STEREOTYPICAL SELECTION

Martina Zanella

Department of Economics, TCD

EEA-ESEM Conference 31/08/2023

EXPLOSION OF POLICIES TO LEVEL THE PLAYING FIELD. WILL IT BE ENOUGH?

CSWEP Programs

CSWEP sponsors an array of programs and resources designed to promote the careers of female economists.

CeMENT Mentoring Workshops

About us

Google's Women Techmakers program provides visibility, community, and resources for women in technology

Women in International Economics Conference

The goal of this conference is to enhance diversity within the field of international economics by providing junior women with a forum to present work and receive constructive feedback and mentorship. We hope that the conference will facilitate the development of networks between junior and senjor women in the field

WE NEED TO UNDERSTAND SELECTION

Stereotypes, norms, and social identity considerations shape the distribution of groups across fields by influencing payoffs from economic choices

```
(Akerlof and Kranton, 2000; Card et al., 2008; Bertrand, 2011; Oxoby, 2014; Pan, 2015; Cortes and Pan, 2018; Bertrand, 2020; Del Carpio and Guadalupe, 2022; Kugler et al., 2021)
```

- ► The individuals that we observe in the **minority group** are often people who made **choices against stereotypes**, selecting into **counter-stereotypical** fields where their group is **under-represented**
- Example: Women in STEM

ACKNOWLEDGING SELECTION HAS IMPORTANT IMPLICATIONS

- Experiments: minority status detrimental for performance, especially in counter-stereotypical fields (e.g. Women in STEM)
 - under-representation reduces opportunities for interaction and assistance → "homophily" (e.g. Inzlicht and Good, 2006; McPherson et al., 2001)
 - under-representation triggers "stereotype threat" in counter-stereotypical fields
 (e.g. Steele and Aronson, 1995; Spencer et al., 2016; Bordalo et al., 2019; Karpowitz and Stoddard, 2020)

- Findings from experiments may **not apply** to real-world environments
 - ▶ not random assignment to minority status but often **endogenous** selection
- Margin mostly remained unexplored
 - minority status and choices against stereotypes go hand-in-hand and often overlap

THIS PAPER.

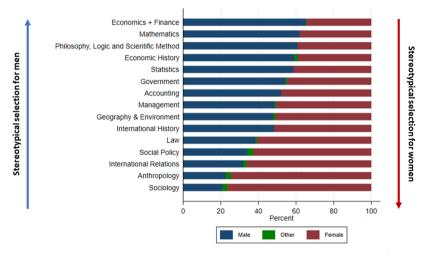
How Does Minority Status Affect Performance When Selection is Endogenous?

- ▶ Study performance in **first-year courses** for 14,313 students enrolled in **undergraduate** programs at the LSE across 10 academic years (2008-2017) and **16 departments**
- ▶ Independent variation in *stereotypical choices* and *peers' identity*
 - 1. Choice of major in line/against gender stereotypes
 - → stereotypical and counter-stereotypical choices
 - 2. Quasi-random allocation of students into class groups
 - → exogenous variation in peers' identity
- ⇒ Estimate effect of changes in peers' identity for students who made different choices

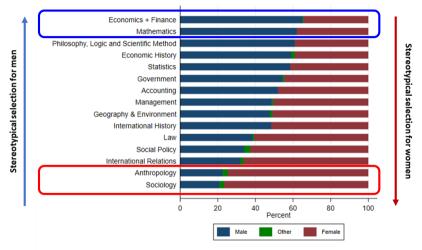
EMPIRICAL STRATEGY

- ► Empirically disentangle the effects of peers' identity and selection
 - 1. Choice of major in line/against gender stereotypes
 - \rightarrow stereotypical and counter-stereotypical choices
 - 2. Quasi-random allocation of students into class groups
 - \rightarrow exogenous variation in peers' identity

1 Stereotypical Selection: Choice of Major

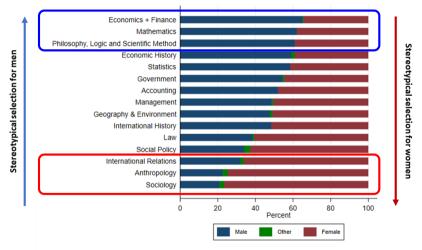

"Women are worse in math, but better at reading than men" (Ellemers, 2018; Reuben et al., 2014)

