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The paper: Theoretical contributions

I We develop and implement methods for determining whether relaxing sparsity
constraints on portfolios improves the investment opportunity set for
risk-averse investors.

I We formulate a new estimation procedure for sparse second-order stochastic
spanning based on a greedy algorithm and Linear Programming.

I We show the optimal recovery of the sparse solution asymptotically whether
spanning holds or not.
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The paper: Empirical findings

I From large equity datasets, we estimate the expected utility loss due to
possible under-diversification, and find that there is no benefit from
expanding a sparse opportunity set beyond 40 assets.

I The optimal sparse portfolio invests in 10 industry sectors with a larger
weighting on small size, high book-to-market, and momentum stocks from
the S&P 500 index and cuts tail risk when compared to a sparse
mean-variance portfolio.

I On a rolling-window basis, the number of assets shrinks to around 20 assets
in crisis periods.
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The questions that we address

I Is it possible to build a sparse portfolio of dimension q from a large set of
assets of dimension p so that we cannot get further improvement from
considering additional assets in a second-order stochastic dominance (SSD)
paradigm?

I If not, how much do we loose by limiting ourselves to this sparse portfolio in
terms of expected utilities compatible with SSD?

I Can we design an optimization algorithm to compute this sparse portfolio
from available data?

I Do we have the asymptotic statistical guarantee that we cannot improve on
the estimated expected utility loss due to under-diversification by considering
another sparse portfolio of the same fixed dimension?
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The under-diversification loss in the SSD setting

0

0.01

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Di
ve

rs
ifi

ca
tio

n 
Lo

ss

Number of Assets

SS.SSD

MAXSER

CI at 95%

Ci at 90%

-0.01
0.01
0.03
0.05
0.07
0.09
0.11
0.13
0.15
0.17
0.19
0.21
0.23
0.25
0.27

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Di
ve

rs
ifi

ca
tio

n 
Lo

ss

Number of Assets

SS.SSD

5



The under-diversification in the mean-variance (MV) setting

We revisit the late 60s literature for the MV setting (Evans and Archer (1968))
but under the lens of SSD.
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Recap on SSD
Utility functions and risk aversion:

7



Risk aversion
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Recap on SSD
Stochastic orderings:

9



Recap on SSD
Main characterizations in terms of cumulative distribution functions (cdf) and
quantiles:
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Recap on SSD

Graph of characterizations in terms of cdf:

11



Sparse SSD-Probabilistic Framework

I Financial returns process X∞ in `∞ (N,R), X is the projection of X∞ in the
first p coordinates, P is the distribution of X∞.

I The portfolio weights universe Λ∞ a non-empty subset of the N-simplex{
λ ∈ RN : λi ≥ 0, i ∈ N,

∑∞
i=0 λi = 1

}
; Λ =

{
λ ∈ Λ∞,

∑p−1
i=0 λi = 1

}
, for

p ∈ N, denotes the p − 1 dimensional unit sub-simplex of Λ∞; K is a
non-empty closed subset of Λ.

I λ, κ are generic elements of Λ∞.

Assumption (MS-Moments and Supports)

For some ε > 0, max0<i≤+∞ E
[
|Xi |2+ε

]
< +∞ and inf c̄o [∪i supp (Xi )] > −∞.

I MS implies D (z , κ, λ,P) := E
[
(z −

∑∞
i=0 κiXi )+

]
− E

[
(z −

∑∞
i=0 λiXi )+

]
is bounded and continuous in z , λ, κ.
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Sparse Spanning SSD

Definition (SSD in High Dimensional Setting)

κ �
SSD

λ, iff D (z , κ, λ,P) ≤ 0 for all z ∈ Z := c̄o [∪i supp (Xi )].

Definition (Sparse Spanning SSD)

For some fixed q, there exists a K ⊂ Λ with csupp (K ) ≤ q and such that
K �

SSD
Λ, i.e. ∀λ ∈ Λ, ∃κ ∈ K : κ �

SSD
λ,

where csupp (K ) := # {i : κi 6= 0, κ ∈ K} is the support of a portfolio set.

