
Slow and Easy: a Theory of Browsing
∗

Evgenii Safonov†

This version: January 27, 2023, latest version available here

Abstract

An agent needs to choose the best alternative drawn randomly with replacement from a menu

of unknown composition. The agent is boundedly rational and employs an automaton decision

rule: she has finitely many memory states, and, in each, she can inquire about some attribute of

the currently drawn alternative and transition (possibly stochastically) either to another state or

to a decision. Defining the complexity of a decision rule by the number of transitions, I study the

minimal complexity of a decision rule that allows the agent to choose the best alternative from

any menu with probability arbitrarily close to one. Agents in my model differ in their languages—

collections of binary attributes used to describe alternatives. My first result shows that the tight

lower bound on complexity among all languages is 3⌈log2(m)⌉, where m is the number of alterna-

tives valued distinctly. My second result provides a linear upper bound. Finally, I call adaptive

a language that facilitates additive utility representation with the smallest number of attributes.

My third result shows that an adaptive language always admits the least complex decision rule

that solves the choice problem. When (3/4) · 2n < m ≤ 2n for a natural n, a language admits the

least complex decision rule if and only if it is adaptive.

Keywords: Bounded Rationality, Search, Automata, Complexity, Attributes

JEL: D01, D11, D83

∗This paper is the first chapter of my PhD dissertation in Princeton University. I am indebted to my advisor,

Wolfgang Pesendorfer, and to Faruk Gul and Pietro Ortoleva for their encouragement, support and contin-

uing guidance in developing this project. For helpful comments and discussions I would like to thank

Maria Chudnovsky, Nima Haghpanah, Franz Ostrizek, Emre Ozdenoren, Pellumb Reshidi, Denis Shishkin,

Dmitry Taubinsky, Leeat Yariv, Mu Zhang, and seminars audiences at Princeton University, University of

Bonn, Queen Mary University of London, UCL, LSE, NT2022TM, Warwick Icebreaking workshop, Stony

Brook and NES30 conferences. I gratefully acknowledge the support of William S. Dietrich II Economic

Theory Center Summer Research Grant (Princeton University).
†School of Economics and Finance, Queen Mary University of London.

https://evgeniisafonov.com/papers/JMP_EvgeniiSafonov.pdf

1 Introduction

Window shopping and its online cousin, browsing, are commonly observed behavioral

patterns among consumers. Their defining features are a lack of urgency and a lack of

direction. Consumers who browse are in no hurry to make a purchase and their attention

jumps from item to item at random. In this paper, I interpret a browsing consumer as

someone who sacrifices fast decision making to save on cognitive resources. Specifically,

I show how consumers can achieve near optimality with very limited cognitive resources

and no direction to their search as long as they take their time.

Consider, for example, the search for an appliance, for a toy or for an extra-curricular

activity for a child. Most consumers are not regular participants in these markets and,

therefore, do not know what options are available. Furthermore, the choice objects are

difficult to compare because they are differentiated along many attributes, and many of

them are difficult to quantify. Finally, the decision is not urgent, that is, the decision

can be delayed by days, weeks, or even longer. Because of this last feature, the decision

maker can adopt slow procedures and is willing to trade-off decision speed in favor of

economizing on cognitive resources. My main results characterize the boundedly ratio-

nal procedures that achieve near optimal decisions with very limited cognitive resources

when time is not of the essence.

My model has two components, a language and an automaton strategy. The language

is a list of yes-no questions such as “Is this appliance rechargeable?”. Thus, the language

encapsulates how the agent describes the alternatives. The automaton strategy consists

of memory states, which play the same role here as in other automaton models, an inter-

rogation rule that specifies which questions to ask, and a stochastic transition rule that

describes how to move between the memory states and when to choose.

The economic environment is one of undirected search. The decision maker’s atten-

tion is randomly drawn to one of the available objects which she proceeds to examine.

This examination takes the form of “asking questions” and transitioning between mem-

ory states upon hearing the answers. The examination stops when the decision maker se-

lects the item for consumption or when a new alternative is brought to her attention. The

search process assumes that the decision maker has no control over which alternatives

captures her attention. More realistic search procedures will have aspects of undirected

search but also feature some purposeful directed search. I choose the extreme case of

undirected search to establish a benchmark. As my main results show, the agent can do

1

remarkably well with very limited cognitive resources even in this extreme benchmark.

The decision maker’s objective is to choose optimally while economizing on cognitive

resources, that is, to find the least complex optimal strategy. As a measure of complexity,

I consider transitional complexity. As the name suggests, transitional complexity counts

the number of state-action pairs the decision maker employs. This notion of complexity

measures the difficulty of executing the strategy. Banks and Sundaram (1990) discuss

this notion of complexity in the context of repeated games played by finite automata. An

example below illustrates the complexity and introduces my solution concept.

Suppose that the universe of items is the four element set {(1,1), (1,0), (0,1), (0,0)},
where each vector specifies the two attribute values of the item. The decision maker must

search from an unknown (non-empty) subset of the four possible objects. Specifically, her

task is to find the alternative that maximizes her preference (1,1) ≻ (0,1) ≻ (1,0) ≻ (0,0).

Consider a decision maker who has two memory states and employs the following

strategy. In state 1, the strategy inquires about the first attribute: if the object has at-

tribute 1, then the agent transitions to state 2—this counts as one transition—whereas

if it does not have attribute 1, then the transition to state 2 occurs only with probabil-

ity ϵ; with probability 1 − ϵ the agent remains in (transitions to) state 1—this counts for

two more transitions. In state 2, the algorithm inquires about the second attribute: if

the object has the second attribute, the agent chooses the object with probability 1—this

counts for one transition—and if the object does not have the second attribute, the agent

chooses it with probability ϵ2 and remains in state 2 with probability 1− ϵ2—this counts

for two transitions. Thus, the complexity of the automaton strategy described above is

1 + 2 + 1 + 2 = 6.

If the agent examines item (1,1), then she will choose it first time she starts to in-

vestigate it, provided her attention is not drawn to a new alternative before that. When

ϵ > 0 is small, item (0,1), on average, requires η/((1 − η)ϵ) draws from the menu to be

chosen, where η is the probability to draw a new alternative. For item (1,0), this number

is η/((1 − η)ϵ2) and for item (0,0), it is η2/((1 − η)ϵ3). If ϵ is small and the menu does

not contain item (1,1), then the decision maker is likely to cycle multiple times through

all her available choices before settling on one of the items. Moreover, in that case, the

decision maker will most likely settle on the best available choice. In the limit, as ϵ con-

verges to zero, the probability of picking the best available item from any conceivable

menu converges to one. I will refer to this property of a strategy as solving the decision

problem.

2

In the example above, there are only 4 alternatives that can comprise a potential menu,

and the strategy used to solve the choice problem employs 6 transitions. What happens

when there are a lot of alternatives and they are differentiated along many attributes?

My first main result, Theorem 1, shows that if the agent’s language allows her to learn

a convenient subset of attributes, she can solve the decision problem using as few as

3⌈log2(m)⌉ transitions, where m is the number of indifference classes of items that the

agent distinguishes, and ⌈x⌉ denotes the ceiling of number x—the smallest integer weakly

greater than x. The example above illustrates one of these “simple” solutions, since 6 =

3 · log2(4). Theorem 1 also shows that the total number of transitions required to solve a

decision problem for an agent with any language is at least 3⌈log2(m)⌉; thus, 3⌈log2(m)⌉ is

a tight lower bound on complexity of a strategy that can solve the choice problem.

My next main result, Theorem 2, shows that some languages provide much less con-

venient description of items for the decision maker: the minimum number of transitions

required to solve the choice problem can be more than 2M − 2, where M is the total

number of possible items. Theorem 2 also provides an upper bound on complexity: any

language that can correctly distinguish items from distinct indifference classes allows for

a solution of the choice problem by using at most 3M − 3 transitions.

Theorems 1 and 2 show that language—that is, the way how the agent describes

the alternatives—plays an important role in the demand for cognitive resources, which

ranges from logarithmic to linear in the size of the choice problem. Thus, I study a partic-

ular class of languages that I call adaptive for the agent’s preference relation. An adaptive

language contains a small subset of questions—of the size of ⌈log2(m)⌉—such that there

exists a utility function additive with respect to the corresponding subset of attributes

that correctly represents the strict part of the agent’s preference relation. In the example

above, the language that the agent uses to describe the items is adaptive because m = 4,

and a two-attribute utility function u(a) = a1 + 2a2 represents the agent’s preference rela-

tion.

My final main result, Theorem 3, shows that an agent with an adaptive language can

always solve the choice problem by using the simplest possible strategy—a strategy that

contains 3⌈log2(m)⌉ transitions. Moreover, if the number of indifference classesm satisfies

(3/4) · 2n < m ≤ 2n for some natural n, then agent who can solve the choice problem by

using the simplest possible strategy must have an adaptive language. Thus, for this range

of m, Theorem 3 fully characterizes all simple languages—the ones that allow for the

simplest possible solution of the choice problem—as being adaptive.

3

1.1 Related Literature

This paper contributes to the literature on the search for a multi-attribute alternative,

on the decision making with limited memory and information processing constraints, on

stochastic choice rules, and, more broadly, on the complexity of the decision problems.

There is an extensive literature discussing the optimal search, including Weitzman

(1979), Kohn and Shavell (1974), Morgan and Manning (1985). In Klabjan, Olszewski,

and Wolinsky (2014), the authors are concerned with the optimality of the search for a

multi-attribute alternative. In their paper, the agent is fully rational, but the information

acquisition is costly.

Sanjurjo (2014) builds a theoretical model of the memory-constrained search for a

multi-attribute alternative. In his model, the agent memorises both the values of the

discovered attributes and indexes of the searched alternative/attribute pairs. His paper

is mainly focused on discussing a class of the exhaustive search procedures that deliver

the least memory load, without emphasis on the optimality. Related papers Sanjurjo

(2015), Sanjurjo (2017) study a multi-attribute search with values of items, additive with

respect to the attributes, in the laboratory setting.

In Dow (1991), the author considers an agent with one bit of memory who can use it

to solve two separate decision problems. His paper shows that it is optimal to remember

information relevant to one of the problems, but not to both problems jointly.

In Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2020), the authors also

study a stochastic browsing procedure. In their continuous-time neuro-computational

model, the agent compares a default item to a randomly drawn item from the menu, and

the item that is default at the time of the deadline is chosen. The resulting random choice

is characterized by a generalized version of the Multinomial Logit model. A discussion of

the neuro-computational models of stochastic choice is given in Rustichini (2020).

In a series of papers Cover (1969), Cover and Hellman (1970), Hellman and Cover

(1970), Hellman and Cover (1971), authors study hypothesis testing and learning with

finite memory. They show that allowing for randomization improves the effectiveness

of automata designed to deliver the best possible long-run payoff subject to the m-state

memory constraint. They find upper bounds on optimality and construct ”ϵ-optimal”

sequences of automata that yield payoff, arbitrary close to the upper bound. My paper

studies a different decision problem from theirs in many aspects, but also relies on near-

optimal sequences of the stochastic finite-state automata.

In Economics literature, the automata are used to model bounded rationality in the

4

game theory context in Abreu and Rubinstein (1988), Kalai and Stanford (1988), Banks

and Sundaram (1990), and in the context of information processing in Börgers and Morales

(2004), Wilson (2014), Kocer (2010). The benefits of using randomization in simple al-

gorithms is also discussed in Kalai and Solan (2003) in the context of dynamic decision

making.

In Oprea (2020), the author studies complexity of the implementation of an automa-

ton decision procedure in the laboratory setting. His findings suggest that both the num-

ber of the automaton’s states and the number of its transitions contribute to its perceived

complexity. In the current paper, both measures are analyzed.

In Mandler, Manzini, and Mariotti (2012)1, the authors consider a decision procedure

that eliminates, at each step, objects from the menu based on the value of one of the

binary attributes. In their model, the agent does not know the model—as in my paper.

A choice procedure that require the least amount of steps uses a collection of “yes-no”

questions that is a special case of an “adaptive language”, introduced in my paper. In

general, only a very specific class of languages allows the agent to pick the best item by

using a sequential elimination procedure, while the stochastic algorithm, considered in

my paper, allows the agent to solve the choice problem wherever she can differentiate a

pair of items if she is not indifferent between them.

2 Model

2.1 Preference

The set of alternatives, A, is finite with generic element a ∈ A. A complete and transitive

binary relation ⪰ describes the agent’s preferences over alternatives. The symbols ∼ and

≻ denote the symmetric and asymmetric parts of ⪰. Let C(a) = {a′ ∈ A|a′ ∼ a} be an

indifference class and let m be the number of distinct indifference classes, that is, m is the

cardinality of the set {C(a) |a ∈ A}. I assume that the choice problem is not trivial: m > 1.

2.2 Undirected search

From the finite set of alternatives, A, nature chooses a non-empty menu, B ⊆ A, of avail-

able alternatives. The particular modality of nature’s choice of a menu is unimportant

1I’d like to thank Jawwad Noor for showing me this paper.

5

for the subsequent analysis except for the fact that every non-empty subset B of A is a

possible menu.

As long as the search continues, there is a fixed probability η ∈ (0,1) that, in any

period, a new alternative draws the agent’s attention. This alternative is chosen by the

nature randomly with replacement from the set B according to the full-support proba-

bility2 ρB(a) = ρ(a)/
∑
b∈Bρ(b), where ρ(a) is a sampling likelihood of alternative a. If an

alternative a ∈ B has the agent’s attention, she examines it by sequentially asking ques-

tions about it in the manner described below and may choose it. The search ends if the

agent chooses an alternative. There is no cost of delay and, thus, the agent’s objective is

to find the best alternative in the menu.

2.3 Language

A language is a family of non-trivial binary partitions Q = {Qi0,Qi1}ni=1 of A. I interpret

Qi as the question “does a have property i?” It does if a ∈ Qi1 and it does not if a ∈ Qi0.

Let N = {1, . . . ,n} be the index set of questions.

For example, let A = {b,c,d} be three cars where b is a red car from 2010 with manual

transmission, c is a red car from 2011 with automatic transmission, and d is a green car

from 2010 with automatic transmission. Then,Q = {Qi0,Qi1}3i=1 such thatQ1 = {{b}, {c,d}},
Q2 = {{c}, {b,d}},Q3 = {{d}, {b,c}} is a language that describes the three cars. In this exam-

ple, question 1 asks whether the car has manual transmission, question 2 asks if it is from

2011, and question 3 asks if it is green.

Every language corresponds to a description of alternatives as n-dimensional vectors

with coordinates taking values 1 (if the answer is “yes”) and 0 (if the answer is “no”).

In the example above, a description of items in language Q is b = (1,0,0), c = (0,1,0),

d = (0,0,1). I denote by Qi(a) = 1 if ai = 1 and Qi(a) = 0 if ai = 0 the value of the i-th

attribute of alternative a according to the language Q.

In the example above, an alternative language might consist of question 3 alone; such

a language is adequate for an agent who is indifferent between the two red cars b,c, but

is not adequate for agents who are not indifferent between b and c. Formally, a language

Q is adequate for ⪰ if for any a,b ∈ A such that a ≻ b there exists i ∈ N such that ai , bi .

Thus, adequate languages facilitate distinction of any pair of non-indifferent alternatives.

Henceforth, I assume that the language is adequate for ⪰. I refer to the pair (Q,⪰) as the

2My main results in Sections 3,4 hold for an arbitrary family of full-support distributions {ρB}
∅,B⊆A.

6

choice problem.

2.4 Automaton

To solve the choice problem, the agent employs an automaton with state space S = So ∪
{⋄}, where So = {1, ..., k} contains the flexible memory states, and ⋄ is the decision state.

Upon reaching ⋄, the agent chooses the alternative and the search ends. Each time a new

alternative draws the agent’s attention, the state initializes at s = 1; we adopt a convention

that the decision to choose an alternative is executed before the new alternative is drawn3.

An interrogation rule ι : So→ N specifies which question the agent asks in a memory

state s. A more general model would allow the agent to ask no question at a particular

state. None of the subsequent results would change if we allowed this possibility; we

omit it to simplify the notation. A stochastic transition rule τ : So × {0,1} → △(S) specifies

the probability that the agent transitions from state v ∈ So to state s ∈ S as a function of

the answer received in state v. Note that, if alternative a is under consideration, then this

transition occurs with probability τ
(
v,s,Qι(s)(a)

)
.

Thus, an automaton σ = (S, ι,τ) consists of the state space S = So∪{⋄}, the interrogation

rule ι, and the stochastic transition rule τ . I denote by Σ the set of all automatons with a

finite state space.

