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Abstract

This study investigates how a policymaker can effectively target adolescents with a
prevention program to reduce risky behavior such as marijuana consumption. We
assume that peer pressure is the mechanism that determines how social interactions
influence such behaviors. To determine the most influential individuals, we estimate
social marginal effects using observational data on multiple social connections with
a generalized method of moments (GMM). Our empirical strategy uses the observed
characteristics of distant individuals in a multilayered network space as instruments to
address the endogeneity of the networks that arise from homophily. We use the Add
Health data to find positive peer effects, for friends and classmates, on both cigarette
smoking and marijuana use, with the friends effect having a greater impact. Our find-
ings suggest that policymakers can benefit from using social marginal effects to target
high-influence individuals in their prevention programs.
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1 Introduction

Risky behaviors such as smoking marijuana and vaping can adversely affect the well-being

and cognitive development of teenagers, according to the U.S. Center for Disease Control1.

Previous literature has established that such behaviors can impact education, crime, future

earnings, and healthcare costs2. The 2021 National Youth Tobacco Survey reported that the

most common reason for U.S. adolescents to try e-cigarettes is because “a friend used them.”

Since peer pressure plays a critical role in adolescents’ risky behaviors, designing effective

prevention programs that account for social connections remains a pressing concern.

Suppose a policymaker aims to reduce the aggregate level of a risky behavior, such as the

total amount of marijuana consumption, but is limited by the number of individuals that

can be included in a prevention program. In such a scenario, how should the policymaker

decide which adolescents to target? To address this question, the policymaker must be

able to identify highly influential adolescents to the impact of the prevention program. We

assume that peer pressure is the mechanism through which social interactions influence risky

behaviors. Under this assumption, an adolescent’s risky behavior tends to align with the

average of their connections.

However, different types of social links can create varying levels of social pressure. For

example, adolescents may be more influenced by their friends than their neighbors when

deciding whether or not to consume marijuana. Therefore, it may be relevant to incorporate

a broader range of possible social connections. In this paper, we demonstrate how, under

the influence of peer pressure and the potentially heterogeneous effects of different types of

connections, a policymaker can use observational social network data to select individuals

for a program in a way that maximizes the impact on risky behavior.

We assume that peer pressure is the underlying mechanism through which social in-

teractions affect adolescents’ risky behaviors. Ushchev and Zenou (2020) provide a micro-

foundation for this assumption, linking peer pressure to “social norms.” They show that

group-based policies are more effective when social norms are the driving force behind indi-

vidual behavior. Building on their work, we incorporate different types of social connections

into the social interactions game. With this social interactions game, we are able to identify

highly influential individuals through the development of a novel network centrality measure.

Our centrality measure, called the social marginal effects, is related to a heterogeneous Katz-

Bonacich centrality, which builds upon the eigenvector centrality for multilayer networks. It

incorporates a discount factor for each type of social connection, which is tied to the peer

1CDC - Teens Risky Behaviors
2For a review of the economic consequences of risky behaviors, see Cawley and Ruhm (2011)
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effects specific to that particular connection.

Numerous studies have explored the influence of peers on risky health behaviors, such as

marijuana use and smoking. For instance, Card and Giuliano (2013) estimate a structural

model that accounts for peer effects and find that peer pressure has a significant impact

on marijuana use among adolescents. Similarly, Arduini et al. (2019) use the National

Longitudinal Study of Adolescent Health to estimate a dynamic social interactions model

that considers addiction effects in smoking. These works, along with others3, have established

the existence of peer effects on risky behaviors. This article contributes to the literature on

peer effects by incorporating various types of social connections that impact individuals’

behavior.

Estimating peer effects using multiple networks poses several methodological challenges,

including potential endogeneity issues stemming from the social networks. Some existing

studies (e.g., Goldsmith-Pinkham and Imbens, 2013; Kuersteiner and Prucha, 2020) have

tackled these challenges using Bayesian and generalized method of moments (GMM) frame-

works. Others (e.g., Comola and Prina, 2021) have focused on identifying treatment effects

when the structure of the network changes. In contrast, we adopt the approach proposed by

Estrada (2021) and utilize the distance of individuals across different networks to construct

instruments for identifying and estimating peer effects in a multilayered linear-in-means

model (Manta et al., 2022).

This paper presents a new strategy to identify heterogeneous peer effects using multilayer

networks, and shows how to recover individuals’ social marginal effects with observational

data on multiple social connections. These estimated social effects are then used to identify

the group of individuals to target with a particular policy, with the assumption of peer

pressure. The main econometric challenge is the endogeneity of the networks that arise

from homophily. To address this, our empirical strategy uses the observed characteristics of

distant individuals in a multilayered network space as instruments. The resulting estimates

are non-linear functions of social effect parameters in a linear model, estimated by a non-

linear GMM.

Using data from Add Health, we assess the influence of peers on cigarette smoking and

marijuana use, considering two types of social connections: friends and classmates. Our

results reveal positive effects of both friends and classmates on smoking and marijuana use,

with the former being more dominant in both cases. Notably, the friends effect is twice as

large for marijuana use compared to cigarette smoking. Based on our theoretical model,

we identify a group of highly influential individuals, who differ from their low-influence

3See also Manski (1993), Bramoullé et al. (2009), Patacchini and Zenou (2009), Calvó-Armengol et al.
(2009), Lin (2010), Liu et al. (2014), Boucher and Mourifié (2017), Hsieh and Lin (2020), Mele (2021).
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counterparts only in terms of their ability test score, age, and race. Policymakers can

leverage these findings when dealing with policy interventions that rely on observational

data from multiple social connections.

The contribution of this paper is threefold. First, we present a novel approach to identify

heterogeneous peer effects using multilayer networks. This approach employs instrumental

variables constructed from distances across various types of social connections. Second, we

demonstrate that choosing individuals based on social marginal effects, under the assumption

of peer pressure, can considerably reduce the aggregate level of risky behavior. Lastly, we

show that identifying highly influential individuals through the social marginal effects aligns

with a measure of popularity captured by the heterogeneous Katz-Bonacich centrality.

The remainder of this article is organized as follows. Section 2 presents the theoretical

framework for a model of heterogeneous social interactions. In section 3, we describe the data

and present descriptive statistics. Section 4 discusses the identification strategy and the non-

linear GMM estimation. In section 5, we present the empirical results, robustness checks,

and discussion of results. Finally, section 6 concludes the paper and provides suggestions for

future research.

2 Social Marginal Effects

This section presents a theoretical support for our influence metric: the social marginal

effects. To do so, we develop a social interaction model that incorporates peer pressure as

a determinant of individual preferences. Our model disaggregates the decision to engage

in risky behaviors into two components: individual characteristics and social effects. We

demonstrate that the matrix of social effects yields an index of influence over the risky

behavior of others. The social marginal effects can be effectively quantified through a novel

measure of heterogeneous Katz-Bonacich centrality that we develop.