I The Sparse Spanning Definition generalizes Arvanitis et al. (2018) since i) it
allows for a high dimensional setting, ii) it only prescribes the existence of a
“low-dimensional” spanning subset of Λ.

I Any procedure designed to test whether SS-SSD holds, would have to search
for a spanning set inside the collection of “low-dimensional” subsets of Λ.
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Sparse Spanning SSD

Lemma (Sparse Spanning SSD Characterization)

Under Assumption MS then K �
SSD

Λ iff infLp,q supΛ infK supz∈Z D (z , κ, λ,P) ≤ 0,

with Lp,q := {K ⊂ Λ : K closed, 0 < csupp (K ) ≤ q}.

Lemma (Numerically Useful Characterization)

Under Assumption MS, and if Λ is closed in the Euclidean topology. Then, for all
p,

inf
Lp,q

sup
Λ

inf
K

sup
z∈Z

D (z , κ, λ,P) = sup
z∈Z

sup
Λ

inf
Lp,q

inf
K

D (z , κ, λ,P) .

I Allows for separation of the optimizations w.r.t. Λ and Lp,q × K , for any z .
I Useful especially when the outer optimization over Z is approximated by

some discretization as in our empirical numerical implementation.
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Empirical Sparse Optimization: Greedy Algorithm
I We design a procedure that evaluates supz∈Z supΛ infLp,q infK D (z , κ, λ,PT );

PT is the empirical distribution.
I We use the Forward Stepwise Selection Algorithm for the infLp,q infK part.

Algorithm (Elenberg et al. (2018))

Inputs: the sparsity Parameter q < p, the # of iterations rT (q), for a given set S
the set function 2p → R defined as

func (S) := inf
csupp(S)≤q

1
T

T∑
t=0

(
z −

∞∑
i=0

κiXi,t

)
+

.

a Choose the initial set S0,
b for i = 1, . . . , rT (q) do,
c s := argmaxj∈[p]/Si−1 func (Si−1 ∪ {j})− func (Si−1),
d Si := Si−1 ∪ {s}.
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Empirical Sparse Optimization: Statistical Guarantees

Assumption (Restricted Strong Convexity-Restricted Smoothness)

X has a continuous density f . E (z −
∑∞

i=0 κiX0,i )+ is twice differentiable w.r.t.
any κ appearing in some pair of Λ(bq(ln(T+1))c) for all z ∈ Z . For mbq(ln(T+1))c
denoting the supremum and Mbq(ln(T+1))c the infimum over Λ(bq(ln(T+1))c), of the
smallest and the largest eigenvalues of the Hessian matrix of
E (z −

∑∞
i=0 κiX0,i )+, then as T →∞,

mbq(ln(T+1))c
Mbq(ln(T+1))c

lnT → +∞ uniformly in Z .

I E.g. f is a Gaussian density and V is the second moment matrix. The
assumption holds if Condition Number of V

lnT → 0.

Assumption (Mixing)

(X∞t )t∈Z is strictly stationary and absolutely regular with mixing coefficients
(βm)m∈N that satisfy βm ∼ bm for some b ∈ (0, 1), as m→∞.

I E.g. linear and GARCH type models.
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Empirical Sparse Optimization: Statistical Guarantees

Theorem (Consistency, Rates and Asymptotic Distribution)

Under the previous assumptions, if Λ is closed and for large enough p it is also
convex, and if ln p√

T
→ 0, then for fixed q,

MFS
(

Λ,Lp,q,PT , q (lnT )2
)
 M (Λ∞,L∞,q,P) .