2.5 Stochastic choice

The realized menu B ⊆ A and the sampling probability ρB from B determine the economic

environment. The language Q and the automaton σ = (S, ι,τ) ∈ Σ determines the agent’s

decision procedure. Together, the economic environment and the decision procedure,

induce a dynamic random choice in a straightforward way.4 In this paper, I am concerned

with the total probability that the agent chooses alternative a from menu B:

pB(a) := P r
(
alternative a is chosen from menu B in some period) (1)

When necessary, I will use the subscript σ to indicate the dependence of pB(a) on σ .

As an illustration, consider the car example, described above. The automaton σ ∈ Σ,

described in Figure 1 below, has a single state which asks the question, “does the car have
3Alternatively, if the agent decides to choose the current item, i.e. to move to the state ⋄ in the next

period, but her attention switches to a new item, she would investigate the new item instead of choosing

the previous one. My results remain the same in this case.
4The straightforward, but somewhat bulky formal description can be found in the Appendix B.7

7

Figure 1

manual transmission?" If the answer is yes, then the agent chooses the car immediately; if

the answer is no, then the agent chooses the car with probability ϵ ∈ (0,1), and, otherwise,

remains in state 1.

Suppose the menu B = {b,c} consists of car b with manual transition and car c with au-

tomatic transmission. If car c is drawn from the menu in some period T , then with prob-

ability ϵ, it is chosen. With probability (1−ϵ) ·η, it is not chosen and a new car catches the

agent’s attention in period T +1, which ends the investigation of c.5 Finally, with probabil-

ity (1−ϵ)·(1−η), the agent continues to investigate car c and the process repeats. Summing

the probabilities of choosing c in periods T ,T +1, ..., we get q(c) = ϵ/(1−(1−η)(1−ϵ)) for the

probability of choosing c during a single uninterrupted investigation process. Similarly,

q(b) = 1 is the probability of choosing car b during a single uninterrupted investigation

process.

To calculate the total probability pB(c) that c is chosen, note that c is drawn from

the menu with probability ρB(c) = ρ(c)/(ρ(b) + ρ(c)). Conditional on being drawn, c is

chosen with probability q(c). If c is not chosen then either b is drawn or c is drawn again.

The former event occurs with probability (1− q(c)) · ρB(b) and the latter with probability

(1−q(c)) ·ρB(c). Summing the probabilities of choosing c after a single investigation, after

two investigations, et cetera, we obtain pB(c) = q(c)ρ(c)/(q(c)ρ(c) + ρ(b)).

A Luce rule (Luce (1959)) is a random choice rule in which each alternative a has a

weight V (a) and the probability of choosing a from menu B is V (a)/
∑
BV (a′). Calculating

the probabilities pB(a) for all possible menus B and all possible alternatives reveals that

the resulting random choice rule is a Luce choice rule with weight ρ(a) · q(a) assigned to

car a ∈ {b,c,d}. Lemma 1, below, notes that this observation holds generally.

5Note that the newly drawn car can be car c as well.

8

Lemma 1. The family of choice probabilities ρB(a) constitutes a Luce choice rule with the

convention that if all weights of alternatives in menu B are zero, then ρB(a) = 0 for all a ∈ B.

2.6 Near optimal decision procedures

The random choice rule described in Lemma 1 makes mistakes, that is, it may choose

inferior choices from a menu. My notion of optimality allows such mistakes but requires

that they can be made arbitrarily small. Specifically, I study sequences of automata for

which the probability of choosing optimally converges to one. For σ ∈ Σ, let Tσ denote

the transitions of σ , that is, the transitions that occur with positive probability:

Tσ :=
{
(v,s, j) ∈ So × S × {0,1}

∣∣∣ τ(v,s, j) > 0
}

(2)

Let N be the set of natural numbers. A decision rule ψr∈N is a sequence of automata

{σr} such that all elements of the sequence share the same state space S = Sψ = Soψ ∪ {⋄},
the same interrogation rule ι = ιψ, and the same set of transitions T = Tψ. I denote with

Ψ the set of all decision rules; thus,

Ψ :=
{
{σr}r∈N ⊂ ΣN

∣∣∣ (Sσr , gσr ,Tσr) = (Sσt , gσt ,Tσt) ∀r, t ∈N
}

(3)

When there is some parameter, ϵ = ϵr −→ 0, such that the transition probabilities τr
depend on r only via ϵr , I denote the decision rule by ψ = {σϵ}ϵ→0 or simply ψ = σϵ
instead of ψ = {σr}r=N to ease notation.

A decision rule ψ = {σr}r∈N ∈ Ψ solves the choice problem (Q,⪰) if

lim
r

∑
a∈B: a⪰b ∀b∈B

pBσr (a) = 1 ∀B : ∅ , B ⊆ A (4)

Thus, a decision rule solves the choice problem if, for every menu, the probability of

choosing optimally converges to one.

To illustrate the solution concept, let us return to the car example discussed above.

Suppose the agent prefers manual transmission but is otherwise indifferent between the

features so that the agent’s preference relation is b ≻ c ∼ d. Consider the decision rule

ψ∗ = σϵ, where ϵ −→ 0, and for a fixed ϵ > 0, σϵ = σ is the automaton, shown in Figure 1,

and discussed above. To see why the rule σϵ solves the choice problem, consider menu

B = {b,c} and recall our calculations, performed above, to get

pB(c) =
q(c)ρ(c)

q(c)ρ(c) + ρ(b)
=

ϵρ(c)
ϵρ(c) + (η + ϵ − ηϵ)ρ(b)

−→ 0

9

Thus, the agent chooses car b from menu B = {b,c} with probability, converging to one

in the limit. Similar calculations show that, in the limit ϵ −→ 0, car b is always chosen

with probability one from any menu that contains this car. If the choice set contains no

car with automatic transmission then every choice is optimal and, thus, it suffices to note

that the agent will eventually choose one of the cars.

Every choice problem with adequate language has a solution:

Lemma 2. There exists a decision rule ψ ∈ Ψ that solves the choice problem (Q,⪰).

3 Complexity

A standard measure of complexity of an automaton is the cardinality of its state space6.

We can interpret it as measuring the size of the “operational” memory that the decision

maker requires to implement the choice procedure. However, two automata with the

same state space may differ in terms of the complexity of their transition structures, as has

been pointed out in Banks and Sundaram (1990). The importance of transition structures

for perceived complexity has been shown experimentally in Oprea (2020). I define the

complexity, κ, of the automaton σ = (S,g,τ) ∈ Σ as the number of distinct transitions that

are a possible:

κ(σ) := |Tσ | =
∣∣∣{(v,s, j) ∈ So × S × {0,1} ∣∣∣ τ(v,s, j) > 0

}∣∣∣ (5)

I interpret κ, in line with Banks and Sundaram (1990), to be the number of distinct

events that the decision maker needs to distinguish to be able to use the automaton σ .

Thus, it is a measure of the memory required to recall the decision procedure itself.

The complexity κ(ψ) of the decision rule ψ = {σr}r∈N ∈ Ψ is the complexity of the

automaton σr for any r—recall that transitions T are the same along the sequence of

automata that comprise a decision rule.

For example, the complexity of the decision rule ψ∗, depicted in Figure 1 is κ(ψ∗) =

|Tψ∗ | = 3, since Tψ∗ = {(1,⋄,1), (1,⋄,0), (1,1,0)}; to calculate the complexity from the graph-

ical representation of the automaton, we can simply count the number of arrows.

As the following example illustrates, some languages are more amenable to low com-

plexity solutions than others. In the car example above, the agent might have the follow-

ing language: Q∗∗ = {Q2,Q3}, where Q2 = {{c}, {b,d}} and Q3 = {{d}, {b,c}}. A decision rule

ψ∗∗ = σϵ that solves the choice problem (Q∗∗,⪰), is shown in Figure 2.

6See , for instance, Rubinstein (1986) in the context of repeated games

10

Figure 2

The set of transitions of ψ∗∗ is Tψ∗∗ = {(1,1,1), (1,⋄,1), (1,2,0), (2,2,1), (2,⋄,1), (2,⋄,0)}
and hence, its complexity is κ(ψ∗∗) = 6. Note also that ψ∗∗ uses |Soψ∗∗ | = 2 memory states. It

can be shown that any decision rule that solves the choice problem (Q∗∗,⪰) in our example

should have complexity at least 6 and use at least 2 memory states.

For a given preference relation ⪰, I define the complexity κ(Q) of an adequate lan-

guage Q to be the minimal complexity of the decision rules that solve the choice problem

(Q,⪰):

κ(Q) := min
ψ∈Ψ : ψ solves (Q,⪰)

κ(ψ)

My first main result provides a lower bound on complexity for all languages Q and,

moreover, shows that there exists a language that achieves this lower bound. Recall that

⌈x⌉ denotes the smallest integer weakly greater than x.

Theorem 1. Let the preference relation ⪰ have m indifference classes. Then for any language

Q, κ(Q) ≥ 3⌈log2(m)⌉, and there exists a language Q such that κ(Q) = 3⌈log2(m)⌉.

While Theorem 1 focuses on the transitional complexity, the size of the state space

required to solve the choice problem is also an important measure of its complexity. For

a given a preference relation ⪰, I define a memory loadM(Q) of an adequate language Q

to be the smallest size of the memory state space of a decision rule that solves the choice

problem (Q,⪰):

M(Q) := min
ψ∈Ψ : ψ solves (Q,⪰)

|Soψ |

My next result gives the tight lower bound on the memory load of a language and says

that decision rules that deliver the smallest complexity must also achieve the minimal

memory load.

11

Proposition 1. Let the preference relation ⪰ have m indifference classes. Then for any lan-

guage Q, M(Q) ≥ ⌈log2(m)⌉, and there exists a language Q such that M(Q) = ⌈log2(m)⌉.
Moreover, if a decision rule ψ solves the choice problem (Q,⪰), and κ(ψ) = 3⌈log2(m)⌉, then

|Soψ | = ⌈log2(m)⌉.

Theorem 1 says that the minimal required complexity grows as a logarithm of the

number of indifference classes of ⪰. To interpret this result, it is useful to understand

how complex a language can be; that is, what is the upper bound on complexity?

Suppose that C1,C2 ⊂ A are two indifference classes of the preference relation ⪰. If C1

or C2 contains many alternatives, then there are languages that require a lot of questions

to figure out if a particular alternative belongs to C1 or C2. All these questions should be

asked in a decision rule that solves the corresponding choice problem. Thus, in contrast

to the lower bound provided by Theorem 1, the number of the indifference classes of the

preference relation does not limit the maximum complexity of a language.

Proposition 2. For any natural number k, there is a set of items A, a preference relation ⪰ on

A with two indifference classes and an adequate language Q such that κ(Q) > k.

My next main result shows that the maximum possible complexity of an adequate

language grows linearly in the total number of alternatives in A.

Theorem 2. Let |A| be the total number of alternatives. Then for any preference relation ⪰ and

language Q, κ(Q) ≤ 3|A| − 3. Moreover, for any m ∈ {2, ..., |A|}, there is a preference relation ⪰
with m indifference classes and a language Q such that κ(Q) ≥ 2|A|+ ⌈log2(m)⌉ − 2.

Theorem 2 says that for any preference relation ⪰ on A, for any language Q, adequate

with respect to ⪰, there is a decision rule with no more than 3|A|−3 transitions that solves

the choice problem (Q,⪰). Moreover, for any preference relation ⪰ there is an adequate

language Q such that any decision rule that solves the choice problem (Q,⪰) must have

at least 2|A|+ ⌈log2(m)⌉ − 2 transitions.

An analogous result holds for the memory load; moreover, the upper bound is tight.

Proposition 3. Let |A| be the total number of alternatives. Then for any preference relation ⪰
and adequate languageQ,M(Q) ≤ |A|−1. Moreover, for anym ∈ {2, ..., |A|}, there is a preference

relation ⪰ with m indifference classes and a language Q such thatM(Q) = |A| − 1.

12

To compare the lower and upper bounds given by Theorems 1 and 2, suppose that set

A contains 2n alternatives, and there is no pair of indifferent alternatives; thus, m = |A| =
2n. In this case, the tight lower bound on complexity of a language is 3 ·n, while there are

languages with complexity at least 2n+1 +n− 2.

4 Adaptive Languages

What languages Q allow for the least complex solutions of the choice problem (Q,⪰)? I

call such languages simple, meaning that the description of the problem in a language

maximally eases the agent’s choice problem. Formally, given a preference relation ⪰ with

m indifference classes, a language Q is simple, if

κ(Q) = 3⌈log2(m)⌉

Thus, a language is simple if there is a decision rule that achieves the lower bound on

complexity, given by Theorem 1, and solves the choice problem for that language.

Intuitively, if a language describes a certain choice problem conveniently for the deci-

sion maker, it should contain as few attributes as possible and, moreover, the relationship

between the attributes and the value of the alternatives should be “simple.”

Let the preference relation ⪰ with m indifference classes be given. In line with the

intuition discussed above, I say that a language Q is adaptive if it contains a subset Q′ =

{Qi}i∈N ′ ⊆ Q of |N ′ | = ⌈log2(m)⌉ questions such that there exists a vector λ ∈ RN ′ with

λi , 0 for all i ∈N ′ and for all a,b ∈ A,

a ≻ b =⇒ u(a) > u(b), where u(a) :=
∑
i∈N ′

λiai (6)

Thus, a language is adaptive if it facilitates the usage of an additive utility function

u with few attributes. Note that the utility function u does not necessary represent the

preference relation ⪰: I allow for the cases when a ∼ b, but u(a) > u(b). In other words, the

utility function u correctly differentiates the non-indifferent alternatives, but can break

ties of the preference relation ⪰. Note also that an adequate language should contain at

least ⌈log2(m)⌉ questions to be able to differentiate any pair of non-indifferent alterna-

tives, hence I use this bound in the definition of an adaptive language.

For example, let A = {b,c,d,e}, and b ≻ c ≻ d ≻ e. Then m = 4, ⌈log2(m)⌉ = 2, and the

following language is adaptive: Q = {Q1,Q2} with

Q1 = {{b,c}, {d,e}}, Q2 = {{b,d}, {c,e}}.

13

Thus, b = (1,1), c = (1,0), d = (0,1), e = (0,0) is a description of the alternatives in the

language Q. Take λ1 = 2 and λ2 = 1, then u(a) = 2a1 + a2:

u(b) = 2 + 1 = 3, u(c) = 2 + 0 = 2,

u(d) = 0 + 1 = 1, u(e) = 0 + 0 = 0,

and u(b) > u(c) > u(d) > u(e), showing that Q is indeed adaptive.

Examples of the non-adaptive, but adequate languages for the preference relation ⪰
are Q∗ = {Q∗1,Q

∗
2} and Q∗∗ = {Q∗∗1 ,Q

∗∗
2 ,Q

∗∗
3 ,Q

∗∗
4 }, where

Q∗1 = {{b,c}, {d,e}}, Q∗∗1 = {{b}, {c,d,e}},
Q∗2 = {{b,e}, {c,d}}, Q∗∗2 = {{c}, {b,d,e}},

Q∗∗3 = {{d}, {b,c, e}},
Q∗∗4 = {{e}, {b,c,d}}.

A description of items in language Q∗ is b = (1,1), c = (1,0), d = (0,0) and e = (0,1).

Would Q∗ be adaptive, there should exists an additive utility function u∗, defined on

the corresponding vectors of attributes, satisfying u∗(1,1) > u∗(1,0) > u∗(0,0) > u∗(0,1).

However, the function u∗ is not monotone with respect to the second attribute: u∗(0,1) <

u∗(0,0), but u∗(1,1) > u∗(1,0), and hence, u∗ cannot be additive.

The language Q∗∗ describes alternatives as b = (1,0,0,0), c = (0,1,0,0), d = (0,0,1,0)

and e = (0,0,0,1) and hence, allows for an additive utility representation u∗∗(a) = 3a1 +

2a2 + a1. However, this representation uses too many attributes: 3 > 2 = ⌈log2(m)⌉. Any

pair of questions of the language Q∗∗ do not allow the agent to differentiate some pair of

alternatives from A and thus, is not sufficient for utility representation of an antisymmet-

ric preference relation ⪰. It follows that the language Q∗∗ is not adaptive.

Adaptive languages always exist:

Proposition 4. For any preference relation, there is an adaptive language.

Note that if we add new questions to an adaptive language, the language remains

adaptive. Thus the following Corollary is straightforward.

Corollary 1. (i) The language that consists of all non-empty binary partitions of the set A is

adaptive for every preference relation ⪰ on A; (ii) if language Q is adaptive for the preference

relation ⪰, then language Q′ ⊇Q is also adaptive for the preference relation ⪰.

14

My main result in this section shows that all adaptive languages are simple; moreover,

for a wide range of environments, adaptive languages are the only simple languages.

Theorem 3. Let the preference relation ⪰ havem equivalence classes. If a language is adaptive,

then it is simple. Moreover, if (3/4) · 2n < m ≤ 2n for a natural n, then a language is simple if

and only if it is adaptive.