1 Stereotypical selection: continuous definition


Proxy: average share of men/women enrolled in each department between 2008 and 2017

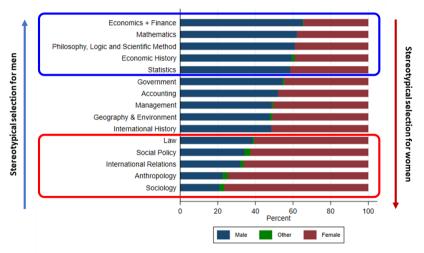
"Women are worse in math, but better at reading than men" (Ellemers, 2018; Reuben et al., 2014)

1 Stereotypical selection: categorical definition


Students are divided in three groups

"Women are worse in math, but better at reading than men" (Ellemers, 2018; Reuben et al., 2014)

1 Stereotypical selection: categorical definition


Students are divided in three groups

"Women are worse in math, but better at reading than men" (Ellemers, 2018; Reuben et al., 2014)

1 Stereotypical selection: categorical definition

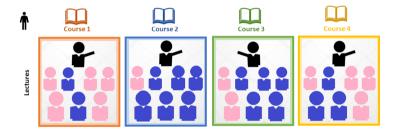
Students are divided in three groups

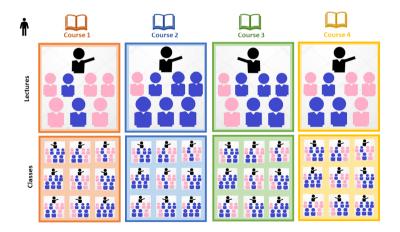
"Women are worse in math, but better at reading than men" (Ellemers, 2018; Reuben et al., 2014)

EMPIRICAL STRATEGY

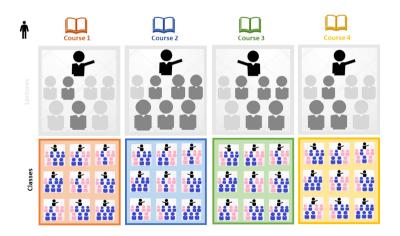
- ► Empirically disentangle the effects of peers' identity and selection
 - 1. Choice of major in line/against gender stereotypes
 - \rightarrow stereotypical and counter-stereotypical choices
 - 2. Quasi-random allocation of students into class groups
 - \rightarrow exogenous variation in peers' identity

▶ Students attend **multiple** courses during their first year (on average 4)

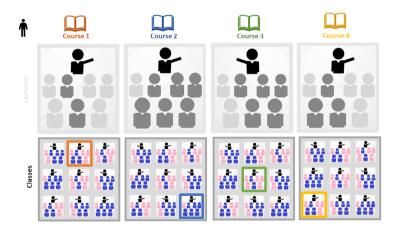




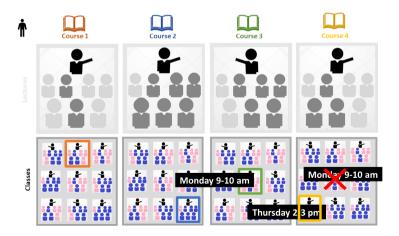
▶ For each course, they attend courses - where they are all together



- ▶ For each course, they attend courses where they are all together
- ▶ They also attend classes for which they are divided in **small groups**


2 ENVIRONMENT COMPOSITION

► Treatment: class composition



2 ENVIRONMENT COMPOSITION

► Treatment: class composition → Exploit the allocation of students into classes

- ► Treatment: class composition → Exploit the allocation of students into classes
 - ▶ Allocation only constrained by scheduling conflicts → exogenous peers' identity

IDENTIFICATION STRATEGY VALIDITY

$$y_{iacg} = \alpha_{ac} + \alpha_i + \beta_1 \times SLM_{iacg} + \beta_2 \times SLM_{iacg} \times STS_i + \epsilon_{iacg}$$