Building on the work of Ushchev and Zenou (2020), our model of social interactions

captures the influence of social conformity, while also acknowledging the heterogeneity of

social connections. To account for the endogeneity of social networks, we employ a two-

stage bayesian game, following the approach of Blume et al. (2015). In the first stage, agents

make decisions regarding their social connections for each type of interaction. Subsequently,

they determine the optimal level of risky behavior to engage in. Appendix B provides

detailed exposition on the social interactions game. The optimal choice of risky behavior for
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an individual is given by Eq. (1),

y =
1

1 +
∑M

m=1 β
∗
m

[
M∑

m=1

β∗
mWmy +

M∑
m=1

WmXδ
∗
m +Xγ∗1 +Bγ∗2 + e

]
, (1)

which includes social effects stemming from the average outcomes Wmy and characteristics

WmX of her connections. The outcome variable y is a n×1 vector, and X and B are n×k1

and n× k2 matrices of covariates, respectively, while e captures the error term.

In the proposed model, we account for the impact of diverse social connections stemming

fromM networks, each represented by a row-normalized (n×n) adjacency matrix Wm. The

parameters βm quantify an individual’s conformity with the average behavior of her peers

of type m. For instance, βm denotes the social effect of the average marijuana use among

friends and classmates when m = 1, 2. Equation (1) can be reformulated as

y = S(β∗)

[
M∑

m=1

WmXδ
∗
m +Xγ∗1 +Bγ∗2 + e

]
,

where S(β∗) =
[(

1 +
∑M

m=1 β
∗
m

)
I−

∑M
m=1 β

∗
mWm

]−1

represents a n × n matrix capturing

social effects.

The matrix S(β∗) captures the marginal effect of a change in j’s characteristics on i’s

outcome, as reflected in the entry sij. Correct identification of the conformity parameters β∗
m

is key to estimating S(β∗). Section 4 outlines a method to identify the model parameters by

leveraging the heterogeneity in social connections. The social marginal effect for individual

j, computed as sj =
∑

j ̸=i sij, can be obtained from S(β∗). Additionally, we can express sj as

a multilayer version of the Katz-Bonacich centrality. We first show that the Katz-Bonacich

centrality describes the monolayer counterpart of our definition of social marginal effects

sj. Later in this section, we provide a full description of the heterogeneous Katz-Bonacich

centrality.

From the structural equation (1), we can derive the regression equation (2) that we seek

to estimate. Equation (2) considers solely the two types of social interactions - friends and

classmates - that we employ in the empirical analysis. Specifically, we utilize the vector W1y

to represent the average level of risky behavior among friends and the vector W2y to denote

the average level of risky behavior among classmates. Analogously, the vectors W1X and

W2X convey the average characteristics of friends and classmates, respectively. In section

4, we discuss the underlying assumptions that enable the identification of the coefficients
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θ = [β1, β2, δ1, δ2, γ1, γ2]
⊤.

y = β1W1y + β2W2y +W1Xδ1 +W2Xδ2 +Xγ1 +Bγ2 + et (2)

The coefficients β1 and β2 capture the influence of friends’ and classmates’ risky behavior

on their own individual behavior. However, it is important to note that these coefficients

should not be conflated with the parameters β∗
1 and β∗

2 , which represent the peer effects in

the proposed model. Proposition 1 formally outlines how to recover the model’s parameters

under Assumption 1.

Proposition 1. Assuming invertibility of the matrix S(β∗), the parameters of the model are

given by

β∗
m =

βm
1− β1 − β2

, δ∗m =
δm

1− β1 − β2
, and γ∗1,2 =

γ1,2
1− β1 − β2

(3)

for m = 1, . . . ,M .

Calvó-Armengol et al. (2009) establish that the Katz-Bonacich centrality is the network

index that describes the equilibrium behavior of individuals. Following their work, we show

the connection between the Katz-Bonacich centrality and the social marginal effects when

we only account for one type of social network. What is more, we propose a heterogeneous

Katz-Bonacich centrality that is defined in terms of the social marginal effects sj. This

heterogeneous Katz-Bonacich centrality results from modifying the eigenvector centrality for

multilayered networks proposed by Solá et al. (2013). However, we show that the influence

parameters to choose on the heterogeneous Katz-Bonacich centrality calculation come from

the peer effects β1 and β2.

We first establish the connection between the social marginal effects and the Katz-

Bonacich centrality for the case of a single network. Calvó-Armengol et al. (2009) shows

that the Katz-Bonacich centrality can be written as b = (I − βW)−1(βW · 1), where 1

is a vector of ones and the influence parameter β is non-negative discount factor. If the

social interaction matrix W is row-normalized, we can rewrite it as b = β(I − βW)−1 · 1.
Therefore, the social marginal effects can be expressed as s = 1−β

β
b. This result indicates

that the social marginal effects are proportional to the Katz-Bonacich centrality measure

with influence parameter β.

From the regression equation (2), the matrix of social effects can also be defined as

S(β) = (1 − β1 − β2)(I − β1W1 − β2W2)
−1. Using this definition, we relate the social

marginal effects to a new measure of Katz-Bonacich centrality over multiple networks. Pre-

vious work by Solá et al. (2013) show that the eigenvector centrality can be extended to
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include multilayer networks. They define uniform and heterogeneous types of eigenvector

centrality. In Appendix B, we propose a heterogeneous Katz-Bonacich centrality for the case

of two networks as b = (β1 + β2)(I− β1W1 − β2W2)
−1 · 1. And we show that the relation-

ship between the social marginal effects and the heterogeneous Katz-Bonacich centrality is

s = 1−β1−β2

β1+β2
b.

3 Data and Descriptive Statistics

3.1 Add Health Data

The empirical analysis is based on data from the National Longitudinal Study of Adoles-

cent Health (Add Health), which is a comprehensive, nationally representative survey that

gathered data from more than 20,000 adolescents through in-home and in-school interviews.

The sample comprises adolescents in grades 7-12 during 1994-95, and the study tracks them

through five waves to date, the latest of which was conducted in 2016-18. We restrict our

attention to the saturated subsample of 16 schools where all students were eligible for the

in-home questionnaire. Within this subset, we focus exclusively on high school students and

their social connections with both friends and classmates.

We examine the impact of peers through two distinct social connections, which we detail

in Table A1 in Appendix A. The first is the friendship network, constructed from the Add

Health in-home questionnaire, where respondents were asked to nominate up to five female

and male friends. We identify reciprocal nominations and construct the corresponding net-

work, which includes 454 pairs and has a density of 0.0005. Despite the low density, the

network has an average shortest path of 10 links, providing sufficient variability in connec-

tions to investigate peer influence.

The construction of the classmates network is based on the in-school questionnaire and

follows the approach of Arduini et al. (2019). Specifically, the classmates network is formed

by aggregating all same-gender students within the same grade-school. As shown by Ar-

duini et al. (2019), the classmates network exhibits strong assortativity by gender, which

aligns with the gender-based homophily commonly observed in adolescent social networks

in the sociological literature. Due to its inherent structure, the classmates network is highly

clustered, with 300 clusters and an average cluster size of 23 adolescents.

The two outcomes of interest are cigarette and marijuana use. To measure these out-

comes, we use the answers provided in the questionnaires to the following inquiry: “During

the past 30 days, how many days did you smoke cigarettes/marijuana?”. We also conduct

robustness checks using other definitions for the outcome variables, such as a score that takes

the value of 0 if the respondent has never smoked, 1 if they have smoked at least once in
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their lifetime, and a score from 2 to 7 following the National Survey on Drug Use and Health

(NSDUH) scales.4 However, to uphold the assumptions of the model, the analysis primarily

employs continuous outcome variables to examine the effects of social connections. Appendix

A presents detailed information on the outcomes and the corresponding score definitions.