The first statement of Theorem 3 says that for any adaptive language, there is a de-

cision rule ψ with κ(ψ) = 3⌈log2(m)⌉ that solves the choice problem (Q,⪰). As an illus-

tration, recall the example from this section with b ≻ c ≻ d ≻ e and an adaptive language

Q with Q1 = {{b,c}, {d,e}}, Q2 = {{b,d}, {c,e}}. A least-complex decision rule ψ = σϵ, ϵ→ 0,

that solves the choice problem (Q,⪰) is shown in Figure 3.

Figure 3

Recall that the utility function u(a) = λ1a1 +λ2a2 = 2a1 + a2 represents the preference

relation ⪰ when alternatives are described in language Q. Consider ϵ1 = ϵλ1 = ϵ2, and

ϵ2 = ϵλ2 = ϵ with ϵ −→ 0. Let q(a) be the probability that alternative a ∈ {b,c,d,e} is chosen

during a single investigation process.

To calculate q(d), for instance, let the investigation of d starts at period T . Since d1 = 0,

with probability ϵ1 = ϵ2, the automaton transitions to state s = 2, and with the remaining

probability 1−ϵ2, the state remains at s = 1, in which case, with total probability (1−ϵ2)·η,

the investigation ends, and with total probability (1− ϵ2) · (1− η), the agent continues the

investigation process at state s = 1 in period T + 1, and the analysis repeats. Summing up

the probabilities of transition to state s = 2 in periods T , T + 1,..., we obtain ϵ2/(1 − (1 −
η)(1−ϵ2)) for the total probability to transition to state s = 2 during a single investigation

process of d. Once the automaton is in state s = 2, with probability η, the investigation

15

ends, and with probability (1− η), the state transitions to ⋄, since d2 = 1. Therefore,

q(d) =
(1− η)ϵ2

1− (1− η)(1− ϵ2)

If we express quantities q(a) for a ∈ {b,c,d,e} in terms of the power expansion with respect

to a vanishing parameter ϵ, we get the following leading terms:

q(b) = 1− η q(c) ≈ ((1− η)/η) · ϵ
q(d) ≈ ((1− η)/η) · ϵ2 q(e) ≈ ((1− η)/η2) · ϵ3

Note that for a ∈ {b,c,d,e},

q(a) ≈ constant(a) · ϵu(b)−u(a) (7)

where the term constant(a) does not depend on ϵ. Similarly to the car example discussed

in Section 2.5, we can analyze the probability of choosing alternative a ∈ {b,c,d,e} from

menu B ⊆ A after 1,2,3, ... investigation processes. The resulting random choice rule turns

out to be a Luce rule with weights V (a) = ρ(a) · q(a). When ϵ −→ 0, the ratio q(a′)/q(a)

converges to zero for any pair of alternatives a,a′ such that a ≻ a′. Thus, in the limit, the

agent chooses the best alternative with probability one from any menu.

In the general case, given an adaptive language Q, it is always possible to construct a

decision rule that generalizes the rule ψ from the example above such that eq. (7) holds,

where u(b) is the utility of the best alternative in A. Let us describe a class of such decision

rules.

For a given natural n and language Q with |N | ≥ n questions, consider a decision

rule ψ+ with the memory state space Soψ = {1, ...,n}, a one-to-one interrogation function

ιψ : S→N and a set of transitions Tψ defined as follows:

(a) τ(s, s+ 1,xs) = 1 with the convention that the state |S |+ 1 denotes ⋄;

(b) τ(s, s+ 1,1− xs) = ϵs with the convention that the state |S |+ 1 denotes ⋄;

(c) There exists a unique s′ ∈ {1, ..., s} such that τ(s, s′,1− xs) = 1− ϵs.

where (x1, ...,xn) ∈ {0,1}n and (ϵ1, ...,ϵn) −→ (0, ...,0); and in particular, for all i ∈ {1, ...,n},
ϵi = (ϵi)r > 0 for r = 1,2, ... is a sequence, converging to zero. A generic k-th state of the

decision rule ψ+ is represented in Figure 4, where the interrogation rule is assumed to be

ι(k) = k for convenience.

I denote by Ψ +
n the set of decision rules ψ such that there exists a permutation π :

{1, ..,n} → {1, ...,n} with π(1) = 1 of the indexes of the states s ∈ S0 such that π(ψ) = ψ+

16

Figure 4

is represented by the described above way, where the action of π on ψ is assumed to be

re-enumeration of the states of S0 and, correspondingly, the states in the interrogation

and transition rules. Note that

κ(ψ+) = 3n ∀ψ ∈ Ψ +
n

The following result characterizes the adaptive languages as those that allow for a so-

lution of the choice problem via some decision rule from the set Ψ +
n and also characterizes

the simplest decision rules as the rules from the set Ψ +
n in case when (3/4) · 2n < m ≤ 2n.

Proposition 5. Let the preference relation ⪰ have m equivalence classes. Then a language Q is

adaptive if and only if there exists a decision rule ψ ∈ Ψ +
⌈log2(m)⌉ that solves the choice problem

(Q,⪰). Moreover, if (3/4) · 2n < m ≤ 2n for a natural n, then a decision rule ψ such that

κ(ψ) = 3n solves the choice problem (Q,⪰) if and only if ψ ∈ Ψ +
n .

Note that for any m ≥ 2, either (1/2) · 2n < m ≤ (3/4) · 2n, or (3/4) · 2n < m ≤ 2n, where

n = ⌈log2(m)⌉—the two cases split the set of possible values of m such that 2n−1 < m ≤ 2n

in half. Thus, the condition (3/4) · 2n < m ≤ 2n serves as a richness assumption for the

number of indifference classes in Theorem 3 and Proposition 5. Since my model operates

with binary attributes, then powers of 2 play a special role in the analysis: note that the

lower bound on complexity, given by Theorem 1, increases by 3 each time the number of

indifference classes surpasses a power of 2.

Intuitively, a decision rule ψ ∈ Ψ +
n can be interpreted as a procedure that uses the

probability to reach a certain memory state as a proxy for the alternative’s utility based

on the subset of attributes that have been already investigated. By encountering an alter-

native from the menu, the agent starts to learn its attributes sequentially; if the attribute’s

17

value is good, she jumps to the next memory state immediately and thus, the alternative

endowed with all the good properties is quickly picked.

When the agent learns an undesirable property of the item, she becomes less enthu-

siastic and continues the investigation of other attributes only with a small probability.

This penalty in the probability of transition to the next memory state applied upon learn-

ing the bad news reflects the relative importance of the corresponding attribute for the

agent’s preference which, by Proposition 5, has a representation via an additive utility

function.7

Theorem 3 and Proposition 5 tell us that the agents who are able to describe alterna-

tives using adaptive languages can save their cognitive resources by employing an intu-

itively simple decision procedure, described above. If the agent has a language that ad-

mits an additive utility representation of the agent’s preference, but contains n > ⌈log2(m)⌉
attributes, she can use a decision rule ψ ∈ Ψ +

n to solve the choice problem8. Each addi-

tional attribute increases the procedure’s complexity by 3, but so long as the number of

attributes that require investigation remains small, the agent’s procedure is not too com-

plex.

5 Sketches of the Proofs

In this section, I provide the key ideas behind the proofs of my main results. I first

provide two lemmas that allow us to transform the analysis of solvability of a choice

problem (Q,⪰) by a decision rule ψ to the analysis of directed graphs with vertex sets Sψ,

and the sets of directed edges (links) Tψ.

Let qσ (a) be the probability to choose alternative a ∈ A during a single uninterrupted

investigation process using the automaton strategy σ—this quantity has been introduced

in Section 2.5 when discussing the car example, and discussed later in Sections 2.6 and 4.

Lemma 3. A decision rule {σr}r=1,2,... ∈ Ψ solves choice problem (Q,⪰) if and only if the fol-

lowing two conditions hold:

(i) a ≻ b implies qσr (b)/qσr (a) −→ 0 for all a,b ∈ A;

(ii) qσr (a) > 0 for all a ∈ A.

Thus, Lemma 3 allows us to focus on analyzing the limiting properties of qσr (a) and

7Precisely, the strict part of the agent’s preference relation should be represented by such function.
8Lemma 28 in the Appendix.

18

abstract away from consideration of random choice from various menus. Consider a se-

quence of states of automaton s1...sk that goes from the starting state s1 = 1 to the decision

state sk = ⋄, and assume that this path contains each state at most once. For every alter-

native a ∈ A and every such path s1...sk, we can calculate the probability of realization of

s1...sk during a process of investigation of a. Let ω∗σ (a) be the largest of these probabilities

among all paths for a fixed alternative a ∈ A.

Lemma 4. A decisions rule {σr}r=1,2,... ∈ Ψ solves choice problem (Q,⪰) if and only if the

following two conditions hold:

(i) a ≻ b implies ω∗σr (b)/ω∗σr (a) −→ 0 for all a,b ∈ A;

(ii) ω∗σr (a) > 0 for all a ∈ A.

Thus, Lemma 4 allows us to consider only one highest-probability path9 from the

starting state s = 1 to the decision state s = ⋄ when analyzing the limiting properties of

qσr (a).

Note that ω∗(a) is the product of transitional probabilities between states sl , sl+1 in

the highest-probability path s1...sk when alternative a is under investigation. Given a

decision rule ψ, I say that a link (s, s′, j) ∈ Tψ is weak if the corresponding probability

τ(s, s′, j) converges to zero. Otherwise, the link is strong.

5.1 Theorem 1—sketch of the proof

Assume that ψ solves (Q,⪰). I show that ψ should contain at least 2·⌈log2(m)⌉ strong links

and at least ⌈log2(m)⌉ weak links, proving statement (i) of the Theorem.

Indeed, if Q′ ⊆ Q is the set of questions that are used in some state according to the

interrogation rule ιψ, thenQ′ should contain at least ⌈log2(m)⌉ questions asked in different

states of ψ to differentiate any pair of alternatives from distinct indifference classes of ⪰.

There are at least two outgoing strong links from each of these states, providing the lower

bound of 2 · ⌈log2(m)⌉ on the number of strong links of ψ.

Next, if the agent is not indifferent between alternatives a and b, then Lemma 4 im-

plies that the highest-probability paths for alternatives a,b ∈ A discussed in the previous

section should have different sets of weak links. If nweak is the number of weak links of ψ,

9The fact that it in my model, it is enough to analyze simple paths on the set of states to figure out the

limiting properties of the dynamic system resembles the “Z-tree” technique from Kifer (1988) utilized in

Kandori, Mailath, and Rob (1993) in the context of evolutionary game theory.

19

then it should be that 2nweak ≥ m, providing the lower bound of ⌈log2(m)⌉ on the number

of weak links of ψ.

To show that there exists a language with complexity 3⌈log2(m)⌉, I first prove the

existence of an adaptive language, that is, Proposition 4. For the proof of Proposition

4, it is without loss of generality to assume that ⪰ is antisymmetric and that m = 2n for

some natural n. Let the first question of language Q be: “does alternative a belong to

top 2n−1 alternatives in A?” The answer to this question divides A in two equal sets: Q11

consisting of top 2n−1 alternatives according to ⪰, and Q10, consisting of bottom 2n−1

alternatives. Let the second question of language Q be: “does alternative a belong to top

2n−2 alternatives in the setQ11, or to top 2n−2 alternatives in the setQ10?” By continuing to

design questions 1,2, ...,n in a similar fashion, we design an adaptive language Q, where

λi = 2n−i are weights of attributes i = 1, ...,n in an additive utility representation of ⪰.

Finally, using an adaptive languageQ designed above, we can construct a decision rule

ψ+ ∈ Ψ + discussed in Section 4 that solves that choice problem (Q,⪰). For that, it suffices

to choose an appropriate vector of vanishing transition probabilities ϵi = ϵλi , i = 1, ..,n,

for some ϵ −→ 0.

5.2 Theorem 2—sketch of the proof

To prove the first statement of Theorem 2, I use a universal procedure to design a decision

rule ψ that solves the choice problem (Q,⪰) for an arbitrary adequate language Q. The

set of flexible memory states of the decision rule ψ has a binary tree structure with root

s = 1. Each node of this tree (memory state s ∈ S0
ψ) is associated with a non-singleton set

As comprised of alternatives a ∈ A such that the investigation of a could lead to this node.

For an arbitrary node s of the tree, since Q is adequate, there always exists a question

i ∈N such that both answers j = 0 and j = 1 are possible for alternatives in As. Set up the

interrogation rule ι(s) = i. If a subset of alternatives in As such that ai = j contains more

than one alternative, create a successor node s′ for this subset, and set up a transitional

probability τ(s, s′, j) = 1. Otherwise, there is a single alternative a ∈ As with ai = j. In this

case, create a loop link by setting up τ(s, s,1) = 1−ϵs, and a link that leads to the decision

state by setting up τ(s,⋄,1) = ϵs.

Repeating the procedure described above for each node of the tree until there are no

more successor nodes, we construct a decision rule ψ. By choosing appropriate sequences

of probabilities ϵs, we can achieve a solution of (Q,⪰) byψ. The number of links ofψ turns

out to be 3|A| − 2. In addition, it is possible to set up ϵs = 1 for one of the states s ∈ So to

20

get τ(s, s,1) = 0 and decrease the number of links by one, proving the first statement of

the Theorem.

To get the intuition behind the proof of statement (ii), suppose m = |A|; thus, there

is no pair of indifferent alternatives for the agent. Consider language Q consisting of

questions “is a = b?” for all alternatives b ∈ A except of the best alternative. All of these

questions should be asked in a decision rule ψ that solves the choice problem (Q,⪰).

There are 2|A| − 2 strong links associated. Lemma 4 implies that ψ should also contain at

least ⌈log2(m)⌉ weak links, proving the second statement of the Theorem.

5.3 Theorem 3—sketch of the proof

The intuition behind the first statement of Theorem 3 is discussed in Section 4. Let us,

therefore, sketch the proof of the statement that all simple languages should be adaptive

when (3/4) · 2n < m ≤ 2n for a natural n. Note that n = ⌈log2(m)⌉.
Let us assume that the first statement of Proposition 5 holds; the corresponding proof

is relatively more straightforward, and some of its intuition has already been discussed.

It suffices, therefore, to prove the only if part of the second statement of Proposition

5. Thus, we want to show the following assertion: for the considered range of m, if

the decision rule ψ solves the choice problem (Q,⪰) and achieves the lowest possible

complexity κ(ψ) = 3⌈log2(m)⌉, then ψ ∈ Ψ +
n .

Let ψ be such a rule. Building on the proof of Theorem 1, we conclude that ψ should

contain exactly 2n strong links—and, therefore, exactly n memory states—and also, ex-

actly n weak links. Moreover, those weak links should not be loops—if a weak link is a

loop, it cannot be used in the highest-probability path for any alternative.

Suppose that the allocation of the outgoing weak links among the memory states in ψ

is y = (y1, ..., yn), where ys is the number of weak links, outgoing from state s. Then we can

show that Lemma 4 implies the following Claim:

Claim 1. If ψ solves the choice problem (Q,⪰), then
∏
s∈S

(ys + 1) ≥m.

Note that if y = (1, ...,1), then the product in the Claim above is equal to 2n. The next

algebraic observation highlights the role of the richness assumption (3/4) · 2n < m ≤ 2n:

Claim 2. Let
∑
s ys = n. If the allocation of weak links y is such that y , (1, ...,1), then there is

an allocation y′ with
∑
s y
′
s = n such that

∏
s∈S

(ys + 1) ≤ (3/4) ·
∏
s∈S

(y′s + 1)

21

Since the number of weak links is n, any allocation of weak links except of y = (1, ...,1)

fails to satisfy the necessary condition, given by Claim 1, whenever (3/4) · 2n < m ≤ 2n.

Summarizing our observations, we obtain the following Claim:

Claim 3. In the decision rule ψ described above, there are |Soψ | = n memory states, and at each

memory state, there are exactly two outgoing strong links, and exactly one outgoing weak link.

Thus, to prove our assertion, we need to analyze, for each state, where those two strong

and one weak link go. Consider the state s = 1. Suppose that question i = 1 is asked in

state 1, and there are two links, associated with the answer “a1 = 0”: a weak link (1, s,0)

and a strong link (1, s′,0). Thus, there is only one strong link (1, s′′,1), associated with the

answer “a1 = 1”. For this sketch, consider a situation when s and s′ are memory states

such that s, s′ , 1. Let v be the weak link, outgoing from the state s′.

Claim 4. The weak links (1, s,0) and v described above cannot appear together in the highest-

probability path for any alternative a ∈ A.