If furthermore: i) (Condition CO) z → E
[
(z −

∑∞
i=0 κiXt,i )+

]
is strictly concave

for any κ with csupp (κ) ≤ q, and ii) (Condition CM) for any z > inf Z ,
E
[
(z −

∑∞
i=0 λiXt,i )+

]
has a compact subset of minimizers over Λ∞ and

E
[
(z −

∑∞
i=0 κiXt,i )+

]
has a compact set of minimizers of support ≤ q, then

√
T
(
MFS

(
Λ,Lp,q,PT , q (lnT )2

)
−M (Λ∞,L∞,q,P)

)
 sup inf

(z,λ,κ)∈Γ
G (z , λ, κ) ;

G (z , λ, κ) zero mean Gaussian, Γ := argmaxz∈Z ,λ∈Λ∞ mincsupp(κ)≤q D (z , λ, κ,P).
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Empirical Sparse Optimization: Statistical Guarantees

I CO: under Normality, the condition holds if Condition Number of V
lnT → 0.

I CM: by Theorem 4.5 of Beer and Lucchetti (1991), compactness of the set of
minimizers is a generic property in the sense of Baire category. It is expected
to hold at least for a dense subset of Z .

I κz,T is the solution of infcsupp(κ)≤q
1
T

∑T
t=0 (zt −

∑∞
i=0 κiXt,i )+ over Lp,q.

Γ? is the subset of Γ that contains the triplets at which some accumulation
point of κz,T appears. For 0 < bT ≤ T , consider the subsamples
(Xj)j=t,...t+bT−1 for all t = 1, 2, . . . ,T − bT + 1. For α ∈ (0, 1),
qT ,BT

(1− α) is the 1− α quantile of the empirical distribution of(√
bT
(
supZ×Λp

D (z , κz,T , λ,Pt,bT )−MFS (Λ,Lp,q,PT , q (lnT )2)))
t=1,...,T−bT +1

,

where Pt,bT is the empirical distribution of (Xj)j=t,...,t+bT−1 and we use the
same κz,T across subsamples. Hence, we get a fast subsampling method.
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Empirical Sparse Optimization: Statistical Guarantees

Proposition (Subsampling Confidence Intervals)
Suppose that (Condition ND) for the given q, Γ? contains at least one non trivial
triplet. Under the premises of the previous theorem, if bT →∞, bT

T → 0 and
α < 1

2 , then we get the conservative result:

lim sup
T→∞

P
[
M (Λ∞,L∞,q,P) ∈

(
MFS (Λ,Lp,q,PT , q (lnT )2)∓ qT ,BT (1− α)

)]
≥ 1− α.

If moreover there exists a unique q-sparse element of Λ that appears in every
triple in Γ?, then we get the exact result:

lim
T→∞

P
[
M (Λ∞,L∞,q,P) ∈

[
MFS (Λ,Lp,q,PT , q (lnT )2)∓ qT ,BT (1− α)

]]
= 1− α.
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Empirical Sparse Optimization: Statistical Guarantees

I Under linear independence, ND holds whenever every q-sparse efficient
element is matched by an efficient element of appropriately large support
compared to the maximum desired level of q for the underlying analysis.

I The evaluation of the quantile by subsampling has small computational
burden since we avoid the costly sparse optimization w.r.t. κ inside each
subsample. We only need to compute once κz,T on the full sample and keep
it fixed across subsamples.

I Usually, Z is approximated by some finite discretization and optimization
w.r.t. λ is performed via linearization of the SD conditions and the use of LP
methods. Then, the computational cost of sparse optimization is avoided and
the asymptotic results above hold as long as the discretized set converges to
a dense subset of Z .
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Numerical Implementation: Optimization criterion

For q < p, we consider the following empirical optimization problem:

sup
u∈U

inf
Lp,q

(
sup
λ∈˜

EPT

[
u
(
XTλ

)]
− sup

κ∈K
EPT

[
u
(
XTκ

)])
. (1)

We approximate every element of U with arbitrary prescribed accuracy using a
finite set of increasing and concave piecewise-linear functions.
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Numerical Implementation: Greedy algorithm

We start with an empty set, and then we gradually increase the number of assets
w in K (we add 1 asset at a time) until we find a set K ⊂ Λ with K �

SSD
Λ.