The individual and parental characteristics of the adolescents are obtained through the

in-home questionnaire of the Add Health dataset. Specifically, we extract information related

to gender, race, age, PVT test (ability) score, physical activity index, parents’ characteristics,

and the availability of prevention programs in the school from the first wave. Moreover, we

utilize the questions from the second wave that measure risk aversion and future orientation,

as these factors are closely associated with potential risky behavior. The inclusion of future

orientation is particularly pertinent, as it captures the likelihood that the adolescent believes

they will die at 21 years old.

3.2 Descriptive Statistics

In our regression analysis, we incorporate a set of individual and parental characteristics.

To distinguish between covariates that reflect social effects and those that only affect the

outcome directly, we allow for individual variables such as PVT test score, physical activity

index, risk aversion, and future orientation to have effects through friends and classmates.

The remaining covariates such as gender, race, age, parent’s characteristics, and school

prevention program are included in the matrix B with direct effects γ2.

Our sample consists of 1,334 high school students, of whom 49% are females. The race

variable is constructed using previous work on mixed-race identity (Udry et al., 2003), and

the PVT test score is normalized. Future orientation and risk aversion are measured using

indices with a 1-5 scale, while physical activity is measured on a 0-3 scale to indicate how

many times the adolescent exercised in the past week. The parents’ characteristics consist of

dummies for a parent college degree, smokers in the household, and a two-parent household.

We also include a dummy for drug and tobacco prevention programs in the adolescent’s

school. Finally, we report descriptive statistics for missing variables.

Table A2 displays the descriptive statistics of the high school students. On average, stu-

dents in our sample have smoked cigarettes for four days and marijuana for two days in the

past month. There is a high variance in the outcomes, particularly for marijuana consump-

tion. The future orientation index is a 1-5 scale measure, with higher values indicating that

the adolescent is less future-oriented. In the saturated sample of schools, 32% and 28% have

4Specifically, the score is constructed by the following rule: 0 - never smoked, 1 - smoked at least once in
lifetime, 2 - smoked 1-2 days past month, 3 - smoked 3-5 days past month, 4 - smoked 6-9 days past month,
5 - smoked 10-19 days past month, 6 - smoked 20-29 days past month, 7 - smoked everyday past month.
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a drug and tobacco prevention program, respectively. The dummies for missing values range

from 5% to 7%, and we include them when estimating regression (2). Our sample has very

similar demographics to Arduini et al. (2019).

4 Empirical Framework

The main goal of the paper is to distinguish individuals that bear high social effects. However,

estimating the social effects resulting from peer pressure presents significant challenges in

identifying the underlying peer effects. To overcome the endogeneity of social networks that

arise from homophily, we adopt Estrada’s (2021) innovative IV strategy. We use the observed

characteristics of distant individuals across different networks as instruments to identify peer

effects. Our approach relies on the assumption that the observed characteristics of my friends’

classmates, who are not my classmates, are a good instrument for identifying the peer effect

of friends.

To estimate peer effects for friends and classmates, we employ a GMM framework. The

resulting estimates are then used to calculate the social effects for each adolescent. The GMM

estimator incorporates linear and quadratic instruments based on our main identification

strategy. Kuersteiner and Prucha (2020) provide a detailed discussion of our instrument

selection and estimation procedure. We derive the social effects from our assumptions on

the peer pressure mechanism that governs the preferences of individuals. Additionally, we

calculate confidence intervals on the individual social effects by applying the delta method

to a function of our parameters of interest.

4.1 Identification Strategy

The literature on peer effects proposes various methods to address the problem of homophily

in social interactions, also known as the problem of correlated effects. One approach to identi-

fying the structural parameters of equation (1) is to assume a multilayer network formation

process. Alternatively, if we assume that the observable characteristics of individuals are

strictly or contemporaneously exogenous, we can adopt the approach proposed by Kuer-

steiner and Prucha (2020). They suggest using past networks, Wm,t−1, as instruments for

present networks, Wm,t.

Past networks, such as Wm,t−1, allow for the creation of instruments in the form of

W2
m,t−1Xt. If the adjacency matrix Wm represents friendships, then W2

m,t−1Xt denotes the

average characteristics of my previous friends’ friends. In the case of the classmates’ network,

this is the average of students’ characteristics who are not in my classroom in the past period.

Under the assumption that the observed characteristics Xt are sequentially exogenous, these
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instruments address the problem of homophily. However, this method requires access to at

least three time periods.

Instead, we allow observable characteristics to be correlated with the unobserved char-

acteristics of peers (friends and classmates), meaning E [xjei] ̸= 0. Under this condition,

we can impose the weak neighborhood dependence assumption from Estrada (2021). We

use distant individuals in the multilayer network to set up moment conditions that help us

identify and estimate the social parameters of equation (1). This multilayer network en-

compasses two dimensions: path lengths and edge-type changes. The primary assumption

is that individuals connected through different networks are less likely to be dependent than

those connected in the same network. For instance, this indicates that individual i is less

likely to be similar to her friend’s classmates than to her friend’s friends.

Proposition 2 formalizes the key identification strategy for setting up moment conditions.

We define d∗ij as the minimum path length between individual i and j in the multilayer space

(which includes friends and classmates’ links), c∗ij as the minimum number of edge-type

changes between i and j, and dcij as the second shortest path between i and j for which the

number of edge-type changes is less than c∗ij. Appendix C details assumptions and results

for identification.

Proposition 2. Under Assumptions 2 and 3, the conditional distribution F (X, e | M) is

such that

E
(
xjei | c∗ij ≥ 1, dcij ≥ 2

)
= 0, (4)

E
(
xjei | c∗ij < 1, d∗ij ≥ 2

)
= 0, (5)

and the matrices Wm,β = [wm,β;i,j] and Wm,δ = [wm,δ;i,j] if equations (4) or (5) are satisfied

for agents i and j in layer m, respectively, and wm,β;i,j = wm,δ;i,j = 0 otherwise.

Proposition 2 imposes conditional restrictions between the observed and unobserved char-

acteristics of individuals. Intuitively, conditions (4) and (5) state that there is no correlation

between the observed characteristics x of individual j and the the unobserved characteristics

e of individual i if the edge-type changes c∗ and the path length dc is large enough.

4.2 Estimation Strategy

The estimation strategy adopts a GMM framework with linear and quadratic moments. The

choice of the functional form of the instruments and the estimation procedure is further

explored by Kuersteiner and Prucha (2020). To address the endogeneity of the networks,

we use the moment restrictions from Proposition 2 to set up matrices Wm,β and Wm,δ as
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instruments for Wm. Thus, the linear and quadratic instruments are

Z = [W1βX̃, W2βX̃, W1δX̃, W2δX̃, X, B]

Ar = W⊤
m,λWm,λ − diag

(
W⊤

m,λWm,λ

)
, r = 1, . . . , q

where the matrix Z contains p linear instruments and there are q quadratic instruments by

the matrices Ar. For instance, W1βX̃ represents the average characteristics of the distant

individuals that support Proposition 2, and we use it as an instrument for W1y which is the

average risky behavior of her friends. Using these p + q instruments, we write the moment

conditions

ml(θ) =
1√
n

[
Z⊤e(θ)

]
, mq(θ) =

1√
n


e(θ)⊤A1e(θ)

...

e(θ)⊤Aqe(θ)

 .