Using Lemma 4, we are able to conclude that in this situation, the number of indiffer-

ence classes should be m ≤ (3/4) · 2n, contradicting the richness assumption. Continuing

this analysis, we obtain:

Claim 5. The strong link (1, s′,0) described above is a loop; that is, s′ = 1.

For the last part of the analysis, note that either the set of alternatives a ∈ A such that

ai = 1, or the set of those with ai = 0 should contain m′ indifference classes that satisfy

(3/4) · 2n−1 < m′ ≤ 2n−1. Suppose it is the set with ai = 1; denote it by A′. Recall that a

strong link (1, s′′,1) goes to some state s′′. Consider an auxiliary decision rule ψ′ that uses

the same state space except of the state s = 1; instead, the investigation process according

to this rule starts at state s′′ and uses the same transitions between states v,v′ , 1 as the

rule ψ. Next, we replace the transitions (v,1, j) of ψ going from states v , 1 to state 1 by

loops (v,v, j) in ψ′. Finally, we delete the three transitions, outgoing from the state 1 in ψ.

The next Claim is the key observation in the last part of our analysis.

Claim 6. An auxiliary decision rule described above has exactly 3n−3 transitions and it solves

an auxiliary choice problem (Q,⪰′), where ⪰′ is the restriction of ⪰ on the subset A′ ⊂ A.

We, therefore, can use an induction in n to argue that ψ′ ∈ Ψ +
n−1. This allows us to

establish the configuration of links, outgoing from all states except of s = 1. Using this

22

finding, Lemma 4, and the richness assumption (3/4) ·2n < m ≤ 2n, we can figure out that

the strong link (1, s′′,1) and the weak link (1, s,0) should go to the same state s = s′′. It

follows that ψ ∈ Ψ +
n , proving our assertion.

6 Extensions

I call the model analyzed in Sections 2-5 the baseline model, and consider two natural

extensions in this section.

6.1 Endogenous dismissal decision

In the baseline model, the agent needs to wait for an exogenous attention shock to bring

a new item for her consideration. While this is a good benchmark, and my theorems

show that the agent chooses correctly using a low amount of cognitive resources when

she takes her time, there are economic environments for which it is naturally to assume

that the agent may also dismiss the current item and switch her attention to some other

alternative at will. In this section, I incorporate this extension to the model and show that

all the results remain unchanged in this case.

Consider the same model as in Section 2 with only one change: the automaton’s state

space is S = So ∪ {⋄} ∪ {new}, where So = {1, ..., k} is the set of memory states, state ⋄
represents the decision to choose an item for consumption, and a new special state new

represents the decision to stop an investigation of the current item and pick a new random

item from the menu. In this case, the new item is drawn according to the same probability

distribution ρB(·) as in the case when the attention of the agent is switched to a new item

exogenously. The agent always starts the investigation of the new item from the memory

state s = 1. With probability η ∈ (0,1), a new item catches the agent’s attention even if she

wants to proceed with the examination of the current item.

The definition of the interrogation rule ι : S0→N remains unchanged, and the stochas-

tic transition rule, naturally, accounts for the possibility to dismiss an item with some

probability. Thus, the stochastic transition rule is given by the same formula, τ : So ×
{0,1} → △(S), where S includes also the state new. The definition of the set of the positive-

probability transitions remains unchanged as well, after taking into account that S in-

cludes the state new. The definitions of the decision rule, the language’s complexity, and

the memory load remain the same as in the baseline model. I call the model described

23

above a model with endogenous dismissal decision.

The following proposition shows that the complexity and the memory load of the

language does not depend on whether the agent can dismiss an item at will or not:

Proposition 6. For any adequate language Q, its memory load and complexity in the baseline

model coincide with its memory load and complexity in the model with endogenous dismissal

decision.

It follows that all results regarding complexity that have been shown in the baseline

model continues to hold in a model with endogenous dismissal decision.

Corollary 2. In the model with endogenous dismissal decision, Lemma 1, Lemma 2, Theorem

1, Theorem 2, Theorem 3, Proposition 1, Proposition 2, Proposition 3, Proposition 4, and

Corollary 1 hold.

The key idea behind Proposition 6 is that Lemma 4—which says that for our analysis,

it is enough to consider only highest-probability paths from the starting state s = 1 to the

consumption state s = ⋄—is valid for both variants of the model. Thus, for any decision

rule that uses endogenous dismissal with positive probability, we can construct a decision

rule where the agent returns to the same memory state instead of a dismissal. This new

rule will have the same size of the state space and at most the same number of transitions

as the original, and it will not have endogenous dismissal decisions.

For the Proposition 5 to work in the model with endogenous dismissal decision, we

need to expand the set of decision rules Ψ +
n defined in Section 4 as follows. Use the same

definition of Ψ +
n as in the baseline model with the only one change: relax the original

property

(c) There exists a unique s′ ∈ {1, ..., s} such that τ(s, s′,1− xs) = 1− ϵs.

to a property

(c’) There exists a unique s′ ∈ {1, ..., s} ∪ {new} such that τ(s, s′,1− xs) = 1− ϵs.

Call the set of such decision rules Ψ +dismissal
n . Thus, instead of returning to the pre-

viously visited memory state with probability 1 − ϵs upon learning that the value of the

investigated attribute is bad, a decision rule ψ ∈ Ψ +dismissal
n may alternatively have a tran-

sition to the dismissal decision with the same probability under the same conditions.

24

Proposition 7. Consider the model with endogenous dismissal decision. Let the preference

relation ⪰ have m equivalence classes, and n = ⌈log2(m)⌉. Then a language Q is adaptive if

and only if there exists a decision rule ψ ∈ Ψ +dismissal
n that solves the choice problem (Q,⪰).

Moreover, if (3/4) · 2n < m ≤ 2n, then a decision rule ψ such that κ(ψ) = 3n solves the choice

problem (Q,⪰) if and only if ψ ∈ Ψ +dismissal
n .

While for the purpose of our analysis with zero waiting costs, both the baseline model

and the model with endogenous dismissal decision give the same results, when waiting

costs are small but not negligible, the agent, intuitively, should be better off by dismissing

an item instead of cycling via the same memory states multiple times.

6.2 Recall of the past investigations

An important assumption of the baseline model is that, each time the new alternative

catches the agent’s attention, the investigation process starts anew. Thus, the agent does

not recall the results of the past investigations. One can think that the ability to do so is

important: for instance, if we ignore the cognitive constraints, but assume non-zero costs

of waiting (or information acquisition), the agent should take advantage of the accumu-

lated knowledge and adapt her decision rule during the search if she is uncertain about

the choice environment10.

In this section, I relax an assumption that the agent does not recall results of the

past investigations. Instead, I assume that the agent has the same constraints in recall-

ing this information as in recalling the information regarding the current item. Namely,

the agent’s experience regarding the whole search process is summarized via one of the

automaton’s memory states.

To incorporate all extensions, let us also allow the agent to dismiss the current item

at will, as in the previous section. Here, I will not use a special state new to represent

the agent’s dismissal decision because in this case, the information gathered by the agent

before the dismissal decision would be lost. Instead, I consider the automaton with the

same definition of the state space as in the baseline model, S = So ∪ {⋄}, and the same

definition of the interrogation rule ι : So × {0,1} → N , but with an appropriate extension

of the stochastic transition rule.

For convenience, let us define a stochastic transition rule, τ , as two functions τ =

(τ1, τ2). The first function is τ1 : So ×{0,1} −→ △
((
So ×{old,new}

)
∪{⋄}

)
with the following

10This point is made, for instance, in Kohn and Shavell (1974).

25

interpretation. The variable x ∈ {old,new} represents the decision to continue an investi-

gation of the old item (x = old), or to draw a new item from the menu (x = new). Consider

an agent who learns value j ∈ {0,1} of attribute ι(s) in memory state s ∈ So. This agent

chooses the current item with probability τ1(s,⋄, j). The probability to continue the inves-

tigation of the current item and transition to memory state v ∈ So is given by τ1(s,v, j,old).

Finally, the probability to dismiss the current item at will, pick a new item from the menu,

and start its investigation from the memory state v is given by τ1(s,v, j,new).

The function τ2 : So −→ △(So) gives the probability τ2(s,v) to transition from memory

state s to memory state v in case of the exogenous attention shock. In this case, the

investigation of the new alternative starts from the memory state v.

Let us define the set of positive-probability transitions11 by including in it all tu-

ples (s,v, j,new), (s,v, j,old), (s,⋄, j) for which τ1 is positive, and all pairs of states (s,v)

for which τ2 is positive. The decision rule is then defined as in the baseline model as

a sequence of automata that share the same state space, interrogation rule, and set of

positive-probability transitions.

Let us analyze the size of the state space required for an optimal decision rule. Recall

that the memory load of language Q is the minimum size of the state space of a decision

rule that solves the choice problem (Q,⪰):

M(Q) = min
ψ∈Ψ : ψ solves (Q,⪰)

|Soψ |

Let us call the model described above a model with recall of the past investigations.

Theorem 4. Consider the model with recall of the past investigations. Let the preference re-

lation ⪰ have m indifference classes. Then for any language Q,M(Q) ≥ ⌈log2(m)⌉, and there

exists a language Q such thatM(Q) = ⌈log2(m)⌉.

Theorem 4 provides the same tight low bound on the languages’ memory load for

the model with recall of the past observations as Proposition 1 for the baseline model.

Thus, for the languages with the lowest memory load in the baseline model, it is not

possible to economize more on the memory by implementing optimal decision rules that

retain some memory of the past observations. The reason behind this result is relatively

clear, once we note that the lower bound given by Proposition 1 is tight. Indeed, an

11Since in this section, I analyze the memory load and not the transitional complexity, the definition

of the set of transitions is non-essential; in particular, one could alternatively define a decision rule via a

sequence of automata without any constraints on the set of transitions.

26

optimal decision procedure should have at least ⌈log2(m)⌉ states to be able to inquire

about ⌈log2(m)⌉ different attributes to differentiate any pair of non-indifferent alternatives

and choose optimally in the corresponding binary menus. A similar result holds for the

upper bound:

Theorem 5. Consider the model with recall of the past investigations. Let |A| be the total

number of alternatives. Then for any preference relation ⪰ and adequate language Q,M(Q) ≤
|A| − 1. Moreover, for any m ∈ {2, ..., |A|}, there is a preference relation ⪰ with m indifference

classes and a language Q such thatM(Q) = |A| − 1.

Theorem 4 and Theorem 5 provide the same tight lower and upper bounds on the

language’s memory load for the model with recall of the past investigations, as those that

are obtained for the baseline model. Therefore, for the corresponding languages that

attain those bounds, one way how the agent can economize on the memory load is to

focus on the investigation of the current item—as analyzed in the baseline model.

7 Conclusion

In this paper, I introduce a model of decision making that captures a highly inattentive

consumer who nonetheless achieves near optimal behavior by virtue of making decisions

slowly. This type of behavior is reminiscent of browsing or window shopping.

My model also exhibits a close connection to the Luce model from discrete choice the-

ory (Luce (1959)). As in the discrete choice theory, agents in my model behave stochas-

tically and with some (albeit small) error. The relative likelihood of choosing one alter-

native over the other is independent of the menu of choices, as required in Luce’s choice

axiom. In discrete choice theory, the source of randomness is typically interpreted as a

utility shock or an error, while in my setting random choice is a tool that allows the agent

to achieve near optimal outcomes with limited cognitive resources.

In Section 6.1, I consider a natural extension of the baseline model where I allow the

agent to drop the currently investigated item and pick a new random item from the menu

intentionally. I show that this does not change the language’s complexity.

My baseline model assumes that the agent has no control over the search process,

and also that when a new alternative arrives, the agent does not retain memory from the

past examination of alternatives. In Section 6.2, I relax the latter assumption and show

that the lower and upper bounds on the memory required for the solution of the choice

27

problem remain the same as in the baseline model (and these bounds are tight as well).

Whether the corresponding results hold for the transitional complexity12 is a direction

for future research13.

Having a more directed search, intuitively, should not matter for the optimality cri-

terion, considered in the paper. For instance, the ability to avoid multiple investigations

of the obviously inferior alternatives could make the agent’s choice faster, but would not

matter for the infinitely-patient agent. Moreover, the ability to return to the previously

visited alternatives at will may require additional cognitive resources, such as recalling

the indexes of the visited alternatives.

All of the extensions discussed above matter for the analysis of the resulting random

choice away from the limiting case of the infinitely patient agent considered in this paper.

This is an intriguing avenue for the future research.

To summarise, this paper shows that a very cognitively limited agent operating in an

environment with an uncertain choice set and subjected to exogenous attention shocks is

able to solve a complex choice problem nearly optimally. For that, the agent only need

ample time and a convenient way—that is, an adaptive language—to think about the

alternatives. Moreover, an intuitive procedure that consists of looking at each attribute

sequentially and advancing in this investigation with higher probability upon learning

good news turns out to be the simplest possible algorithm, and often—the only simplest

algorithm. From a broader perspective, by characterizing simple languages as adaptive,

this paper provides a foundation for the usage of the separable utility functions in models

with patient agents.

12One should carefully generalize the transitional complexity; for instance, the instruction that says to

always start an investigation of the new alternative from state s = 1—considered in the baseline model—is

intuitively simpler than the instruction that says that a new investigation should start from state 1 if the

previous state was 2 or 3, and it should start from state 2 if the previous state was 1 or 4. Just counting

transitions in the setup presented in Section 6.2 may not reflect this intuition.
13However, since the memory load and transitional complexity are related measures, the paper’s results

regarding the memory load do put bounds on the transitional complexity in a more general setup as well.

The challenge is to reproduce the sharp characterization of the lower bound and extend the results regard-

ing the simplicity of the adaptive languages.

28

Appendix
This Appendix has the following structure. In Appendix A, I analyze a more general

setup that provides tools for the proofs of lemmas, propositions and theorems from Sec-

tions 2-4, and also helps to analyze the extensions discussed in Section 6.

In particular, Appendix A introduces a more general setup and formalizes the dynam-

ics of the random choice and investigation process performed by the agent in this setup.

Section A.1 introduces and analyzes a class of Markov chains that facilitates the subse-

quent analysis, then Section A.2 introduces a general setup and analyzes the “global”

dynamics that considers multiple investigation processes, performed by the agent. Next,

Section A.3 considers a “local” dynamics that considers a single investigation process.

Finally, Section A.4 shows how to transform a problem of solvability of a choice problem

via a decision rule into a graph theory problem.

Next, Appendix B returns to the setup, introduced in Section 2 of the paper, but uses

tools, developed in Appendix A. Section B.1 considers useful Combinatorics statements

that are built on the analysis, performed in Section A.4, including the proof of the lower

bound on the language’s complexity. Section B.2 introduces a universal decision rule

that solves the choice problem for any adequate language and analyzes its properties.

Section B.3 discusses the automata that can be used for the solution of problems with

languages that admit separable utility representation. Section B.3 also provides other

technical results necessary for the proofs of statements in Section 4 of the paper. Section

B.4 provides the proof of Proposition 4 in advance, since it is used in the proofs of other

theorems.

Section B.5 uses tools developed in the sections before to prove all statements from

Sections 2-4 of the paper. An interested reader may start from Section B.5 to see what

lemmas in this Appendix are used in the proofs of a particular theorem or proposition

from the main part of the paper. Section B.6 contains references for proofs of the state-

ments given in Section 5 of the paper. Section B.7 formalises the dynamics of the system,

although a more general version of this formalism is considered in Section A.2.

Section C provides proofs for the extensions of the baseline model considered in Sec-

tion 6.

29

A Lemmas for a more general setup

A.1 Preliminaries

I first consider a more abstract setup that covers the baseline model together with the

extensions.

Let Z = (Z0,Z1, ...) be a stationary Markov chain, where Zt takes finitely many values

zt ∈ Z. Let the sample space consists of all sequences of (z0, z1, ...) ∈ ZN. Let Ω0 be the

algebra generated by events {Zt = zt ∀t ∈ {0, ...,T }} for T = 0,1,2, Consider probability

µ on Ω0, associated with the stochastic matrix P with elements P zz′ = P r(Zt+1 = z | Zt = z′)

and the distribution of the initial states P zo = P r(Z0 = z) in a natural way:

µ
(
Zt = zt ∀t ∈ {0, ...,T }

)
= P z0

o ·
T∏
t=1

P ztzt−1

The formula above defines µ for events {Zt = zt ∀t ∈ {0, ...,T }}; there is a unique extension

of µ by additivity for all events in Ω0. Let Ω be the smallest sigma-algebra that contains

Ω0. The Kolmogorov Extension Theorem allows for the unique extension of the proba-

bility µ to a probability measure on Ω. Similarly, for an event E = {ZT = zT } ∈Ω, I define

a conditional probability measure µ(·|E) as follows:

µ
(
Zt = zt ∀t ∈ {T + 1, ...,T ′}

∣∣∣ ZT = zT
)

=
T ′∏

t=T+1

P ztzt−1

and extend it to other events accordingly.