In each iteration, we search for the asset that increases (1) the most.
Steps of Greedy algorithm:
For w = 1 to q:
1. If w = 1, we search for the single asset that increases the value of (1) the

most, thus Lp,q is a singleton.
2. For 1 < w < q, we solve (1) for each additional asset, and we keep the

subset K with dimension w , that maximizes (1) the most.
3. If we find a spanning set K inside the collection of all possible subsets of Λ

with dimension w , then the algorithm stops.
4. Else, if w = q, we end up with a sparse portfolio set K that "comes as close

as possible" to SSD spanning its high dimensional universe of portfolios, and
we evaluate the utility loss. If non zero, we continue for w > q.
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Monte Carlo

Table 1: Monte Carlo Experiment 1. The experiment is based on a problem with N=49, 500
normally distributed assets and T=300, 500, 1000 time series observations. We compute the
average number and standard deviation of assets selected. We also measure the variability of the
loss, by computing the average and the standard error of the loss.

Sample size T 300 500 1000
Case 1: N=49, q=13
Assets selected:
Average number 11.45 12.04 12.54
St Deviation 1.18 1.12 1.13
Variability of the Loss:
Average Loss 0.0002 0.0002 0.0001
Standard Error 0 0 0
Case 2: N=500, q=45
Assets selected:
Average number 42.3 42.85 43.34
St Deviation 1.68 1.57 1.54
Variability of the Loss:
Average Loss 0.0001 0.0001 0.0001
Standard Error 0 0 0 23



Monte Carlo

Table 2: Monte Carlo Experiment 2. The experiment is based on a problem with N=50
normally distributed assets and T=300, 500, 1000 time series observations. We compute the
average number and standard deviation of assets selected. We also measure the variability of the
loss, by computing the average loss and the standard error of the loss.

Sample size T 300 500 1000
Case 1: q=5
Assets selected:
Average number 5 5 5
St Deviation 0.0 0.0 0.0
Variability of the Loss:
Average Loss 0.01 0.009 0.008
Standard Error 0.0003 0.0003 0.0002
Case 2: q=10
Assets selected:
Average number 10 10 10
St Deviation 0.0 0.0 0.0
Variability of the Loss:
Average Loss 0.0 0.0 0.0
Standard Error 0.0 0.0 0.0 24



Empirical application

I In the empirical application, we analyze large data sets of equity returns to
study whether sparse SSD holds or not.

I We investigate the performance of our strategy based on the S&P 500 index
constituents, and we compare the results with the sparse mean-variance
efficient portfolios of Ao, Li, and Zheng (2019).

I We consider the period from January 1981 to December 2020, a total of 480
monthly return observations.
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The under-diversification loss in the SSD setting
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Empirical application: In-Sample Analysis

Table 3: In-sample performance: risk and performance measures

MAXSER SS-SSD 1/N
Measures

Average return 0.0126 0.0129 0.0133
Standard Deviation 0.0314 0.0331 0.0458
Sharpe ratio 0.4013 0.3904 0.2899
Skewness -0.2122 -0.1986 -0.2689
Kurtosis 1.2521 1.7595 2.9690
Value at Risk -0.0430 -0.0396 -0.0615
Expected Shortfall -0.0651 -0.0617 -0.0959

Entries report the risk and performance measures (Sharpe ratio, Skewness, Kurtosis, VaR, ES) for
the MAXSER, the SS-SSD optimal portfolios as well as the 1/N portfolio. The data cover the
period from January, 1980 to December, 2020.
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Empirical application: In-Sample

Table 4: In-sample analysis: Average S&P500 Industry weights

MAXSER SS-SSD
Weights

Capital Goods 4.50% 3.43%
Consumer Services 8.39% 6.57%
Financial 4.73% 3.60%
Consumer Staples 0.0% 3.24%
Food 3.21% 2.70%
Health care 7.43% 8.31%
Household 5.58% 4.37%
IMedia 4.58% 4.34%
Pharm 6.89% 5.69%
Retailing 17.21% 19.43%
Software 14.51% 16.21%
Technology 11.45% 12.79%
Transportation 5.62% 4.81%

Entries report the average Industry weights of the MAXSER and the SS-SSD portfolios in the
major Industries of the S&P500 Index. 28



Empirical application: Out-Of-Sample

I We conduct out-of-sample backtesting experiments and we evaluate the
optimal SS-SSD portfolios achieving a zero diversification loss in a
rolling-window scheme.