We concatenate the linear and quadratic instruments as mn(θ) =
[
ml(θ)

⊤, mq(θ)
⊤]⊤,

where we stack the regression parameters θ = [β1, β2, δ1, δ2, γ1, γ2]
⊤. Thus, the GMM esti-

mator is defined as

θ̂ = argmin
θ∈Θ

n−1mn(θ)
⊤Ω̂−1 mn(θ),

where Ω̂ is a moment weighting matrix.

Following Kuersteiner and Prucha (2020), we employ the efficient GMM estimator using

as weighting matrix Ω̂ = (Vl + 2Vq), where Vl = n−1Z⊤Z and Vq = n−1
∑n

i=1

∑n
j=1 a

⊤
ijaij

are extended with zeros to fit the dimensions. Finally, we obtain the variance-covariance

matrix Σ̂ = (G⊤Ω̂−1G)−1 using the Jacobian matrix G = ∂mn(θ)
∂θ

of the vector of moments.

4.3 Social Effects

Estimation and inference of the social marginal effects requires identifying and estimating

the parameters β correctly. The matrix of estimated social marginal effects, denoted as

S(β̂), is defined as (1 − β̂1 − β̂2)(I − β̂1W1 − β̂2W2)
−1 when using the estimates β̂. Here,

the element ŝij of this matrix represents ∂yi/∂xj,k. These effects can amplify or diminish

the impacts of any changes in the set of covariates, such as the introduction of a new policy.

Therefore, any potential treatment effect would be distorted by the spillovers generated by

these social connections.

Our focus is on the aggregate social effects for each individual j, which we define as

ŝj =
∑

j ̸=i ŝij. We interpret this as a measure of the influence that individuals have over

the sample. Hence, individuals with high ŝj are labeled as influencers. However, note that

this characterization of influence is induced by the peer pressure mechanism governing risky
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behaviors in adolescents. It is worth mentioning that this definition of individual social

effects excludes the own marginal effect sii. Since the adjacency matrices W1 and W2 are

row-normalized, including sii in the aggregate social effect would sum to 1 for each individual.

We can also re-scale these aggregate social effects into averages. Since the individual

social effects depend only on the parameters β̂1 and β̂2, we can use the delta method to

obtain standard errors for the average social effects ŝj/n. The details of the delta method

application are provided in Appendix C. To apply the delta method, we rewrite the matrix

S(β̂) in terms of the infinite sum of its elements. After bounding the expression for S(β̂), we

apply the delta method to the vector of average social effects s = n−1[S(β̂)− diagS(β̂)]⊤ · ι,
where ι is a conformable vector of ones.

5 Results and Discussion

5.1 Friends and Classmates Effects

In Section 4, we employ an estimation strategy called GMM-ML, which uses multilayer

networks as instruments based on the distance in the network space. In addition, we compare

our results with those obtained using the GMM estimator assuming exogeneity of friends and

classmates interactions, which requires the use of the networks W2
1 and W2

2 as instruments.

We also present OLS estimates for comparison purposes. Appendix A includes robustness

checks using other outcome variable definitions.

Table 2 displays our main findings on friends’ and classmates’ peer effects. The full set

of results, including controls, can be found in Table A8. Our results reveal significant and

precise peer effects for both friends and classmates. Specifically, a one-day increase in the

average smoking behavior of an individual’s friends is associated with a 0.34 increase in

her own smoking behavior. Furthermore, we find substantial effects for classmates that are

consistent with other estimates of this type of social interaction. Even without including

addiction effects as in Arduini et al. (2019), we obtain very similar classmates’ effects, with

estimates around 0.18, using our new set of instruments. Notably, the size of our classmates’

effects doubles when using our instruments compared to when endogenous networks are

employed, increasing from 0.22 to 0.48.

Comparing cigarette smoking with marijuana consumption, we observe that the friends’

effect almost doubles, while the classmates’ effect remains roughly the same. However, the

estimation results using endogenous networks do not yield any significant findings. Our

estimates for friends’ effects appear to be higher than those reported in Card and Giuliano

(2013), who find effects ranging from 0.32 to 0.46 and 0.10 to 0.25 for intermediate and

high levels of activity, respectively. Nevertheless, our estimates fall within the same range
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Table 1. Peer Effects on Cigarette Smoking

OLS 2SLS GMM

Peer Effects
Friends Use 0.396*** (0.021) -0.009 (1.593) 0.469*** (0.021)
Classmates Use 0.178 (0.151) 0.191 (4.162) 0.351*** (0.003)

Contextual Effects
Friends Risk -1.888* (0.992) -2.680 (19.68) -1.179*** (0.258)
Classmates Risk 2.717 (2.708) 11.29 (77.82) 2.177*** (0.818)

Additional Controls Yes Yes Yes
Instruments Smoker Parent Smoker Parent

Note: This table reports the peer effect estimates (βm) for (2). The complete set of results with controls

is located in table A8. OLS estimation uses clustered standard errors at the school level. GMM estimation

uses the endogenous networks W2
m to calculate peer effects while the GMM-ML estimation incorporates the

networks of distant individuals Wm,λ. For both GMM estimations, we use the efficient variance-covariance

matrix for the standard errors.

as their structural estimates when considering the collective effects of friends’ marijuana

consumption (intermediate and high).

Table A8 in the Appendix also shows the direct effects of the two outcomes of interest.

In line with prior research, we find negative effects of cigarette smoking among female and

black students in the Add Health data. Additionally, we find strong evidence that risk-averse

and less future-oriented adolescents engage more in both risky behaviors. Regarding parents’

characteristics, having a smoker parent or a parent with a college degree increases cigarette

smoking and marijuana use. However, the effects of having two parents in the household

differ, with adolescents engaging in less cigarette smoking but more marijuana use when

living with both parents.

5.2 Identifying Influencers

Using the peer effects estimates obtained previously, we can now calculate social effects for

the sample of adolescents. Table 3 presents summary statistics for the individual social effects

ŝj. The calculated social effects are expected to fall between 0 and 1 since the matrices of

social interactions are row-normalized. On average, we find that the social effects of cigarette

and marijuana consumption are approximately 0.26, which represents the aggregate effect

an adolescent has on their peers when there is a change in her own characteristics. Thus,

the social effects measure the spillover effect due to the presence of friends and classmate

12



Table 2. Peer Effects on Marijuana Use

OLS 2SLS GMM

Peer Effects
Friends Use 0.152* (0.080) 0.227 (2.495) 0.226*** (0.023)
Classmates Use -0.067 (0.231) 0.005 (2.421) 0.281*** (0.012)

Contextual Effects
Friends Risk 0.133 (0.144) -2.041 (11.82) 0.157 (0.168)
Classmates Risk -0.786 (0.795) 4.241 (12.98) 1.172 (0.976)

Additional Controls Yes Yes Yes
Instruments Smoker Parent Smoker Parent

Note: This table reports the peer effect estimates (βm) for (2). The complete set of results with controls

is located in table A8. OLS estimation uses clustered standard errors at the school level. GMM estimation

uses the endogenous networks W2
m to calculate peer effects while the GMM-ML estimation incorporates the

networks of distant individuals Wm,λ. For both GMM estimations, we use the efficient variance-covariance

matrix for the standard errors.