I analyze a specific class of stationary Markov chains C with finite state space Z, which

I call the set of absorbing Markov chains with renewal property, defined as follows. First,

Z contains two non-empty disjoint subsets of states Z and Zo. Set Z admits a partition(
Za

)
a∈A

, where A is a finite set. Elements of set Zo are indexed by d ∈ D; that is, Zo =

{zod}d∈D . I call elements of Zo starting states. Next, for any Z ∈ C, there is a probability

distribution f on D and number η > 0 such that the following conditions hold:

(i) ∀z ∈ Z : µ
(
Zt+1 = z | Zt = z

)
= 1

(ii) µ
(
Z0 ∈ Zo

)
= 1

(iii) ∀d ∈D : µ
(
Zt = zod | Zt ∈ Z

o
)

= f (d)

(iv) ∀z ∈ Z : µ
(
Zt+1 ∈ Zo | Zt = z

)
≥

(
1−µ

(
Zt+1 ∈ Z | Zt = z

))
· η

(8)

where I omit figure brackets in the notations of events such as Zt+1 = z instead of {Zt+1 =

z}, etc. for the ease of notations.

30

Condition (i) tells that set Z is a set of absorbing states14, and conditions (ii)-(iv) tell

that each period, conditional on not hitting any absorbing state from set Z, with proba-

bility weakly greater than η, the Markov chain Z starts its evolution from the beginning,

with initial distribution supported at Zo = {zod}d∈D with likelihoods f (d), d ∈ D. Denote

by

q(d,a) ≡ µ
({
∃r > 0 : Zt+r ∈ Za and Zt+r ′ < Zo for all 1 ≤ r ′ < r | Zt = zod

})
q(d,∅) ≡ µ

({
∃r > 0 : Zt+r ∈ Zo | Zt = zod

}) (9)

Note that q(d,b) and q(d,∅) do not depend on t, since Markov chain Z is stationary;

hence, q(d,b) and q(d,∅) are well-defined. Thus, q(d,a) is the probability that Z hits an

absorbing state z ∈ Za conditional on starting at state zod without going through starting

states z′ ∈ Zo; similarly, q(d,∅) is the probability that the state returns to some z ∈ Zo

without hitting any absorbing state from set Z.

Lemma 5. Let Z be an absorbing Markov chain with renewal property. Then∑
a∈A

q(d,a) + q(d,∅) = 1 ∀d ∈D

Proof. Let Etd ≡
{
Zt = zod

}
. Consider events Etd∅ ≡

{
∃r > 0 : Zt+r ∈ Zo

}
∩ Etd , Etda ≡

{
∃r > 0 :

Zt+r ∈ Za and Zt+r ′ < Zo for all 1 ≤ r ′ < r
}
∩ Etd , and Ẽtd ≡ E

t
d

∖ (⋃
a∈A∪{∅}

Etda
)
. Note that for

any r > 0, we have

µ
(
Ẽtd | E

t
d

)
≤ µ

({
Zt+r ′ < Z ∪Z0 ∀ 0 < r ′ ≤ r

} ∣∣∣ Etd) ≤ (1− η)r
r→∞−→ 0

Since q(d,a) = µ(Etda|E
t
d) and q(d,∅) = µ(Etd∅|E

t
d), the lemma follows. ■

Denote by Ha ≡
{
∃t : Zt ∈ Za

}
and H

∅
≡ Ω\

⋃
a∈A
Ha. Then µ(Ha ∩Hb) = 0 for any a,b ∈ A

such that a , b, and Ha ∩H∅
= ∅ for any a ∈ A.

Lemma 6. Let Z be an absorbing Markov chain with renewal property. If ∃d ∈ D such that

f (d) · (1− q(d,∅)) > 0, then µ(H
∅

) = 0, and

µ(Ha) =
∑
d∈D f (d) · q(d,a)∑

d∈D
∑
b∈A f (d) · q(d,b)

;

otherwise, µ(H
∅

) = 1.

14Our definition allows for the case when the set of starting states Zo = {zo} is singleton, and zo is an

absorbing state. Thus we don’t say that Z is the set of all absorbing states.

31

Proof. Suppose first ∃d ∈D such that f (d) · (1− q(d,∅)) > 0. Let

T k =
{
(t1, ..., tk) ∈ ({0} ∪N)k

∣∣∣ 0 = t1 < ... < tk
}
,

and for (t1, ..., tk) ∈ T k, denote by

Hk(t1, ..., tk) =
{
∀t : 0 ≤ t ≤ tk Zt ∈ Zo ⇐⇒ t ∈ {t1, ..., tk}

}
Thus, Hk(t1, ...tk) is the event that the state returns to the set Zo at periods t1, ..., tk, and

does not return to Zo at any other period before tk. Next, for any a ∈ A, denote by

Hk
a =

{
∃(t1, ..., tk) ∈ T k , t′ > tk

∣∣∣ [Zt ∈ Zo ⇐⇒ t ∈ {t1, ..., tk}] and Zt′ ∈ Za
}

Thus, Hk
a is the event that the state has been at the set of starting states Zo exactly k times

at periods t1, ..., tk, and then went to the absorbing state z ∈ Za. By condition (iii) from eq.

(8) for Z ∈ C,

µ
(
Ztk−1

= z0
d

∣∣∣ Hk−1(t1, ..., tk−1)
)

= f (d)

Then, using the definition of q(d,∅), we get∑
tk>tk−1

µ
(
Hk(t1, ..., tk)

∣∣∣ Hk−1(t1, ..., tk−1)
)

=
∑
d∈D

f (d) · q(d,∅)

Recursively,∑
(t1,...,tk)∈T k

µ
(
Hk(t1, ..., tk)

)
=

=
∑
tk>tk−1

∑
(t1,...,tk−1)∈T k−1

µ
(
Hk(t1, ..., tk)

∣∣∣ Hk−1(t1, ..., tk−1)
)
·µ
(
Hk−1(t1, ..., tk−1)

)
=

=
(∑
d∈D

f (d) · q(d,∅)
)
·

∑
(t1,...,tk−1)∈T k−1

µ
(
Hk−1(t1, ..., tk−1)

)
=

= ... =

=
(∑
d∈D

f (d) · q(d,∅)
)k−1
·
∑
t1∈T 1

µ
(
H1(t1)

)
=

(∑
d∈D

f (d) · q(d,∅)
)k−1

where we used T 1 = {0} by the definition of T k and µ(H1(0)) = 1 by condition (ii) from eq.

(8). Note that by our assumption,∑
d∈D

f (d) · q(d,∅) = 1−
∑
d∈D

f (d)(1− q(d,∅)) < 1

32

Next, by the definition of q(d,a) and condition (iii) from eq. (8),

µ
(
Hk
a

∣∣∣ Hk(t1, ..., tk)
)

=
∑
d∈D

f (d)q(d,a)

Then
µ
(
Hk
a

)
=

∑
(t1,...,tk)∈T k

µ
(
Hk
a

∣∣∣ Hk(t1, ..., tk)
)
·µ
(
Hk(t1, ..., tk)

)
=

=
(∑
d∈D

f (d)q(d,a)
)
·
(∑
d∈D

f (d) · q(d,∅)
)k−1

Finally,

µ
(
Ha

)
=

∑
k∈N

µ
(
Hk
a

)
=

∑
k∈N

(∑
d∈D

f (d)q(d,a)
)
·
(∑
d∈D

f (d) · q(d,∅)
)k−1

=

=
∑
d∈D f (d)q(d,a)

1−
∑
d∈D f (d)q(d,∅)

=
∑
d∈D f (d)q(d,a)∑

d∈D
∑
b∈A f (d)q(d,b)

where I used Lemma 5 and the fact that
∑
d∈D f (d) = 1 in the last equality. It follows that

µ
(
H

∅

)
= 1−

∑
a∈A

µ
(
Ha

)
= 0

Suppose now that f (d) > 0 implies q(d,∅) = 1; then by Lemma 5,
∑
d∈D f (d)q(d,a) = 0

for any a ∈ A. Using the same analysis, we get

µ
(
Hk
a

)
=

∑
d∈D

f (d)q(d,a) = 0

It follows that µ(Ha) =
∑
k∈Nµ(Hk

a) = 0, hence µ
(
H

∅

)
= 1. ■

A.2 Global dynamics

I call “local dynamics” the behavior of state variables in a set of subsequent periods such

that the decision maker investigates and, maybe, choose some alternative without draw-

ing a new one. I call global dynamics the behavior of state variables in all periods. In this

section, I apply Lemmas 5 and 6 to analyze the global dynamics.

To accommodate the extensions of the baseline model, I consider several generaliza-

tions. First, I allow no questions being asked at a state. Thus, the interrogation function

becomes ι : So → N ∪ {0}, where ι(s) = ∅ represents no questions asked. Define a signal

space I with generic element θ ∈ I by I =
(
N × {0,1}

)
∪ {∅}, where θ = (i, j) represents

33

question i ∈ N asked and answer j ∈ {0,1} received, and θ = ∅ represents no questions

asked.

Second, I consider a stochastic interrogation rule given by ι : So → △(N ∪ {∅}), where

ιs(i) is the probability to ask question i ∈ N or do not ask any question (i = ∅) in state

s ∈ S. A deterministic interrogation rule is a special case of a stochastic interrogation rule

with ι being a delta-function: ιs(i) = δiι(s) for i ∈ N ∪ {∅}, where ι(s) is the question asked

in state s in the baseline model with the deterministic interrogation rule.

Third, I allow the agent to draw a new alternative intentionally. Thus, I consider

an automaton with the state space S = So ∪ {⋄} ∪ {new}, where state s = new stands for

agent’s decision to draw a new alternative from the menu. The stochastic transition rule

becomes τ : So × I → S ∪ {⋄} ∪ {new} in this case; τ(s′, s,θ) is the probability to go to state

s ∈ So ∪ {⋄} ∪ {new} from state s′ ∈ S after signal θ ∈ I . The case when the agent cannot

draw a new alternative intentionally is a special case when τ(s′,new,θ) = 0 for all s′ ∈ So,
θ ∈ I . Recall that in the baseline model, the transitional probability is given by function

τ : So × {0,1} → S. To connect the two versions, define τ(s′, s, j) = τ(s′, s, ι(s′), j), where the

left hand side of the equation denotes the transitional probability in the baseline model,

and the right hand side denotes the transitional probability in the general model with the

restriction that the signal is θ = (ι(s′), j), where ι(s′) is the question, asked in state s′.

In the general model, the automaton strategy (or simply strategy) σ = (S, ι,τ) consists

of the state space S, the stochastic interrogation rule ι and the stochastic transition rule

τ described above. As in the baseline model, I denote by Σ the set of all such strategies

with finite state space.

The set of the positive-probability transitions in the general case becomes

Tσ :=
{
(s′, s, ι)

∣∣∣ ιs(ι) · τ(s′, s, ι) > 0
}

(10)

The set of transitions defined for the baseline model by eq. (2) is a special case of eq. (10),

which one can see from

Tσ =
{
(s′, s, i, j)

∣∣∣ ιs(i) · τ(s′, s, i, j) > 0
}
∪
{
(s′, s,∅)

∣∣∣ ιs(∅) · τ(s′, s,∅) > 0
}

Define the global state space Z = (W ,Y ,I), where w ∈ W ≡ {new,old,⋄} encodes

whether some item has already been chosen (w = ⋄), or a new item is drawn (w = new),

or the investigated item remains the same as in the previous period (w = old). Next,

y = (y,b) ∈ Y ≡ So ×A describes the flexible state of the automaton and the investigated

item (provided that the item has not been chosen previously—otherwise, it describes the

34

last flexible state of the automaton from where it transitioned to s = ⋄ and the item that

has been chosen). Finally, I is a signal space, defined above. The dynamics of the model

is then described by a Markov chain Z0,Z1,Z2, I denote by Zt = (Wt,Yt,Θt) the corre-

sponding t-th period random state of the chain, and by zt = (wt, yt,θt) its realization.

The strategy σ = (S, ι,τ) and menu B induce the stochastic |Z|×|Z|matrix P zz′ ≡ P r(Zt+1 =

z|Zt = z′) as follows:

P zz′ = P r
(
Zt+1 = (w,s,a,θ)

∣∣∣ Zt = (w′, s′, a′,θ′)
)

=

=


δaa′ · δ

s
s′ ·

(
δ⋄w′ + (1− δ⋄w′) · τ(s′,⋄, ι′)

)
if w = ⋄

(1− δ⋄w′) ·
[
(1− τ(s′,⋄,θ′)) · η + τ(s′,new,θ′) · (1− η)

]
· δ1
s · ρB(a) · f a1 (θ) if w = new

(1− δ⋄w′) ·
[
1− τ(s′,⋄,θ′)− τ(s′,new,θ′)

]
· (1− η) · δa′a · τ(s′, s,θ′) · f as (θ) if w = old

where

f as (θ) ≡

 ιs(i) · δ
ai
j if i ∈N

ιs(∅) if i = ∅

The distribution of the initial state is given by a |Z|-dimensional row vector Po with

components

P zo ≡ P r
(
Z0 = (w,s,a,∅)

)
= δneww · δ1

s · ρB(a) · f a1 (θ)

Note that any result, proven for an arbitrary Markov chain induced by menu B and

strategy σ = (S, ι,τ) with generic functions ι : S→△(N ∪{∅}) and τ : S×I → S∪{⋄}∪{new}
remains valid if we put restrictions on ι (such as ι being a delta-function, and ιs(∅) = 0),

or τ (such as τ(s′,new, ι) = 0 for all s′ ∈ S, θ ∈ I), or on both these functions. In particular,

the results are applicable to the baseline model.

To apply Lemmas 1-2 to the Markov chain Z induced by menu B and the decision

rule σ , I identify set A with the universal set of items A, and consider D = A × I . Thus,

Za =
{
(⋄, s,a,∅)

}
s∈So

and zoa,θ = (new,1, a,θ). Next, for a fixed menu B and strategy σ ,

consider f (a,∅) = ρB(a) · ι1(∅), f (a, i, j) = ρB(a) · ι1(i) · δaij for i ∈N , j ∈ {0,1}.

Lemma 7. The Markov chain Z induced by menu B and strategy σ ∈ Σ is an absorbing Markov

chain with renewal property such that the set Z =
{
Za

}
a=A

, where Za =
{
(⋄, s,a,∅)

}
s∈So

, is the

set of absorbing states, D = A × I , the set Zo = {zod}d∈D =
{
(new,1, a, ι)

}
(a,ι)∈A×I

is the set of

starting states, and f (a,θ) = ρB(a) · f a1 (θ).

35

Proof. First, note that sets Z and Zo are non-empty and disjoint. Second, let us verify

conditions (i)-(iv) from eq. (8) for Markov chain Z. Property (i) follows from P ⋄,s,a⋄,s′ ,a′ ,∅ =

δaa′ · δ
s
s′ . Property (ii) follows from the formula for Po. For property (iii), recall that zoa,θ =

(new,1, a,θ) and consider separately period t = 0 and periods t > 0. For t = 0, we have:

µ
(
Z0 = zod

∣∣∣ Z0 ∈ Zo
)

= µ
(
Z0 = zoa,θ

)
= ρB(a) · f a1 (θ) = f (a,θ) = f (d)

For t > 0, we have:

µ
(
Zt = zod

∣∣∣ Zt−1 = z′
)

= (1− δ⋄w′) ·
[
τ(s′,new,θ′) · (1− η) + (1− τ(s′,⋄,θ′)) · η

]
· f (d)

µ
(
Zt ∈ Zo

∣∣∣ Zt−1 = z′
)

=
∑
e∈D

µ
(
Zt = zoe

∣∣∣ Zt−1 = z′
)

=
∑
e∈D

x(z′) · f (e) = x(z′)

where I denote by

x(z′) ≡ (1− δ⋄w′) ·
[
τ(s′,new,θ′) · (1− η) + (1− τ(s′,⋄,θ′)) · η

]
Then

µ
(
Zt ∈ Zo

)
=

∑
z′∈Z

µ
(
Zt ∈ Zo

∣∣∣ Zt−1 = z′
)
·µ
(
Zt−1 = z′

)
=

∑
z′∈Z

x(z′)

µ
(
Zt = zod

)
=

∑
z′∈Z

µ
(
Zt = zod

∣∣∣ Zt−1 = z′
)
·µ
(
Zt−1 = z′

)
=

∑
z′∈Z

x(z′) · f (d)

It follows

µ
(
Zt = zod

∣∣∣ Zt ∈ Zo) =
µ
(
Zt = zod ,Zt ∈ Z

o
)

µ
(
Zt ∈ Zo

) =
µ
(
Zt = zod

)
µ
(
Zt ∈ Zo

) =
∑
z′∈Z x(z′) · f (d)∑

z′∈Z x(z′)
= f (d)

To prove property (iv), we use the previous calculations:

µ
(
Zt ∈ Zo

∣∣∣ Zt−1 = z′
)

= x(z′) ≥ (1− δ⋄w′) ·
[
(1− τ(s′,⋄,θ′)) · η

]
=
(
1−µ

(
Zt ∈ Z

∣∣∣ Zt−1 = z′
))
· η

■

Lemma 8. Let Z be the Markov chain induced by menu B and strategy σ . Then q((b,θ), a) = 0

for all a,b ∈ A such that a , b.