I Each month, portfolios are constructed using the monthly returns during the
prior 240 months. The clock is advanced and the realized returns of the
optimal portfolios are determined from the actual returns of the various
assets. The same procedure is then repeated for the next time period and the
ex post realized returns over the period from 01/2001 to 12/2020 (240
months) are computed.

I We again compare the performance of the optimal SS-SSD portfolios with
that of the MAXSER portfolios of Ao, Li, and Zheng (2019).
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Empirical application: Out-Of-Sample
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Empirical application: Out-Of-Sample
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Empirical application: Out-Of-Sample

Table 5: Out-of-sample performance: risk and performance measures

MAXSER SS-SSD 1/N
Measures

Average return 0.0122 0.0127 0.0121
Standard Deviation 0.0258 0.0239 0.0450
Sharpe ratio 0.4056 0.4571 0.2313
Downside Sharpe Ratio 0.8614 1.1188 0.9311
Value at Risk -0.0403 -0.0295 -0.0744
Expected Shortfall -0.0532 -0.0476 -0.1004
UP ratio 1.0864 1.2014 0.7704
Portfolio Turnover 8.477% 8.835% 0.0
Return Loss 0.087% 0.156%
Opportunity Cost
Exponential Utility
ARA=2 0.073% 0.126%
ARA=4 0.081% 0.139%
ARA=6 0.092% 0.152%

32



Empirical application: Out-Of-Sample

I We analyze the composition of the SS-SSD and the MAXSER portfolios
through time.

I We observe that both portfolios are well diversified and invest in almost the
same Industries, with different overall weights.

I The optimal SS-SSD portfolio invests mainly in 9 industry sectors with a
larger weighting on small size, high book-to-market, and momentum stocks
from the S&P 500 index.

I We additionally estimate the Alpha and Beta coefficients of the individual
stocks of these portfolios during the out-of-sample period. For the
estimations, the previous 5 years of individual monthly returns have been
used (60 monthly returns).
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Empirical application: Out-Of-Sample
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Empirical application: Out-Of-Sample
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Empirical application: Out-Of-Sample
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Empirical application: Out-Of-Sample

Finally, we investigate which factors explain the returns of the active investors
with SSD preferences.

We use CAPM, the Fama-French 6-factor model (2016), the q-factor model of
Hou, Xue and Zhang, (2015), the M4 factor model of Stambaugh and Yuan,
(2017), the Barillas and Shanken 6-factor model (2018) and the 3-factor model of
Daniel, Hirshleifer, and Sun (2020).

We consider linear regression models of the following form:

Rp,t − Rf ,t = ai +
∑
i

biRi,t + ei,t ,

where Rp,t is the return of either the MAXSER or SS-SSD optimal portfolio at
period t, and, Ri,t is the return on the ith factor.
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Empirical application: Out-Of-Sample

I The results indicate that none of the factor models could fully explain the
performance of the two strategies.

I The intercept ai is statistically different from zero in all cases.

I We also observe that the only factors that are significant for the MAXSER
returns are the FIN factor of the 3-factor model of Daniel, Hirshleifer, and
Sun (2020), and the MGMT1 factor of the Stambaugh and Yuan(2017),
four-factor model.

I On the other hand, there is no statistically significant factor that explains the
returns of the SS-SSD portfolios even if we face a defensive tilt: MKT: <1,
SMB: < 0, HML: > 0.

I The results indicate that perhaps other factors drive the performance of the
these portfolios.
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Conclusions

I Our new methodology shows that we can often limit ourselves to a subset of
a large investment opportunity set without sacrifying expected utility because
of under-diversification.

I It also reveals that a sparse mean-variance portfolio selection yields
under-diversification w.r.t. an optimal sparse spanning portfolio.

I The paper focuses on second-order stochastic dominance but could be
modified to accommodate higher-order stochastic dominance.

I We could then check whether the empirical findings extend in such settings
as well.

39


	