Table 3. Adolescents Social Effects on Risky Behaviors

mean std min 25% 50% 75% max

Cigarette Influence 0.3 0.18 0.0 0.15 0.2 0.45 0.76
Marijuana Influence 0.31 0.11 0.0 0.22 0.24 0.42 0.49

Note: This table reports summary statistics of the calculated aggregate social

effects for each adolescent. We obtain individual social effects by summing over

the columns of the matrix of social marginal effects S(β̂).

connections.

There is significant heterogeneity in the aggregate social effect that individuals possess.

For cigarette smoking, the interquartile range of social effects is between 0.15 to 0.43, while

for marijuana use, it is between 0.09 to 0.47. Although both behaviors have similar summary

statistics for social effects, the top percentile of the distribution reveals a higher influence

on marijuana use than on cigarette smoking. This discrepancy may be due to the stronger

effect of friends on marijuana use compared to cigarette smoking.

These calculated social effects enable us to explore the characteristics of a specific group

of individuals. For example, if policymakers have the ability to distinguish whom to treat,

examining the subpopulation of “influencers” (individuals with high social effects) could

be of great interest. Figure 1 shows the empirical distribution of individual social effects,

distinguished by sex. We can identify two groups of adolescents from the histogram, with

13



the group on the right being the influencers. We also separate the two groups by running

a k-means community detection algorithm. For both cigarette smoking and marijuana use,

there appears to be a slightly higher proportion of females among influencers.

Figure 1. Histogram of Adolescents Social Effect by Sex

0.
0

0.
03

0.
07

0.
11

0.
15

0.
18

0.
22

0.
26

0.
30

0.
34

0.
37

0.
41

0.
45

0.
49

0.
52

0.
56

0.
60

0.
64

0.
68

0.
71

Cigarette

0

100

200

300

400

500

600

700

Male

Female

0.
0

0.
02

0.
04

0.
07

0.
09

0.
12

0.
14

0.
17

0.
19

0.
21

0.
24

0.
26

0.
29

0.
31

0.
34

0.
36

0.
38

0.
41

0.
43

0.
46

Marijuana

Male

Female

Figure 2. Adolescents Social Effect and PVT Test Scores (normalized)
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We can also examine the relationship between PVT test scores and social effects. Figure

2 displays the social effects for each individual across their test scores. The figure suggests

that there is no significant difference between high and low-influence high school students.

However, we observe different slopes for the subgroups in both outcomes. Additionally,

using the formula we provide for standard errors on average social effects, we can establish

statistically significant differences among groups of individuals.
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Table 4. Difference between High and Low-Influence Adolescents

Difference

Risk Aversion -0.03
Future Orientation -0.03
Physical Activity -0.0
IQ Test 0.29***
Female 0.05**
Age -0.08
Black -0.1***
Asian -0.0
Other Race -0.04***
College Parent 0.02
Two Parents 0.06***
Smoker Parent 0.03

Note: This table reports differences in means for high-

influencing individuals vs low-influencing individuals.

The p-value is calculated using a t-test for two indepen-

dent samples with different variances.

Lastly, we can assess the differences in observed characteristics between the two groups of

adolescents. There is a statistically significant difference in PVT test scores, with the influ-

encers scoring higher than the non-influencers. However, the two groups are not significantly

different in the amount of physical activity they practice, their future orientation, or their

level of risk aversion. With regards to demographics, they are only significantly different

by age and the proportion of blacks. No significant differences were found in their parental

characteristics. Finally, there is a difference in the proportion of students with prevention

programs in their schools.

As a robustness check, we investigate how the estimated social effects change when using

only one type of social connection. Figures A1 and A2 compare the estimated social effects

when only one of the social networks is included. We find that both types of social interac-

tions contribute to the variation in the estimated individual social effect, but the variation

from friendships is higher than that from classmates. This could be due to the fact that

the estimands for the effects of friends are larger than for classmates and the highly clus-

tered nature of the classmates network, which creates a lot of homogeneity in the variation

of individual social effects. These results demonstrate the robustness of our findings and

reinforce the importance of considering multiple types of social connections when estimating

peer effects.
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6 Conclusion

This paper investigates how to determine the individuals that have high influence over the

network under the assumption that there is peer pressure in preferences. We study peer

pressure in the context of high school students and risky behaviors, where we consider that

these assumptions are plausible. The empirical strategy uses friends and classmates creating

instruments across networks to identify peer effects. We find a group of high and-low influence

individuals and we show their characteristics by sex and ability test scores.

It would be valuable to compare the results of targeting influential individuals to the

effects of a randomized intervention to evaluate the model’s ability to describe reality ac-

curately. Additionally, a crucial question for future research is how to design the optimal

policy. A policymaker aiming to maximize welfare would need to decide whether the goal is

to minimize risky behaviors at the intensive margin, the extensive margin, or both.
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A Appendix Tables and Figures

Appendix Table A1. Descriptive Statistics of Networks

Network Friends Classmates

Edges 735 182167
Density 0.0004 0.0913
Average Cluster 1.5 32.2
Shortest Path 12.5 1.0

Appendix Table A2. Descriptive Statistics of the Sample

Mean SD

Cigarette Use 4.25 9.44
Friends Cigarette 1.95 6.15
Classmates Cigarette 4.25 3.42
Marijuana Use 1.61 7.22
Friends Marijuana 0.72 4.68
Classmates Marijuana 1.61 1.29
Friends Risk 0.17 0.34
Classmates Risk 0.41 0.1
Risk Aversion 0.41 0.49
Future Orientation 0.49 0.5
Physical Activity 0.54 0.5
IQ Test 0.01 0.97
College Parent 0.65 0.48
Two Parents 0.72 0.45
Smoker Parent 0.64 0.48
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Appendix Table A3. Friends and Classmates Effects with Controls

OLS 2SLS GMM

Peer Effects
Friends Effect 0.396*** (0.021) -0.009 (1.593) 0.469*** (0.021)
Classmates Effect 0.178 (0.151) 0.191 (4.162) 0.351*** (0.003)

Contextual Effects
Friends Risk -1.888* (0.992) -2.680 (19.68) -1.179*** (0.258)
Classmates Risk 2.717 (2.708) 11.29 (77.82) 2.177*** (0.818)

Additional Controls
Risk Aversion -1.514*** (0.488) -1.523 (1.247) -1.684*** (0.047)
Future Orientation 0.397* (0.206) 0.284 (0.625) 0.029 (0.045)
Physical Activity -0.472*** (0.154) -0.439* (0.245) -0.525*** (0.045)
IQ Test 0.023 (0.294) -0.063 (1.142) -0.210*** (0.028)
Female 0.156 (1.086) 0.229 (1.830) 0.377*** (0.049)
Age 0.314 (0.231) 0.420 (1.955) 0.207*** (0.021)
Black -1.828*** (0.326) -2.077 (1.952) 0.136 (0.089)
Asian 0.284 (0.295) 0.179 (0.754) 0.406*** (0.085)
Other Race 1.000*** (0.348) 0.707 (1.134) 3.162*** (0.119)
College Parent -0.315 (0.399) -0.273 (0.430) -1.477*** (0.051)
Two Parents -1.062** (0.418) -1.342 (2.115) -1.747*** (0.057)
Smoker Parent 1.827*** (0.380) 1.739 (1.194) 1.324*** (0.049)
Fixed Effects School School School

Instruments Smoker Parent Smoker Parent

Note: This table reports the estimates for (2). Each estimation also includes contextual effects for PVT

test score, physical activity, future orientation, and risk aversion; and covariates for asian, other race,

drug/tobacco prevention program, dummies for missing PVT test and prevention program, and a constant.