Proof. The lemma follows from

µ
(
∃r > 0 : at+r , b,wt+r ′ , new ∀1 ≤ r ′ ≤ r

∣∣∣∣ wt , ⋄, st = 1, at = b
)

= 0

since a′ , a implies P r(Zt+1 = (old, s,a,θ)|Zt = (w′, s′, a′,θ′)) = 0 and P r(Zt+1 = (⋄, s,a,θ)|Zt =

(w′, s′, a′,θ′)) = 0. ■

36

Lemma 9. Let Z be the Markov chain induced by menu B and strategy σ . For a ∈ A, denote by

qσ (a) := µ
(
∃r > 0 : wt+r = ⋄, at+r = a,wt+r ′ , new ∀1 ≤ r ′ ≤ r

∣∣∣∣ wt = new,st = 1, at = a
)

(11)

then: (i) qσ (·) does not depend on menu B, and (ii) the following holds:∑
d∈D

f (d) · q(d,a) = ρB(a) · qσ (a) ∀a ∈ A

Proof. By Lemma 8, we get∑
d∈D

f (d) · q(d,a) =
∑
b∈A

∑
θ∈I

ρB(b) · q((b,θ), a) =
∑
θ∈I

ρB(a) · q((a,θ), a) =

=
∑
θ∈I

ρB(a) ·µ
(
∃r > 0 : wt+r = ⋄, at+r = a,wt+r ′ , new ∀1 ≤ r ′ < r

∣∣∣∣ Zt = (new,1, a,θ)
)

=

= ρB(a) ·µ
(
∃r > 0 : wt+r = ⋄, at+r = a,wt+r ′ , new ∀1 ≤ r ′ ≤ r

∣∣∣∣ wt , ⋄, st = 1, at = a
)

=

= ρB(a) · qσ (a)

proving statement (ii). Statement (i) follows from the fact that P r(Zt+1 = (old, s,a,θ)|Zt =

z′) and P r(Zt+1 = (⋄, s,a,∅)|Zt = z′) do not depend on B for any z′ ∈ Z. ■

Lemma 10. Let Z be the Markov chain induced by menu B and strategy σ . If ∃a ∈ B such that

ρB(a) · qσ (a) > 0, then µ(H
∅

) = 0, and

µ(Ha) =
ρB(a) · qσ (a)∑
b∈Bρ

B(b) · qσ (b)
(12)

for any a ∈ B; otherwise, µ(H
∅

) = 1.

Proof. The Lemma follows straightforwardly from Lemma 6, Lemma 7, Lemma 9 and

supp(ρB) = B. ■

Lemma 11. A decision rule {σr}r=1,2,... ∈ Ψ solves choice problem (Q,⪰) if and only if the

following two conditions hold: (i) a ≻ b implies qσr (b)/qσr (a) −→ 0 for all a,b ∈ A, and (ii) ∃r:
qσr (a) > 0 for all r > r for all a ∈ A.

Proof. Suppose first that σr solves (Q,⪰). Consider arbitrary a ∈ A. Towards a con-

tradiction, assume there is a subsequence σr l such that qσrl (a) = 0 and consider menu

B = {a}. Then by Lemma 7 and Lemma 5, q((a,θ),∅) = 0 for all θ ∈ I . Since B = {a}, then

f ((b,θ)) = 0 for b , a. Thus by Lemma 10, µ(H
∅

) = 1, contradicting µ(Ha)
l→∞−→ 1. Thus,

property (ii) holds; moreover, eq. (12) is well-defined.

37

Suppose a ≻ b and consider menu B = {a,b}. Since σr solves (Q,⪰), then

1 = lim
r→∞

µ(Ha) = 1−
ρB(a)
ρB(b)

· lim
r→∞

qσ (b)
qσ (a)

and statement (ii) follows, since ρB(a),ρB(b) > 0.

Suppose now that conditions (i) and (ii) hold. For an arbitrary menu B, let B = {a ∈
B|a ⪰ b ∀b ∈ B} be the set of maximizers of ⪰ over B, and B− = B\B. Condition (ii) guaran-

tees that ρB(a) · qσr (a) > 0 for any a ∈ B for large enough r. Then by Lemma 10,

lim
r→∞

µ(B) = 1− lim
r→∞

∑
b∈B− ρ

B(b) · qσr (b)∑
b∈B− ρ

B(b) · qσr (b) +
∑
a∈Bρ

B(a) · qσr (a)
= 1

where we used the fact that ρB(a) > 0 for all a ∈ B and qσr (b)/qσr (a) −→ 0 for any b ∈ B−,
a ∈ B by condition (i). Thus σr solves (Q,⪰). ■

A.3 Local dynamics

Lemma 11 shows that for our analysis, it suffices to learn the limiting properties of func-

tion qσr (a) given by eq. (11). In this section, I assume that the current alternative a ∈ A
that the agent investigates fixed, and omit it if it does not cause confusion. By stationarity

of the Markov chain Z,

qσ (a) = µ
(
∃t > 0 : wt = ⋄, at = a,wt′ , new ∀1 ≤ t′ ≤ t

∣∣∣∣ w0 = new,s0 = 1, a0 = a
)

It is useful to note that, when analysing qσ (a), we are interested only in the probability of

realizations of Markov chain Z up to the point where either the current alternative a ∈ A
is chosen, or a new alternative is drawn. Thus, we may omit wt and at in the description

of the state z ∈ Z, and instead focus on st and ιt. To account for the cases when wr = ⋄
or wr = new—these cases correspond to the last period of our analysis relevant for the

calculation of q(a)—I consider a local state space X =
(
So ×I

)
∪ {⋄}∪new.

To analyse qσ (a), I, therefore, consider Markov chain X = (X0,X1, ...) with realizations

(x0,x1, ...) ∈ XN induced by strategy σ and alternative a ∈ A via a mapping χ : ZN→XN

from the set of realizations of the Markov chain Z induced by menu B = {a} to the set of

realizations of the Markov chain X given by the following formula.

χ((z0, z1, ...)) = (x0,x1, ...) :


xt = (st,θt) if wt′ = old ∀0 < t′ ≤ t

xt = ⋄ if ∃t′′ ≤ t : wt′ = old ∀0 < t′ < t′′, wt′′ = ⋄

xt = new if ∃t′′ ≤ t : wt′ = old ∀0 < t′ < t′′, wt′′ = new

38

where zt = (wt, st, at,θt). Abusing notations denote by P be the X ×X stochastic matrix,

associated with the Markov chain X, then:

P xx′ = P r
(
Xt+1 = (x,θ)

∣∣∣ Xt = (x′,θ′)
)

=

=


δ⋄x′ + (1− δ⋄x′ − δ

new
x′) · τ(s′,⋄,θ′) if x = ⋄

δnewx′ + (1− δ⋄x′ − δ
new
x′) · [η + (1− η) · τ(s′,new,θ′)] if x = new

(1− δ⋄x′ − δ
new
x′) · (1− η) · τ(s′, s,θ′) · fs(θ) otherwise

where

fs(θ) ≡

 ιs(i) · δ
ai
j if θ = (i, j)

ιs(∅) if θ = ∅

The distribution of the initial state X0 is given by

P s,θo ≡ P r
(
X0 = (s,θ)

)
= δ1

s · fs(θ)

The stochastic matrix P and initial distribution Po induce a probability distribution µ on

the sigma-algebra, generated by events {Xt = xt ∀{0, ...,T }} according to the formula below

and its extension by countable additivity on other events:

µ
(
Xt = xt ∀{0, ...,T }

)
= P x0

o ·
T∏
t=1

P xtxt−1 (13)

This probability distribution is a pushforward measure given by µ(χ(C)) = µ(C) for

event C of the original sigma-algebra of events Ω, associated with the global dynamics.

In the new terms, quantity qσ (a) looks as

qσ (a) = µ̃
(
∃t > 0 : xt = ⋄

)
Lemma 12. The probability that the state Xt ∈ X is not absorbing vanishes with each period

at rate at least (1− η); that is,

µ̃(Xt , ⋄,new) ≤ (1− η)t

Proof. The lemma is straightforward. ■

39

A.4 A Graph Theory Approach

In this section, I transform an analysis of the solution of the choice problem via a decision

rule into the analysis of properties of specific directed graphs that represent transitions

between the automaton’s states, and in particular, into the analysis of simple paths going

from the starting state s = 1 to the decision state s = ⋄.
Given a strategy σ , define a mapping ω : T → (0,1] by

ω(s′, s,θ) =

 ιs′ (i) · τ(s′, s, i, j) if θ = (i, j) ∈N × {0,1}
ιs′ (∅) · τ(s′, s,∅) if θ = ∅

(14)

I call ω(s′, s, ι) the weight of the link (s′, s, ι). When needed, I use a subscript σ to show the

dependence of ω on the strategy σ .

For an arbitrary alternative a ∈ A and strategy σ ∈ Σ, define the set of links

T aσ =
{
(s′, s,θ) ∈ Tσ

∣∣∣ f as′ (ι) · τ(s′, s,θ) > 0
}

where

f as′ (θ) =

 ιs′ (i) · δ
ai
j if i ∈N

ιs′ (∅) if i = ∅

Thus, T aσ is the set of links that can be potentially used for transitions while investi-

gating alternative a using strategy σ . Note that

T aσ =
{
(s′, s, i, j) ∈ Tσ

∣∣∣ ιs(i) · δaij · τ(s′, s, i, j) > 0
}
∪
{
(s′, s,∅) ∈ Tσ

∣∣∣ ιs(∅) · τ(s′, s,∅)
}

Consider a directed weighted graph G = G(a,σ) = (Sσ ,T aσ ,ωσ), defined as follows. Set

up S = S ∪ {⋄} to be the set of vertexes, set up T a = T aσ to be the set of transitions, given

by eq. (A.4), where we interpret l = (s′, s,θ) ∈ T aσ as a directed link from state s′ ∈ So to

state s ∈ So ∪ {⋄}, labeled by a signal θ ∈ I . Finally, ω(s′, s,θ) is the weight of the link

(s′, s,θ) ∈ T aσ . Note that

(s′, s,θ) ∈ T aσ =⇒ ω(s′, s,θ) =

 ιs′ (i) · δ
ai
j · τ(s′, s, i, j) if ι = (i, j)

ιs′ (∅) · τ(s′, s,∅) if ι = ∅

= f as (ι) · τ(s′, s,θ)

Define a valid (directed) path l on the graph G to be a finite ordered set of labeled

directed links (l1, ..., lT) ∈ T T such that the following properties hold:

(i) The first link, l1, starts at state s = 1;

40

(ii) If link lt = (s′t, st, ιt), t < T , ends at state st, then link lt+1 = (s′t+1, st+1, ιt+1) starts at

state s′t+1 = st;

(iii) The last link, lT , ends at s = ⋄;

Denote by L the set of all valid paths.

For an arbitrary valid path l = (l1, ..., lT) ∈ L, define its weight as a product of the

weights of its links times (1− η)T−1; that is, ω : L→R given by

ω(l) = ωaσ (l) = (1− η)T−1 ·
T∏
t=1

ω(lt)

Lemma 13. Let G = (S,T ,ω) be a directed graph, L be the set of valid paths, and ω be the

weighting function defined above, then

qσ (a) =
∑
l∈L

ω(l)

Proof. Consider event

(x0, ...,xT) = {Xt = xt ∀0 ≤ t ≤ T }

such that xT = ⋄, and xt , ⋄,new for t < T . Let D be the set of such events, that is,

DT =
{
(x0, ...,xT)

∣∣∣∣ xt ∈ X\({⋄} ∪ {new}) ∀0 ≤ t < T , xT = ⋄
}
, D =

∞⋃
t=0

DT

Then D is a partition of the event {∃t > 0 : xt = ⋄}; thus,

qσ (a) =
∑
D∈D

µ(D)

Let

D = {D ∈ D | µ(D) > 0}

Since the set D is countable, it follows that

qσ (a) =
∑
D∈D

µ(D)

Define a mapping ζ : D → L as follows. For D =
(
(s0,θ0), (s1,θ1), ..., (sT−1,θT−1), ⋄

)
∈ D, ζ(D) = (l1, ..., lT) ∈ L such that lt = (st−1, st,θt−1) for t = 1, ...,T . The mapping ζ is

41

well-defined, since for (x0, ...,xT) ∈ D we have P xtxt−1 > 0, and hence, (st−1, st,θt−1) ∈ T for all

t = 1, ...,T ; moreover, µ(D) > 0 implies
(
Po
)
s0,θ0

> 0, hence s0 = 1. Next,

µ(D) =
(
Po
)
s0,θ0
· P s1,θ1
s0,θ0

· ... · P sT−1,θT−1
sT−2,θT−2

· P ⋄sT−1,θT−1
=

fs(θ0) · (1− η) · τ(s0, s1,θ0) · fs1(θ1) · ... · (1− η) · τ(sT−2, sT−1,θT−2) · fsT−1
(θT−1) · τ(sT−1, sT ,θT−1) =

(1− η)T−1 ·
T∏
t=1

fst−1
(θt−1) · τ(st−1, st,θt−1) = (1− η)T−1 ·

T∏
t=1

ω(ζ(D)t) = ω(ζ(D))

The lemma follows. ■

I say that a valid path is simple if t , r implies s′t , s
′
r , where lt = (s′t, st,θt), lr = (s′r , sr ,θr).

Thus, a simple valid directed path goes via a particular state s at most one time. I denote

by L0 ⊂ L the set of all simple valid directed paths.

For an arbitrary valid path l ∈ L, denote by π(l) =
(
π(l)1, ...,π(l)r

)
the result of the

application of the following recursive procedure π with steps r = 1,2, ..., r:

1. At the first step, r = 1, the procedure starts at state s1 = 1;

2. At step r, assume the state sr ∈ S is given. For l = (l1, ..., lT), define by tr be maximum

t such that the link lt starts from the state sr , that is,

tr = max{t ∈ {1, ...,T } | s′t = sr for lt = (s′t, st,θt)};

3. Define π(l)r = ltr ;

4. If the ending state of ltr is str = ⋄, then r = r, and the procedure finishes;

5. If the ending state of ltr is str , ⋄, define sr+1 = str and continue the procedure for

step r + 1.

Lemma 14. Consider procedure π, defined above, then: (i) the procedure π always finishes at

step r ≤ T , (ii) the result π(l) is a simple valid path, i.e., π(l) ∈ L0, (iii) if l ∈ L0, then π(l) = l.

Proof. Suppose r and v = r + 1 are two consecutive steps of the procedure. Since v

is one of the steps, then sv = sr+1 ∈ S. Moreover, ltr = (s′tr , str ,θtr) = (s′tr , s
tr+1 ,θtr), hence

ltr+1 = (str+1 , str+1,θtr+1). It follows that tr+1 ≥ tr + 1 > tr . Inductively, v > r implies tv > tr .

Since tr ∈ {1, ...,T }, the procedure finishes after a finite number of steps r ≤ T , proving (i).

42

Next, since s1 = 1, then π(l)1 = (1, st1 ,θt1), i.e., the first link of π(l) begins at state s = 1.

Since the procedure finishes at step r such that str = ⋄, then π(l)r = (s′tr ,⋄,θtr), i.e. the

last link of π(l) ends at s = ⋄. Consider π(l)r = (s′tr , str , ιtr). If r < r, then sr+1 = str , hence

π(l)r+1 = (str , str+1
,θtr+1

); thus, the next link of path π(l) begins at the state at which the

previous link ends. Thus, π(l) ∈ L.

To show that π(l) ∈ L0, consider link π(l)r that begins at state sr . Towards a contradic-

tion, assume that π(l)r ′ for r ′ > r begins at state sr
′

= sr as well. Then s′tr′ = sr
′

= sr , hence

tr ′ ≤ tr , in contradiction to the proven assertion tr ′ > tr . Statement (ii) is proven.

Suppose l ∈ L0. Then lt = (s′t, st,θt) implies s′v , s
′
t for v , t. Then, inductively, π(l)r = lr

for all r = 1, ...,T , hence π(l) = l. ■

Lemma 14 implies that π is a surjective mapping from L to L0. For l ∈ L0, denote by

π−1(l) the pre-image of l with respect to π, that is,

π−1(l) = {l′ ∈ L | π(l′) = l}

Lemma 15. Let k = |S | be the number of flexible memory states. Then for any l ∈ L0,

ω(l) ≥ ηk ·
∑

l′∈π−1(l)

ω(l′)

Proof. We prove the lemma by induction in k.