- $\triangleright y_{iacq}$: grade of student i in class group g of first-year course c and academic year a
- \triangleright α_{ac} and α_{i} : course and student fixed effects
- ightharpoonup SLM_{iacq}: share of students like me share of same gender classmates
- \triangleright STS_{iaca} : stereotypical selection
- Standard errors are clustered at class level
- Estimate the effect of class composition by exploiting a within-student variation
 - compare the performance of the same student across courses where they are allocated to classes with exogenous peers' characteristics, net of course and student fixed effects
- \triangleright β_2 : Assesses whether the effect differs depending on the choice of major

Opposite effect compared to what we would have PREDICTED IF WE HAD GENERALIZED EXPERIMENTAL FINDINGS

The students who suffer the most from being in a numerical minority are those who made stereotypical choices (e.g. men in math)

	Course grade (1)
Share of students like me	-5.937***
	(1.701)
Share of students like me $ imes$ Stereotypical selection	12.390***
	(3.166)
Observations	54603
Mean Dependent Variable	60.320
	(16.345)

Note: Course and student FE included. SEs in parentheses clustered at class level.

CHOICES OF MAJOR MATTER

▶ Students who made different choices are differentially affected by class composition

	Course grade		
	Top and Bottom 2 (1)	Top and Bottom 3 (2)	Top and Bottom 5 (3)
Panel A: Interaction			
Share of students like me	-3.555***	-2.884***	-1.167
	(1.232)	(1.042)	(0.725)
Share of students like me × Neutral	3.757***	3.154***	1.028
	(1.300)	(1.132)	(0.954)
Share of students like me × Stereotypical	7.759***	6.138***	3.447***
	(1.555)	(1.313)	(0.944)
Panel B: Absolute Effect			
Counter-stereotypical: Share of students like me	-3.555***	-2.884***	-1.167
	(1.232)	(1.042)	(0.725)
Neutral: Share of students like me	0.202	0.270	-0.139
	(0.423)	(0.452)	(0.622)
Stereotypical: Share of students like me	4.204***	3.254***	2.280***
	(0.901)	(0.774)	(0.587)
Observations	54603	54603	54603

Note: Course and student FE included. SEs in parentheses clustered at class level.

WHAT DO THESE RESULTS MEAN?

Small magnitude...

- ► Stereotypical: $10\% \uparrow$ share of same-gender $\implies \uparrow$ course grades by 2.0% sd
- ▶ Counter-stereotypical: 10% ↑ share of same-gender $\implies \downarrow$ course grades by 1.8% sd

Crucial implications...

- 1. Even in competitive and selective environments, peers' identity affects performance
 - magnitude in line with other studies in higher education (e.g. Zölitz and Feld, 2021, Booth et al., 2018)
- 2. Counterfactual scenario: reallocation policy \rightarrow more equal gender ratio in male-fields $(10\% \uparrow \text{ share of women ceteris paribus})$
 - ▶ share of women: 30%, negative gender gap: -2.43 points
 - $\Rightarrow \downarrow$ inequality in performance and \downarrow average performance
 - ightharpoonup gender gap by 5.9%: \downarrow women $+\downarrow\downarrow$ men Evidence

HOW DOES SELECTION PLAY A ROLE?

- ► Hypothesis: students **internalize** stereotypes & gender composition when choosing majors ⇒ who makes a choice against stereotypes is more **resilient** to being in a minority
 - Framework to rationalize how peers' identity affects performance in absence of selection (e.g. Akerlof and Kranton, 2000; Ashraf et al., 2014; Bordalo et al., 2019; Bursztyn et al., 2019)
 - → key channels: "homophily" and "stereotypes"
 - \rightarrow key traits: preferences for same gender peers & stereotypical associations
 - 2. **Selection**: Roy model of occupational choice + social identity considerations
 - ⇒ Students who make different choices are heterogeneous along the **traits** related to the **strength** of the effect of peers' identity on performance
 - → preferences for same gender peers & stereotypical associations

WHO MAKES A CHOICE AGAINST STEREOTYPES IS MORE RESILIENT TO BEING IN A MINORITY

- ► Social networks: Preferences for same gender peers Evidence
- Qualifications at entry: Ability Evidence
- ► Alternative mechanisms: Ex-ante traits rather than environment or decision effects

 (GGI YearHet)
- ⇒ Ex-ante "sensitivity" to stereotypes and social norms induce students to select different majors and then react to the composition of the environment in a self-fulfilling way

