core inflation shocks varies substantially over time and across firms.
- The time variation in the response can be explained by deviations of inflation and output from monetary policy targets: stronger negative responses when inflation and output are above their targets.
- Across firms, net leverage, markups, size, book-to-market, and CAPM beta affect the response to inflation surprises.
- We use these characteristics to identify inflation-sensitive and inflation-insensitive firms and construct a portfolio that captures the time-varying excess return for inflation shocks.


## References I

Adams, G., G. McQueen, and R. Wood (2004). The effects of inflation news on high frequency stock returns. The Journal of Business 77(3), 547-574.
Bernard, V. L. (1986). Unanticipated inflation and the value of the firm. Journal of Financial Economics 15(3), 285-321.
Bernard, V. L. and T. J. Frecka (1983). Evidence on the existence of common stock inflation hedges. Journal of Financial Research 6(4), 301-312.
French, K. R., R. S. Ruback, and G. W. Schwert (1983). Effects of nominal contracting on stock returns. Journal of Political Economy 91(1), 70-96.
Pearce, D. K. and V. V. Roley (1988). Firm characteristics, unanticipated inflation, and stock returns. The Journal of Finance 43(4), 965-981.
Summers, L. H. (1981). Inflation and the valuation of corporate equities. Technical report, National Bureau of Economic Research.
Wei, C. (2009). Does the stock market react to unexpected inflation differently across the business cycle? Applied Financial Economics 19(24), 1947-1959.