OLS estimation uses clustered standard errors at the school level. GMM estimation uses the endogenous

networks W2
m to calculate peer effects while the GMM-ML estimation incorporates the networks of distant

individuals Wm,λ. For both GMM estimations we use the efficient variance-covariance matrix for the stan-

dard errors.
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Appendix Table A4. Friends and Classmates Effects with Controls

OLS 2SLS GMM

Peer Effects
Friends Effect 0.152* (0.080) 0.227 (2.495) 0.226*** (0.023)
Classmates Effect -0.067 (0.231) 0.005 (2.421) 0.281*** (0.012)

Contextual Effects
Friends Risk 0.133 (0.144) -2.041 (11.82) 0.157 (0.168)
Classmates Risk -0.786 (0.795) 4.241 (12.98) 1.172 (0.976)

Additional Controls
Risk Aversion -1.059*** (0.262) -1.068*** (0.368) -1.132*** (0.047)
Future Orientation 1.000*** (0.227) 0.974** (0.469) 0.791*** (0.045)
Physical Activity -0.025 (0.499) -0.017 (0.467) 0.352*** (0.045)
IQ Test -0.100 (0.102) -0.061 (0.083) 0.259*** (0.026)
Female -1.209*** (0.239) -1.052 (1.376) -0.973*** (0.048)
Age 0.012 (0.159) -0.009 (0.187) -0.059*** (0.022)
Black -0.763*** (0.113) -0.739* (0.415) 0.253*** (0.086)
Asian -1.913*** (0.213) -1.801 (2.163) -1.903*** (0.087)
Other Race -0.301 (0.246) -0.347 (1.387) 1.001*** (0.122)
College Parent 0.372 (0.268) 0.410 (0.816) 0.761*** (0.052)
Two Parents -0.563** (0.265) -0.458 (1.113) -0.730*** (0.054)
Smoker Parent 0.595*** (0.184) 0.473 (0.818) 0.409*** (0.049)
Fixed Effects School School School

Instruments Smoker Parent Smoker Parent

Note: This table reports the estimates for (2). Each estimation also includes contextual effects for PVT

test score, physical activity, future orientation, and risk aversion; and covariates for asian, other race,

drug/tobacco prevention program, dummies for missing PVT test and prevention program, and a constant.

OLS estimation uses clustered standard errors at the school level. GMM estimation uses the endogenous

networks W2
m to calculate peer effects while the GMM-ML estimation incorporates the networks of distant

individuals Wm,λ. For both GMM estimations we use the efficient variance-covariance matrix for the stan-

dard errors.
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Appendix Table A5. Friends and Classmates Effects with Controls

OLS 2SLS GMM

Peer Effects
Friends Effect 0.420*** (0.019) 0.171 (0.279) 0.480*** (0.021)
Classmates Effect 0.132 (0.161) 0.547*** (0.205) 0.316*** (0.008)

Contextual Effects
Friends Risk -0.777 (0.957) -1.279 (4.686) -0.510 (0.689)
Friends Future -1.935** (0.965) -1.819 (4.632) -0.511 (0.363)
Friends Physical -0.991 (0.653) -0.542 (2.829) 4.050*** (0.290)
Classmates Risk 2.162 (2.851) 1.642 (3.106) -1.773*** (0.445)
Classmates Future 3.283* (1.889) 0.598 (2.166) 1.639*** (0.391)
Classmates Physical -2.385 (2.024) -0.696 (1.787) -1.801*** (0.385)

Additional Controls
Risk Aversion -1.493*** (0.500) -1.598*** (0.480) -1.647*** (0.050)
Future Orientation 0.425** (0.199) 0.307 (0.280) 0.067 (0.047)
Physical Activity -0.471*** (0.171) -0.408* (0.216) -0.409*** (0.048)
IQ Test 0.037 (0.311) -0.015 (0.367) -0.157*** (0.027)
Female 0.184 (1.097) 0.189 (1.061) 0.418*** (0.051)
Age 0.181 (0.287) 0.119 (0.199) 0.065*** (0.023)
Black -2.062*** (0.290) -2.258*** (0.396) -0.440*** (0.097)
Asian 0.387 (0.287) 0.323 (0.447) 0.528*** (0.085)
Other Race 0.814** (0.334) 0.762** (0.322) 2.625*** (0.120)
College Parent -0.266 (0.380) -0.240 (0.364) -1.431*** (0.051)
Two Parents -1.025** (0.409) -1.216** (0.495) -1.748*** (0.056)
Smoker Parent 1.844*** (0.366) 1.805*** (0.417) 1.414*** (0.050)
Fixed Effects School School School

Instruments Smoker Parent Smoker Parent
Risk Aversion Risk Aversion

Future Orientation Future Orientation
Physical Activity Physical Activity

Note: This table reports the estimates for (2). Each estimation also includes contextual effects for PVT

test score, physical activity, future orientation, and risk aversion; and covariates for asian, other race,

drug/tobacco prevention program, dummies for missing PVT test and prevention program, and a constant.

OLS estimation uses clustered standard errors at the school level. GMM estimation uses the endogenous

networks W2
m to calculate peer effects while the GMM-ML estimation incorporates the networks of distant

individuals Wm,λ. For both GMM estimations we use the efficient variance-covariance matrix for the stan-

dard errors.
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Appendix Table A6. Friends and Classmates Effects with Controls

OLS 2SLS GMM

Peer Effects
Friends Effect 0.163* (0.084) 0.639*** (0.147) 0.231*** (0.022)
Classmates Effect -0.092 (0.255) 0.248 (0.273) 0.252*** (0.013)

Contextual Effects
Friends Risk 0.543** (0.251) -0.500 (4.080) 0.390 (0.879)
Friends Future -0.928** (0.383) -1.816 (1.925) 0.189 (0.564)
Friends Physical -0.100 (0.385) -0.136 (2.935) 3.275*** (0.278)
Classmates Risk -0.999 (0.881) 0.501 (1.706) -0.929** (0.422)
Classmates Future 1.655 (1.134) 1.101 (0.818) 1.496*** (0.484)
Classmates Physical -1.620 (0.987) -2.403 (1.494) -2.450*** (0.381)

Additional Controls
Risk Aversion -1.059*** (0.262) -1.098*** (0.243) -1.139*** (0.052)
Future Orientation 1.014*** (0.224) 1.069*** (0.227) 0.857*** (0.047)
Physical Activity -0.046 (0.499) -0.036 (0.521) 0.333*** (0.050)
IQ Test -0.105 (0.099) -0.106 (0.126) 0.265*** (0.026)
Female -1.203*** (0.251) -0.961*** (0.280) -0.976*** (0.055)
Age -0.055 (0.199) -0.131 (0.162) -0.125*** (0.024)
Black -0.854*** (0.116) -0.900** (0.415) 0.068 (0.105)
Asian -1.870*** (0.215) -1.444*** (0.083) -1.817*** (0.086)
Other Race -0.353 (0.217) 0.005 (0.136) 0.968*** (0.124)
College Parent 0.396 (0.284) 0.569** (0.240) 0.767*** (0.052)
Two Parents -0.557** (0.269) -0.314 (0.251) -0.740*** (0.055)
Smoker Parent 0.603*** (0.166) 0.457** (0.184) 0.427*** (0.053)
Fixed Effects School School School

Instruments Smoker Parent Smoker Parent
Risk Aversion Risk Aversion

Future Orientation Future Orientation
Physical Activity Physical Activity

Note: This table reports the estimates for (2). Each estimation also includes contextual effects for PVT

test score, physical activity, future orientation, and risk aversion; and covariates for asian, other race,

drug/tobacco prevention program, dummies for missing PVT test and prevention program, and a constant.