First, suppose k = 1. The set of simple valid paths is then L0 =
{
{(1,⋄,θ)}

∣∣∣ (1,⋄,θ) ∈ T
}
.

Let l = (l1) ∈ L0. For any path l′ = (l′1, ..., l
′
T) ∈ π−1(l) we have l′T = l1 and lt = (1,1,θt) for all

t < T . Then ∑
l′∈π−1(l)

ω(l′) =

= ω(l1) ·
∞∑
T=1

(1− η)T−1 ·
∑

(θ1,...,ιT−1)

T−1∏
t=1

f1(θt) · τ(1,1,θt)

= ω(l1) ·
∞∑
T=1

(1− η)T−1 ·
∑
θT−1

f1(θT−1) · τ(1,1,θT−1) ·
(∑

(θ1,...,θT−2)

T−2∏
t=1

f1(θt) · τ(1,1,θt)
)
≤

≤ ω(l1) ·
∞∑
T=1

(1− η)T−1 ·
(∑

(θ1,...,θT−2)

T−2∏
t=1

f1(θt) · τ(1,1,θt)
)
≤ ... ≤

≤ ω(l1) ·
∞∑
T=1

(1− η)T−1 = η−1 ·ω(l1) = η−1 ·ω(l)

where we used
∑
θ∈I fs′ (θ) = 1 and τ(s′, s,θ) ≤ 1.

43

Second, suppose the lemma holds for k = k, and consider k = k + 1. Consider arbitrary

l ∈ L0. Assume |l| > 1, then l1 = (1,v,θ) for some v ∈ S\{1} and θ ∈ I . Denote also

l = (l1, ..., lT). For L ∈ π−1(l), let

t1(L) = max{t ∈ {1, ...,T } | s′t = 1 for Lt = (s′t, st,θt)}

Thus, t1(L) is the last period when valid path L ∈ π−1(l) goes via state s = 1, and t1(L) = t1
when procedure π is applied to the path L.

For L = (L1, ...,LT) ∈ π−1(l), denote by L+ = (l1, ...,Lt1(L)), and L− = (Lt1(L)+1, ...LT); thus,

L = (L+,L−). Let

L+(l) =
∞⋃
t=1

{
(L̃1, ..., L̃t)

∣∣∣ ∃L ∈ π−1(l) : (L̃1, ..., L̃t) = L+

}
and

L−(l) =
∞⋃
t=1

{
(L̃1, ..., L̃t)

∣∣∣ ∃L ∈ π−1(l) : (L̃1, ..., L̃t) = L−
}

Claim 7. The following decomposition holds:

π−1(l) =
{
L ∈ L

∣∣∣ ∃L1 ∈ L+(l),L2 ∈ L−(l) : L = (L1,L2)
}

Proof of the Claim. For all paths L ∈ π−1(l), the last link of the sequence L+ is l1 = (1,v,θ),

and the first link of sequence L− starts from state v. It follows that if L, L̃ ∈ π−1(l), then

(L+, L̃−) ∈ π−1(l). Thus,

π−1(l) ⊇
{
L ∈ L

∣∣∣ ∃L1 ∈ L+(l),L2 ∈ L−(l) : L = (L1,L2)
}

To see that

π−1(l) ⊆
{
l ∈ L

∣∣∣ ∃L1 ∈ L+(l),L2 ∈ L−(l) : L = (L1,L2)
}
,

take L1 = L+ and L2 = L− for L ∈ π−1(l). □

Claim 8. For l ∈ L0 and L+(l) defined above,

∑
L1∈L+(l)

(1− η)|L
1|−1 ·

|L1|∏
t=1

ω(L1
t) ≤ η−1 ·ω(l1)

44

Proof of the Claim. For y = 1,2, ..., denote by

Ly+(l) =
{
L1 ∈ L+(l)

∣∣∣ |L1| = y
}

Then
{
Ly+(l)

}
y=1,2,..

is a partition of L+(l). Thus,

∑
L1∈L+(l)

(1− η)|L
1| ·
|L1|∏
t=1

ω(L1
t) =

∞∑
y=1

(1− η)y ·
∑

L1∈Ly+(l)

y∏
t=1

ω(L1
t)

Recall that l1 = (1,v,θ) = L1
y for all L1 ∈ Ly+(l). For any L1 =

(
(s1t−1, s

1
t ,θ

1
t−1)

)y
t=1
∈ Ly+(l),

consider the event ζ+(L1) given by

ζ+(L1) =
{
Xt = (s1t ,θ

1
t) ∀0 ≤ t ≤ y − 2, Sy−1 = s1y−1

}
Clearly, if L1,L3 ∈ Ly+(l), L1 , L3, then ζ+(L1) , ζ+(L3); moreover, ζ+(L1)∩ζ+(L3) = ∅. Next,

for L1 =
(
(s1t−1, s

1
t ,θ

1
t−1)

)y
t=1
∈ Ly+(l), if y = 1, then µ(ζ+(L1)) = µ(S0 = 1) = 1, and if y > 1,

using the fact that s1t ∈ S for all t = 1, ..., y − 1 and the formula for the stochastic matrix P ,

we get

µ(ζ+(L1)) = f1(θ1
0) ·

[y−2∏
t=1

(
(1− η) · τ(s1t−1, s

1
t ,θ

1
t−1) · fs1t (θ

1
t)
)]
· (1− η) · τ(s1y−1, s

1
y−1,θ

1
y−2) =

= (1− η)y−1 ·
y−1∏
t=1

fs1t−1
(θ1
t−1) · τ(s1t−1, s

1
t ,θ

1
t−1) =

= (1− η)y−1 ·
y−1∏
t=1

ω(s1t−1, s
1
t ,θ

1
t−1) = (1− η)y−1 ·

y−1∏
t=1

ω(l1)

Thus, for all y = 1,2, ...,

µ(ζ+(L1)) = (1− η)y−1 ·
y−1∏
t=1

ω(L1)

Then, using ζ+(L1) ⊂ {Sy−1 = 1} for all L1 ∈ Ly+(l), ζ+(L1) ∩ ζ+(L3) = ∅ for L1 , L3 and

Lemma 12, we get

(1− η)y−1 ·
∑

L1∈Ly+(l)

y−1∏
t=1

ω(L1
t) =

∑
L1∈Ly+(l)

µ̃(ζ+(L1)) ≤ µ(Sy−1 = 1) ≤ (1− η)y−1

45

It follows

∑
L1∈L+(l)

(1− η)|L
1|−1 ·

|L1|∏
t=1

ω(L1
t) ≤

∞∑
y=1

(1− η)y−1 ·ω(L1
y) = η−1 ·ω(L1)

proving the claim. □

Note that state v is the end of the link L1, and it is the end of the link Lt1(L) = l1 for all

L ∈ π−1(l). Let Ŝ = {1, ..., k}∪{⋄}, and Ŝo = {1, ..., k}. Define a mapping χ : {2, ..., k+1}∪{⋄} →
{1, ..., k} ∪ {⋄}} as follows: χ(v) = 1, χ(s) = s for all s < v, χ(s) = s − 1 for all s > v, χ(⋄) = ⋄.
Clearly, χ is a bijection. Let χ−1 be the inverse mapping, and

T̂ a =
{
(̂r, ŝ,θ) ∈ Ŝo × Ŝ ×I

∣∣∣ (χ−1(̂r),χ−1(̂s),θ) ∈ T a
}

Let L̂ and L̂0 be the set of valid paths and simple valid paths on Ŝ, π̂ be the corresponding

mapping between L̂ and L̂0, and ω̂ be the corresponding weighting function, where

ω̂(̂r, ŝ,θ) = fχ−1 (̂r)(θ) · τ(χ−1(̂r),χ−1(̂s),θ) = ω(χ−1(̂r),χ−1(̂s),θ)

For a link (s′, s,θ) ∈ T a such that s′, s , {1}, define χ((s′, s,θ)) = (χ(s′),χ(s),θ) ∈ T̂ a.

Claim 9. Mapping χ, applied to the set of links as defined above, is a bijection between the set

{(s′, s,θ) ∈ T a | s′, s , 1} and the set T̂ a.

Proof of the Claim. The Claim follows from the definition of T̂ a and the fact that χ :

{2, ..., k + 1} → {1, ..., k} is a bijection. □

For an ordered set of links (Lt′+1,Lt′+2, ...,LT ′) such that (L1, ...,LT ′) ∈ L, Lt′+1 begins at

v, and Lt does not go via state s = 1 for t > t′, define χ((Lt′+1,Lt′+2, ...,LT ′)) = (χ(Lt′+1),

χ(Lt′+2), ..., χ(LT ′)) ∈ L̂.

Claim 10. The mapping χ, applied to the sequences of links as defined above, is a bijection

between the set L−(l) and the set π̂−1(χ(L2), ...,χ(LT)).

Proof of theClaim. First, note that links L2, ...,LT do not go via s = 1, thus links χ(L2), ...,χ(LT)

are well-defined. The beginning of the link Lt+1 is the end of the link Lt, thus the begin-

ning of the link χ(Lt+1) is the end of the link χ(Lt). Also, link L2 starts at s = v, thus

χ(L2) starts at χ(v) = 1, and LT ends at s = ⋄, hence χ(LT) ends at χ(⋄) = ⋄. Therefore,

(χ(L2), ...,χ(LT)) ∈ L̂. Next, since every s ∈ So is a beginning of at most one of the links

46

L2, ...,LT , then every ŝ ∈ Ŝo is the beginning of at most one of the links χ(L2), ...,χ(LT), thus

(χ(L2), ...,χ(LT)) ∈ L̂0, and the set π̂−1(χ(L2), ...,χ(LT)) is well-defined.

Next, consider L2,L3 ∈ L−(l) such that χ(L2) = χ(L3). Then |L2| = |L3| = K for some

K > 0, and χ(L2)t = χ(L3)t for all t ∈ {1, ...,K}, hence χ(L2
t) = χ(L3

t) for all t ∈ {1, ...,K},
hence, by Claim 9, L2

t = L3
t for all t ∈ {1, ...,K}. Thus, L2 = L3, and χ is an injection from

L−(l) to L̂.

Consider arbitrary L2 ∈ L−(l). For r = 2, ...,T , let tr be the maximum t such that L2
t

goes via state (s′)r such that Lr = ((s′)r , sr ,θr). Then tr is also the maximum t such that

χ(L2)t goes via state χ((s′)r) such that χ(l)r = (χ((s′)r),χ(sr),θr). It follows that χ(L2) ∈
π̂−1(χ(l2), ...,χ(lT)). Thus, χ is an injection from L−(l) to π̂−1(χ(l2), ...,χ(lT)).

Finally, take arbitrary L = (L1, ...,LT) ∈ π̂−1(χ(l2), ...,χ(lT)) and consider L2 = (χ−1(L1),

..., χ−1(LT)). For r = 2, ...,T , let tr be the maximum t such that χ(L2)t goes via state χ((s′)r)

such that χ(l)r = (χ((s′)r),χ(sr),θr), then tr is also the maximum t such that L2
t goes via

state (s′)r such that lr = ((s′)r , sr ,θr). It follows that L2 ∈ L−(l). Since χ(L2) = L, then χ is

also a surjection from L−(l) to π̂−1(χ(l2), ...,χ(lT)), proving the claim. □

47

Using Claims 7, 8, 10 and the induction assumption, we get:

∑
L∈π−1(l)

ω(L) =
∑

L1∈L+(l)

∑
L2∈L−(l)

ω(L1,L2) =
∑

L1∈L+(l)

∑
L2∈L−(l)

(1− η)|L
1|+|L2|−1 ·

|L1|∏
t=1

ω(L1
t) ·

|L2|∏
t′′=1

ω(L2
t′′) =

=
∑

L1∈L+(l)

(1− η)|L
1| ·
|L1|∏
t=1

ω(L1
t) ·

[∑
L2∈L−(l)

(1− η)|L
2|−1 ·

|L2|∏
t′′=1

ω(L2
t′′)

]
=

=
∑

L1∈L+(l)

(1− η)|L
1| ·
|L1|∏
t=1

ω(L1
t) ·

[∑
L̂∈L̂: π̂(̂L)=(χ(l2),...,χ(lT))

(1− η)|̂L|−1 ·
|̂L|∏
t′′=1

ω̂(̂Lt′′)
]

=

=
∑

L1∈L+(l)

(1− η)|L
1| ·
|L1|∏
t=1

ω(L1
t) ·

[∑
L̂∈π̂−1(χ(l2),...,χ(lT))

ω̂(̂L)
]
≤

≤
∑

L1∈L+(l)

(1− η)|L
1| ·
|L1|∏
t=1

ω(L1
t) ·

[
η−k ·ω′(χ(l2), ...,χ(lT))

]
≤

≤ (1− η) · η−1 ·ω(l1) ·
[
η−k · ω̂(χ(l2), ...,χ(lT))

]
=

= (1− η) · η−1 ·ω(l1) ·
[
η−k · (1− η)T−2

T∏
t=2

ω̂(χ(lt))
]

=

= (1− η) · η−1 ·ω(l1) ·
[
η−k · (1− η)T−2

T∏
t=2

ω(lt)
]

=

= η−k−1 · (1− η)T−1
T∏
t=1

ω(lt) = η−k−1 ·ω(l)

which is the statement of the Lemma for k = k + 1.

When l = {l1}, the same analysis applies, but this time L−(l) = ∅, and we can skip the

usage of induction assumption and Claims 9 and 10. The Lemma is proven. ■

48

I now provide conditions on L0 and ω(·) that are necessary and sufficient for a se-

quence of decision rules to solve the choice problem.

For an arbitrary alternative a ∈ A and strategy σ ∈ Σ, define l∗σ (a) ∈ L0 andω∗σ (a) ∈ [0,1]

as follows:

ω∗σ (a) = max
l∈L0(a,σ)

ωaσ (l), l∗σ (a) = arg max
l∈L0(a,σ)

ωaσ (l)

where, if the set of maximizers of ωaσ (l) is not a singleton, then l∗σ (a) is chosen from this

set according to a fixed total order on L0, that I don’t introduce explicitly to ease the

notations.

Lemma 16. A sequence decision rule {σr}r=1,2,... ∈ Ψ solves choice problem (Q,⪰) if and only if

the following conditions hold:

(i) for all a,b ∈ A: a ≻ b implies ω∗σr (b)/ω∗σr (a) −→ 0;

(ii) for all a ∈ A, ∃r: ω∗σr (a) > 0 ∀r > r.

Proof. Since two links of a simple path cannot begin from the same state, the number of

simple valid paths |L0| is bounded from above by

K =
∏
s∈S

(∣∣∣{(s,θ) ∈ S ×I | (s′, s,θ) ∈ T }
∣∣∣+ 1

)
By Lemmas 13, 14, 15 and the definition of ω∗σ (a),

qσ (a) =
∑
l∈L

ω(l) =
∑
l∈L0

∑
l′∈π−1(l)

ω(l′) ≤ η−k ·
∑
l∈L0

ω(l) ≤ η−k ·K−1 ·ω∗σ (a)

From the other hand,

ω∗σ (a) = ω(l∗σ (a)) ≤
∑
l∈L

ω(l) = qσ (a)

Hence,

ω∗σ (a) ≤ qσ (a) ≤ η−k ·K−1 ·ω∗σ (a)

Since η−k and K−1 are constant along the sequence of strategies σr that comprises the

decision rule—recall that the set T remains constant for all σr—then qσr (b)/qσr (a) −→ 0 if

and only if ω∗σr (b)/ω∗σr (a) −→ 0 and ∃r: qσr (a) > 0 ∀r > r if and only if ∃r: ω∗σr (a) > 0 ∀r > r.
The statement of the Lemma then follows from Lemma 11. ■

For a state s ∈ So, denote by T (s) the subset of links that begin in state s and end in

some other state v , s; I omit index σ from Tσ and Tσ (s) when it does not cause confusion.