CONCLUSIONS AND POLICY IMPLICATIONS

- ► Targeting and nudging **minorities** might not be enough and might even backfire by reinforcing stereotypes in the mind of the majority group
- ▶ Especially in selective environments where success is the result of strategic choices
- ▶ This is the case at the LSE, but also in decision making bodies or leadership positions
- Alternative policy recommendation: normalize entering into certain occupations?
 - act down the ladder rather than up the ladder (e.g. counter-stereotypical examples)
 - bans of harmful gender stereotypes in ads (U.K. ASA 2019)
 - ▶ quotas? → next steps

References I

- Akerlof, G. A. and R. E. Kranton (2000, 08). Economics and Identity*. The Quarterly Journal of Economics 115(3), 715-753.
- Ashraf, N., O. Bandiera, and S. S. Lee (2014). Awards unbundled: Evidence from a natural field experiment. *Journal of Economic Behavior Organization* 100(C), 44–63.
- Bertrand, M. (2011). Chapter 17 new perspectives on gender. Volume 4 of Handbook of Labor Economics, pp. 1543-1590. Elsevier.
- Bertrand, M. (2020, May). Gender in the twenty-first century. AEA Papers and Proceedings 110, 1-24.
- Booth, A. L., L. Cardona-Sosa, and P. Nolen (2018). Do single-sex classes affect academic achievement? an experiment in a coeducational university. *Journal of Public Economics* 168, 109–126.
- Bordalo, P., K. Coffman, N. Gennaioli, and A. Shleifer (2019). Beliefs about gender. American Economic Review 109(3), 739-73.
- Bursztyn, L., G. Egorov, and R. Jensen (2019, 05). Cool to be Smart or Smart to be Cool? Understanding Peer Pressure in Education. The Review of Economic Studies 86(4), 1487–1526.
- Card, D., A. Mas, and J. Rothstein (2008, 02). Tipping and the Dynamics of Segregation*. The Quarterly Journal of Economics 123(1), 177-218.
- Cortes, P. and J. Pan (2018, 07). 425Occupation and Gender. In The Oxford Handbook of Women and the Economy. Oxford University Press.
- Del Carpio, L. and M. Guadalupe (2022). More women in tech? evidence from a field experiment addressing social identity. *Management Science* 68(5), 3196–3218.
- Ellemers, N. (2018). Gender stereotypes. Annual Review of Psychology 69(1), 275-298. PMID: 28961059.
- Inzlicht, M. and C. Good (2006). How environments can threaten academic performance, self-knowledge, and sense of belonging. In S. Levin and C. van Laar (Eds.), The Claremont symposium on Applied Social Psychology. Stigma and group inequality: Social psychological perspectives, 129–150.
- Karpowitz, Chris, J. P. and O. Stoddard (2020). Strength in numbers: A field experiment on gender, influence and group dynamics. IZA Discussion Paper No. 13741.
- Kugler, A. D., C. H. Tinsley, and O. Ukhaneva (2021). Choice of majors: are women really different from men? Economics of Education Review 81, 102079.
- McPherson, M., L. Smith-Lovin, and J. M. Cook (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology 27(1), 415–444.
- Oxoby, R. J. (2014). Social inference and occupational choice: Type-based beliefs in a bayesian model of class formation. *Journal of Behavioral and Experimental Economics* 51, 30–37.
- Pan, J. (2015). Gender segregation in occupations: The role of tipping and social interactions. Journal of Labor Economics 33(2), 365-408.

References II

Reuben, E., P. Sapienza, and L. Zingales (2014). How stereotypes impair women's careers in science. *Proceedings of the National Academy of Sciences* 111(12), 4403–4408.

Spencer, S. J., C. Logel, and P. G. Davies (2016). Stereotype threat. Annual Review of Psychology 67(1), 415-437. PMID: 26361054.

Steele, C. and J. Aronson (1995, November). Stereotype threat and the intellectual test performance of african americans. *Journal of Personality and Social Psychology* 69(5), 797–811. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.

Zölitz, U. and J. Feld (2021). The effect of peer gender on major choice in business school. Management Science 67(11), 6963-6979.