OLS estimation uses clustered standard errors at the school level. GMM estimation uses the endogenous

networks W2
m to calculate peer effects while the GMM-ML estimation incorporates the networks of distant

individuals Wm,λ. For both GMM estimations we use the efficient variance-covariance matrix for the stan-

dard errors.
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Appendix Table A7. Friends and Classmates Effects with Controls

No FE School FE Cohort FE

Peer Effects
Friends Effect 0.472*** (0.014) 0.469*** (0.021) 0.474*** (0.020)
Classmates Effect 0.419*** (0.002) 0.331*** (0.004) 0.427*** (0.007)

Contextual Effects
Friends Risk -1.145*** (0.187) -1.142*** (0.262) -1.032*** (0.241)
Classmates Risk 2.418*** (0.311) 2.215** (0.870) 2.521*** (0.478)

Additional Controls
Risk Aversion -1.616*** (0.046) -1.711*** (0.047) -1.599*** (0.046)
Future Orientation 0.068 (0.045) -0.002 (0.045) 0.005 (0.045)
Physical Activity -0.460*** (0.044) -0.566*** (0.045) -0.442*** (0.045)
IQ Test -0.201*** (0.025) -0.190*** (0.028) -0.342*** (0.027)
Female 0.222*** (0.049) 0.380*** (0.049) -0.138*** (0.050)
Age 0.144*** (0.007) 0.258*** (0.022) -0.872*** (0.042)
Black -0.580*** (0.077) 0.108 (0.089) -0.766*** (0.077)
Asian 0.041 (0.078) 0.322*** (0.085) 0.027 (0.080)
Other Race 2.670*** (0.115) 3.107*** (0.119) 2.278*** (0.116)
College Parent -1.541*** (0.051) -1.406*** (0.051) -1.541*** (0.051)
Two Parents -1.904*** (0.058) -1.700*** (0.058) -1.979*** (0.057)
Smoker Parent 1.470*** (0.048) 1.309*** (0.049) 1.537*** (0.049)
Fixed Effects School School School

Instruments Smoker Parent Smoker Parent Smoker Parent

Note: This table reports the estimates for (2). Each estimation also includes contextual effects for PVT

test score, physical activity, future orientation, and risk aversion; and covariates for asian, other race,

drug/tobacco prevention program, dummies for missing PVT test and prevention program, and a constant.

OLS estimation uses clustered standard errors at the school level. GMM estimation uses the endogenous

networks W2
m to calculate peer effects while the GMM-ML estimation incorporates the networks of distant

individuals Wm,λ. For both GMM estimations we use the efficient variance-covariance matrix for the stan-

dard errors.
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Appendix Table A8. Friends and Classmates Effects with Controls

No FE School FE Cohort FE

Peer Effects
Friends Effect 0.229*** (0.029) 0.227*** (0.023) 0.229*** (0.027)
Classmates Effect 0.335*** (0.012) 0.280*** (0.012) 0.321*** (0.022)

Contextual Effects
Friends Risk 0.202 (0.174) 0.167 (0.168) 0.154 (0.182)
Classmates Risk 0.448 (0.291) 1.139 (0.983) -0.754** (0.341)

Additional Controls
Risk Aversion -1.090*** (0.046) -1.132*** (0.048) -1.169*** (0.046)
Future Orientation 0.766*** (0.045) 0.792*** (0.046) 0.805*** (0.046)
Physical Activity 0.441*** (0.044) 0.352*** (0.045) 0.420*** (0.045)
IQ Test 0.167*** (0.025) 0.260*** (0.026) 0.197*** (0.026)
Female -0.942*** (0.048) -0.973*** (0.048) -0.967*** (0.050)
Age 0.075*** (0.007) -0.059*** (0.022) 0.283*** (0.040)
Black 0.426*** (0.068) 0.251*** (0.086) 0.682*** (0.072)
Asian -1.548*** (0.079) -1.902*** (0.087) -1.425*** (0.081)
Other Race 1.588*** (0.115) 0.997*** (0.122) 1.928*** (0.118)
College Parent 0.700*** (0.053) 0.763*** (0.052) 0.732*** (0.053)
Two Parents -0.716*** (0.055) -0.730*** (0.054) -0.796*** (0.056)
Smoker Parent 0.427*** (0.049) 0.412*** (0.049) 0.362*** (0.049)
Fixed Effects School School School

Instruments Smoker Parent Smoker Parent Smoker Parent

Note: This table reports the estimates for (2). Each estimation also includes contextual effects for PVT

test score, physical activity, future orientation, and risk aversion; and covariates for asian, other race,

drug/tobacco prevention program, dummies for missing PVT test and prevention program, and a constant.

OLS estimation uses clustered standard errors at the school level. GMM estimation uses the endogenous

networks W2
m to calculate peer effects while the GMM-ML estimation incorporates the networks of distant

individuals Wm,λ. For both GMM estimations we use the efficient variance-covariance matrix for the stan-

dard errors.
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Appendix Figure A1. Social Effects of Friends vs Friends & Classmates Networks
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Appendix Figure A2. Social Effects of Classmates vs Friends & Classmates Networks
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B Social Interactions Model

In this section, we present a model of social interactions where preferences feature peer

pressure, also called social conformity, with heterogeneous effects depending on the type of

the social connection. Following Blume et al. (2015), we assume that individuals exhibit a

quadratic utility function highlighting contextual effects, peer effects, and the cost of taking

action. The setup of the game has two stages. First, there is a network formation process

for {G1, G2} networks, which are friendships and classmates. In the second stage, agents

choose the optimal action of risky behavior yi. We solve the game by backward induction.

First, we solve for the optimal action, and then for the network formation process given the

optimal actions.

The set V = {1, . . . , N} denotes the players of the game. They have individual char-

acteristics (xi, zi). The characteristics xi, such as physical activity and grades, are publicly

observed. Instead, the characteristics zi are private information about each individual that

only they know about themselves. An example of this private information could be the fam-

ily history on substance abuse. Therefore, we define an individual type as (x, zi) ∈ RN+1.

Therefore individual i chooses action yi ∈ R to maximize

Ui (yi, y−i) =

(
γ∗xi + zi +

1

2

2∑
m=1

N∑
j=1

wij,m xj δ
∗
m

)
yi

− 1

2
y2i −

1

2

2∑
m=1

β∗
m

(
yi −

1

2

N∑
j=1

wij,m yj

)2

,

and the best reply function5 is

y =

[(
1 +

M∑
m=1

β∗
m

)
I−

M∑
m=1

β∗
mWm

]−1 [ M∑
m=1

δ∗mWmx+ γ∗x+ µ(x, z) + z

]
,

where S(β∗) =
[(

1 +
∑M

m=1 β
∗
m

)
I−

∑M
m=1 β

∗
mWm

]−1

is the matrix of marginal effects and

µi(x, z) depends only on x and zi.

In the first stage, individual i choose to connect with j following a sequential multilayer

network formation process. To simplify the process, we will assume that individuals are

myopic and only consider her connections in layer m − 1 when forming a relationship in

m. In our case, the classrooms network G2 is formed exogenously first. Then, adolescents

choose whom to be friends with on the friendship network G1, based on the connections from

5Details of the proof can be found in Blume et al. (2015) and Estrada (2021) but for the case when
preferences display strategic complementarities.
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classmates.

Individuals i and j choose to connect on the friends layer (m = 1) to maximize

Ui,1 (W2) =
N∑
j=1

αx|xi − xj|+ αz|zi − E[zj|xi, xj, ρ]|

+ α11{i ∈ Ck}1{j ∈ Cl}
∑
j

wij,2 + vij,1 ,

where αx represent a homophily parameter over the public characteristics x, αz for the private

characteristics z, and α1 describe the tendency of individuals to bridge structural holes over

the disjoint clusters Ck and Cl. The more classmates individual j has, the more utility

individual i earns if becoming friends. This simplified two-stage game of social interactions

provides the microfoundation for peer pressure on risky behaviors.
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C Identification and Estimation Details

C.1 Identification

The following assumptions are based on Estrada (2021) adapted to the identification results

in Kuersteiner and Prucha (2020).

Assumption 1 (Invertibility). Define the matrix S(β∗) =
[(

1 +
∑M

m=1 β
∗
m

)
I−

∑M
m=1 β

∗
mWm

]−1

and assume that S(β∗) exist for β∗ ∈ Θβ∗, where Θβ∗ = Θβ∗
1
× · · · ×Θβ∗

M
is a compact set.

Assumption 1 is used in equation 1 to put a restriction on the parameter space of β∗.

This assumption helps for the identification of the structural parameters θ.

Assumption 2 (Moment Restriction). E [xiei] = 0 for all i = 1, . . . , n and s ≤ t.

Assumption 2 put a restriction between errors and covariates only for the same individual,

in contrast to the classical assumption of E [x e] = 0. Between individuals i and j we will

impose a weak neighborhood dependence assumption instead.

With the multilayer measure of distance dM(i, j), we define the collection of pairs P(a, b, s) =

{(A,B) : A,B ∈ Nn, |A| = a, |B| = b, dn,t(A,B) ≥ d}, where dn,t(A,B) = min{dM(i, j) : i ∈
A, j ∈ B}

To establish Kojevnikov et al. (2021) definition of weak dependence, define the (k × 1)

vector ri = [x⊤
i , ei] ∈ Rk+1, and rA = (ri : i ∈ A). Let Ld, a denote the set of bounded real

Lipschitz functions mapping Rd×a → R.

Definition 1 (ψ−dependence). A triangular array {ri}ni=1 is ψ-dependent if there exists (1)

a sequence {ϕn,s}s,n∈N with ϕn,0 = 1 such that supn ϕn,s → 0 as s→ ∞ and ∃S ≤ n such that

if s > S then ϕn,s = 0; (2) collection of functionals {ψa,b}a,b∈N with ψa,b : Lv,a×Lv,b → [0,∞)

such that

|Cov (f(rA,t), g(rB,t)) | ≤ ψa,b(f, g) ϕn,s

for all A,B ∈ Pn,t(a, b, s), and f ∈ Lv,a, g ∈ Lv,b.

Definition 1 uses the sequence ϕn as the dependence coefficients of {ri}. It also states

that when two set of nodes are apart from at least a distance S then they are independent.

With this definition of ψ−dependence we state our weak dependence assumption.

Assumption 3 (Weak Dependence). For all networks M that occur with positive probability

in F , the conditional distribution F(M,X, e) is such that

(i) {ri} is ψ−dependent with dependent coefficients ϕn
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(ii) For some constant C > 0, ψa,b(f, g) ≤ C × ab (∥f∥∞ + Lip(f)) (∥g∥∞ + Lip(g))

Assumption 4 states necessary conditions for identification. Define ηm,i and ηm,i,λ as an

indicator of whether individual i is non-isolated in the network Wm and Wm,λ respectively.

In addition, let D be the matrix with the variables of the rhs of equation 2.

Assumption 4 (Relevance). Suppose

(i) the event ηm,i = 0 and ηm,i,λ = 0 for all m, i, λ, happens with probability zero.

(ii) QZD = plim 1
n
Z⊤D <∞ and QZX = plim 1

n
Z⊤X <∞

Before showing the theorem for identification, define S = n−1
[
y⊤M⊤

z ArMzy, Wy⊤M⊤
z ArMzWy

]
and Mz = I−D

(
D⊤PzD

)−1
D⊤Pz with Pz = Z

(
Z⊤Z

)−1
Z⊤.

Theorem 1 (Identification). Let Assumptions 1, 2, 3, and 4 hold for some Kc and Kd such

that Kd ≥ Kc + 1. The parameters θ0 = [β0, δ0, γ0]⊤ are identifiable if

(i) QZD has full column rank then plim 1√
n
ml(θ) = 0 (linear moment conditions) has a

unique solution at θ = θ0.

(ii) Only QZX and S has full column rank then plim 1√
n
m(θ) = 0 (linear and quadratic

moment conditions) has a unique solution at θ = θ0.

The proof for theorem 1 follows from Kuersteiner and Prucha (2020) under Lemma EX1.

C.2 Average Social Effects

In this section, we detail the process to obtain standard errors for the individual social effects.

Recall that the matrix of social effects is defined as S(β∗) =
[(

1 +
∑M

m=1 β
∗
m

)
I−

∑M
m=1 β

∗
mWm

]−1

.

However, we want to rewrite the matrix of social effects using the estimated coefficients as

S(β̂) = (1− β̂1 − β̂2)(I− β̂1W1 − β̂2W2)
−1. We aim to obtain standard errors for the vector

of average social effects s̄j = n−1
∑

j ̸=i ŝij. To apply the delta method we need ∂s̄j/∂β,

which involves to take the derivate of the inverse of a sum of matrices. To overcome that, we

express the matrix of social effects in terms of the infinite sum of the product of the different

adjacency matrices, given by

S(β̂) = (1− β̂1 − β̂2)
∞∑
r=0

(
β̂1W1 + β̂2W2

)r
.

Therefore, we can calculate the variance-covariance matrix for the average social effects

as

V(̄s) =
∂s̄

∂β

⊤
Σ̂β

∂s̄

∂β
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where

∂

∂βm
S(β̂) = −

∞∑
r=0

(
β̂1W1 + β̂2W2

)r
+ (1− β1 − β2)

[
∞∑
r=1

rWm

(
β̂1W1 + β̂2W2

)r−1
]
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