Thus,

T (s) =
{
(s′,v,θ) ∈ T | s′ = s,v , s

}
(15)

49

and define similarly T a(s):

T a(s) =
{
(s′,v,θ) ∈ T a | s′ = s,v , s

}
where I omit index σ for brevity as well. Note that

T (s) =
⋃
a∈A
T a(s), T =

⋃
a∈A
T a

Define also sets

T (s) = T (s)∪ {∅}, T = ×s∈S T (s) (16)

and, similarly,

T a(s) = T a(s)∪ {∅}, T
a = ×s∈S T

a
(s)

I interpret T (s) as a set of links outgoing from state s that could potentially occur in a

simple valid path l ∈ L(a,σ), where ∅ ∈ T (s) stands for path l not going via state s. For an

element e = (e1, ..., e|S |) ∈T, define its weight by

ωσ (e) =
∏
s∈S

ωσ (es), where

 ωσ (es) = ωσ (s′, s,θ) if es = (s′, s,θ)

ωσ (es) = 1 if es = ∅

I say that a decision rule {σr}r=1,2,... ∈ Ψ is regular, if the following two conditions hold:

(i) For all a ∈ A for all r, r ′, l∗σr (a) = l∗σr (a);

(ii) For any e,e′ ∈T, there exists limk→∞ωσr (e)/ωσr (e
′) ∈ [0,∞)∪ {∞}

I denote by Ψ0 ⊂ Ψ the set of regular decision rules.

Lemma 17. Every decision rule {σr}r=1,2,... ∈ Ψ contains a regular decision rule as a subse-

quence.

Proof. The Lemma follows from the finiteness of sets A, L0(a,σ) and T. ■

Given a regular decision rule ψ = {σr}r=1,2,... ∈ Ψ0, define the following auxilliary bi-

nary relation ⪰̂ ⊆ T ×T (where T = Tψ is given by eq. (16) with the state space S = Sψ
and the set of transitions T = Tψ):

e ⪰̂ψ e′ ⇐⇒ lim
r→∞

ωσr (e)/ωσr (e
′) > 0 (17)

where I use the convention {∞} > 0.

50

Lemma 18. Let ψ = {σr}r=1,2,... ∈ Ψ0 be a regular decision rule, then the binary relation ⪰̂ψ
defined above, is complete and transitive.

Proof. Since ψ ∈ Ψ0, then for any e,e′ ∈T, there exist the limits of the ratios ωσr (e)/ωσr (e
′),

ωσr (e
′)/ωσr (e), and at least one of them is not zero. If limr→∞ωσr (e)/ωσr (e

′) > 0 and

limr→∞ωσr (e
′)/ωσr (e

′′) > 0, then

lim
r→∞

ωσr (e)/ωσr (e
′′) =

(
lim
r→∞

ωσr (e)/ωσr (e
′)
)
·
(

lim
r→∞

ωσr (e
′)/ωσr (e

′′)
)

implying limr→∞ωσr (e)/ωσr (e
′′) > 0, thus, ⪰̂ψ is transitive. ■

Denote by symbols ∼̂ψ and ≻̂ψ the symmetric and asymmetric parts of ⪰̂ψ. Note that

e ∼̂ψ e′ ⇐⇒ lim
r→∞

ωσr (e)/ωσr (e
′) ∈ (0,∞),

e ≻̂ψ e′ ⇐⇒ lim
r→∞

ωσr (e)/ωσr (e
′) =∞ ⇐⇒ lim

r→∞
ωσr (e

′)/ωσr (e) = 0

Define a mapping φ : A→T as follows:

φs(a) =

 (s′, s,θ) if (s′, s,θ) is a link of l∗ψ(a)

∅ if ∄(s,θ) : (s′, s,θ) is a link of l∗ψ(a)

Note that φ(·) is well-defined, since there is at most one link (s′, s,θ) outgoing from a state

s′ in a simple path l∗ψ(a).

Lemma 19. If a regular decision rule ψ = {σr}r=1,2,... ∈ Ψ0 solves choice problem (Q,⪰), then

a ≻ b implies φ(a) ≻̂ψ φ(b)] for all a,b ∈ A.

Proof. Consider arbitrary a,b ∈ A such that a ⪰ b. By Lemma 16, ω∗σr (a)/ω∗σr (b) −→ 0.

Thus,

lim
r→∞

ωσr (φ(b))
ωσr (φ(a))

= lim
r→∞

∏
s∈Sω(φ(b))∏
s∈Sω(φ(a))

= lim
r→∞

∏|l∗(b)|
t=1 ω(l∗(b)t)∏|l∗(a)|
t′=1 ω(l∗(a)t′)

= lim
r→∞
·
(1− η)|l

∗(a)| ·ω(l∗(b))

(1− η)|l∗(b)| ·ω(l∗(a))
= 0

It follows that φ(a) ≻̂ψ φ(b). ■

Note that if a decision rule ψ = {σr}r=1,2,... is regular, then for any link (s′, s,θ), there

exists limr→∞ω(s′, s,θ) ∈ [0,1]—to see this, notice that ω(∅, ...,∅) = 1 for (∅, ...,∅) ∈T, and

e ∈T, where es′′ = ∅ if s′′ , s, and es = (s′, s,θ).

51

Thus, for a regular decision ruleψ = {σr}r=1,2,..., I call a link (s′, s,θ) weak if limr→∞ω(s′, s,θ) =

0; otherwise, I call a link strong. Thus, limr→∞ω(s′, s,θ) ∈ (0,1] for a strong link (s′, s,θ).

Define also ∅ ∈ T (s) for any s to be a strong link as well. Denote by

T weak(s) =
{
(s,v,θ) ∈ T (s)

∣∣∣ lim
r→∞

ω(s,v,θ) = 0
}
, T weak =

⋃
s∈S
T weak(s)

T strong(s) =
{
(s,v,θ) ∈ T (s)

∣∣∣ lim
r→∞

ω(s,v,θ) ∈ (0,1]
}
, T strong =

⋃
s∈S
T weak(s)

Note that
{
T weak(s),T strong(s)

}
is a partition of T (s).

For an arbitrary alternative a ∈ A, define

F (a) =
⋃

s∈S: φs(a)∈T weak
φs(a)

Thus, the set F (a) consists of all weak links that are used in a simple path l∗(a) that

maximizes the probability to go from state 1 to state ⋄ among all simple paths for a.

Denote also by

Sweak(a) = {s ∈ S | (l∗(a))s ∈ T weak}

Thus, Sweak(a) is the set of states s ∈ S such that there is a link in the path l∗(a), outgoing

from state s, and this link is weak.

Lemma 20. Let a regular decision rule ψ = {σr}r∈N ∈ Ψ0 be given. Suppose e,e′ ∈ Tψ be such

that for all s ∈ S if es ∈ T weak(s) or e′s ∈ T weak(s), then e′s = es. Then e∼̂ψe′.

Proof. Note that es ∈ T weak(s) if and only if e′s ∈ T weak(s). Let S̃ = {s ∈ S |es < T weak(s)}.
Then

lim
r→∞

ω(e)
ω(e′)

= lim
r→∞

∏
s∈S\S̃

ω(es)
ω(e′s)

·
∏
s∈S̃

ω(es)
ω(e′s)

= lim
r→∞

∏
s∈S̃

ω(es)
ω(e′s)

=
∏
s∈S̃

limr→∞ω(es)
limr→∞ω(e′s)

∈ (0,∞)

since limr→∞ω(es), limr→∞ω(e′s) ∈ (0,1] for all s ∈ S̃. The statement of the Lemma follows

from the definition of ⪰̂ψ. ■

Lemma 21. If a regular decision rule ψ = {σr}r=1,2,... ∈ Ψ0 solves the choice problem (Q,⪰),

then for any a,b ∈ A, a ≻ b implies F (a) , F (b).

52

Proof. Towards a contradiction, assume that a ≻ b, but F (a) = F (b); hence, Sweak(a) =

Sweak(b) = S for some S ⊆ S. Then

lim
r→∞

ω∗σr (b)

ω∗σr (a)
= lim

r→∞

∏
s∈S

ω(φs(b))
ω(φs(a))

·
∏
s∈S\S

ω(φs(b))
ω(φs(a))

= lim
r→∞

∏
s∈S\So

ω(φs(b))
ω(φs(a))

=

=
∏
s∈S\S

limr→∞ω(φs(b))
limr→∞ω(φs(a))

> 0

where we used φs(b) = φs(a) for s ∈ S, and limr→∞ω(φs(b)) > 0, limr→∞ω(φs(a)) > 0 for

s ∈ S\S. Therefore, φ(b) ⪰̂ψ φ(a), in contradiction to Lemma 19. ■

Lemma 22. For a regular decision rule ψ ∈ Ψ0, the number of indifference classes of the pref-

erence relation ⪰̂ψ defined by eq. (17) is less than or equal to
∏
s∈S

(
|T weakψ (s)|+ 1

)
.

Proof. Consider a subset T̂ ⊆ T given by T̂ = ×s∈S
(
T weak(s)∪ {∅}

)
. By Lemma 20, every

element e ∈ T is indifferent to some element e′ ∈ T̂. Since |T̂| =
∏
s∈S

(
|T weakψ (s)| + 1

)
, the

Lemma follows. ■

B Proofs for the baseline model

In this section, as well as in the rest of the Appendix, I consider a setup of the baseline

model; that is, the interrogation rule is deterministic; and also ι : S → N . Thus, the

agent always asks a question in a state. Next, the agent cannot draw a new alternative

intentionally. Thus, the stochastic transition rule is τ : So × {0,1} → △(S ∪ {⋄}).

B.1 Other Combinatorics statements

Lemma 23. For k ∈N, let functions f k , gk : (N∪ {0})k→N be given by

f k(x1, ...,xk) =
k∏
i=1

(xi + 1), gk(x1, ...,xk) =
k∑
i=1

xi

If xi = 0, xj > 1 for some i, j ∈ {1, ..., k} then f k(x′) ≥ (4/3) · f k(x) and gk(x′) = gk(x′), where

x′l = xl for l , i, j, x′i = 1, x′j = xj − 1.

53

Proof. Let x, x′ are as above, then f k(x′) = f k(x) · 2 · (xj /(xj + 1)) ≥ (4/3) · f k(x), since

(xj /(xj + 1)) ≥ 2/3 for xj ≥ 2. ■

Lemma 24. Let the preference relation ⪰ have m indifference classes, and a decision rule ψ =

{σr}r=1,2,... ∈ Ψ solves choice problem (Q,⪰). Let Q′ ⊆ Q be a collection of questions that are

asked with positive probability in some state s ∈ Sψ. Then |Q′ | ≥ ⌈log2(m)⌉.

Proof. Pick one representative ak from each indifference class of the preference relation

⪰. Towards a contradiction, assume that |Q′ | < n ≡ ⌈log2(m)⌉. Then the maximum number

of different vectors of binary answers is bounded above by 2n−1. Since m > 2n−1, then by

the pigeonhole principle, there is a couple of alternatives ak, ak
′

such that aki = ak
′

i for all i

in the index set of Q′. It follows that all probabilities of transitions between the states of

the automaton ψ are equal for a and b. Therefore, qσ (a) = qσ (b) and hence, by Lemma 11,

ψ does not solve (Q,⪰), contradiction. ■

Lemma 25. Let ⪰ have m indifference classes and n = ⌈log2(m)⌉. Suppose that the decision

rule ψ = {σr}r=1,2,... ∈ Ψ solves the choice problem (Q,⪰), then κ(ψ) ≥ 3n.

Proof. Assume first that a decision rule ψ = {σr}r=1,2,... ∈ Ψ solves the choice problem (Q,⪰
). By Lemma 17, there is a regular subsequence ψ0 ⊆ ψ that also solves (Q,⪰). Without

loss of generality, assume ψ0 = ψ. Pick one representative ak from each indifference class

of the preference relation ⪰. By Lemma 21, the sets of weak links corresponding to the

alternatives from different indifference classes should be distinct, that is, F (ak) , F (ak
′
)

for k , k′. Since F (a) ⊆ T weak for all a ∈ A, then by the pigeonhole principle, 2|T
weak | ≥ m,

hence |T weak | ≥ log2(m), implying |T weak | ≥ ⌈log2(m)⌉, since |T weak | is an integer.

Next, by Lemma 24, there should be at least n = ⌈log2(m)⌉ questions being asked in dif-

ferent states of Sψ. Each question can have one of the two answers: 1 or 0, and, conditional

on receiving one of the answers, there should be at least one transition with positive in the

limit probability to some other (or the same) state—otherwise transitional probabilities

from the corresponding state conditional on answer received would not sum up to one.

Recall that, given a regular sequence of decision rules ψ{σr}r=1,2,... ∈ Ψ0, a link (s, s′, ι) ∈ T
is strong if the corresponding transitional probability converges to non-zero number. It

follows that the number of strong links is bounded above by |T strong | ≥ 2 ·n = 2 · ⌈log2(m)⌉.
Then

κ(ψ) = |Tψ | = |T weakψ |+ |T strongψ | ≥ ⌈log2(m)⌉+ 2 · ⌈log2(m)⌉ = 3 · ⌈log2(m)⌉

54

proving that the lower bound on complexity of an arbitrary language Q is 3 · ⌈log2(m)⌉. ■

B.2 Universal decision rule

In this section, I introduce a universal decision rule that serves for the proof of Lemma 2

and provides an upper bound for Theorem 2.

For an arbitrary preference relation ⪰ on A and language Q, adequate for ⪰, consider

the automaton ψ ∈ Ψ , defined via the recursive procedure R described below; I write

ψ =R(Q,⪰) for the resulting automaton.

Recall that C(a) = {a′ ∈ A|a′ ∼ a} is the indifference class of alternative a with respect

to ⪰. Define m(a) to be the number of indifference classes C of ⪰ such that a′ ⪰ a for any

a′ ∈ C; thus, m(a) = 1 for any first-best alternative, m(b) = 2 for any second-best alterna-

tive, etc. Take some parameter ϵ ∈ (0,1)—we will consider ϵ −→ 0 later on.

Procedure R: define recursively by steps r = 1,2, ... the following sets, interrogation and

stochastic transition rules, and auxiliary functions

1. For r = 1, define s(r) = 1, K1 = {1}, S1 = {1}, J 1 = ∅, V 1 = ∅, A1 = A.

2. For r ≥ 1, if Kr = ∅, finish the procedure. Otherwise, define s(r) = minKr , denote by

s = s(r) and assume that sets J s, V s and As ⊆ A, such that |As| > 1 are given.

Case α: As = {a,b} for some a,b ∈ A.

Let i ∈ {1, ...,N } be the smallest index such that ai , bi . Define

type(s) = α

ι(s) = i

τ(s,⋄, ai) = ϵm(a)−1

τ(s, s,ai) = 1− ϵm(a)−1

τ(s,⋄,bi) = ϵm(b)−1

τ(s, s,bi) = 1− ϵm(b)−1

Kr+1 = Kr\{s}
Sr+1 = Sr

and repeat the procedure for step r + 1.

Case β: |As| > 2, and ∃i ∈N , a ∈ As such that ai , bi for all b ∈ As\{a}.
Let s′ = maxSr , and let i ∈N be the smallest index such that there exists a ∈ As

55

such that ai , bi for all b ∈ As\{a}. Define

type(s) = β

ι(s) = i

τ(s,⋄, ai) = ϵm(a)−1

τ(s, s,ai) = 1− ϵm(a)−1

τ(s, s′ + 1,1− ai) = 1

Kr+1 =
(
Kr\{s}

)
∪ {s′ + 1}

Sr+1 = Sr ∪ {s′ + 1}
J s′+1 = J s ∪ {(i,1− ai)}
V s′+1 = V s ∪ {s}
As
′+1 = As\{a}

and repeat the procedure for step r + 1.

Case γ : |As| > 2, and ∄i ∈N , a ∈ As such that ai , bi for all b ∈ As\{a}.
Let s′ = maxSr , and let i ∈ N be the smallest index such that there exists a,b ∈
As such that ai , bi . Define

type(s) = γ

ι(s) = i

τ(s, s′ + 1,1) = 1

τ(s, s′ + 2,0) = 1

Kr+1 =
(
Kr\{s}

)
∪ {s′ + 1} ∪ {s′ + 2}

Sr+1 = Sr ∪ {s′ + 1} ∪ {s′ + 2}
J s′+1 = J s ∪ {(i,1)}
J s′+2 = J s ∪ {(i,0)}
V s′+1 = V s ∪ {s}
V s′+2 = V s ∪ {s}
As
′+1 = {a ∈ As|ai = 1}

As
′+2 = {a ∈ As|ai = 0}

and repeat the procedure for step r + 1.

3. If the procedure finishes at step r, define S = Sr .

Thus, the procedure R defines an automaton with a binary tree structure, where the

vertexes are the states s ∈ S; for each s, the set V s encodes all predecessors of s up to the

56

root s = 1, the set As is the set of alternatives for which the automaton can reach state s,

the set J is the set of signals that partitions A into As and A\As. The sets Kr and Sr with

r < r are auxiliary for the procedure: the set Sr is a set of states that have been introduced

by the procedure, and the set Kr ⊆ Sr is the set of states such that the procedure hasn’t

applied one of the cases α, β or γ yet and, in particular, hasn’t defined the interrogation

rule g and transition rule τ . Finally, type ∈ {α,β,γ} stands for the type of a vertex that is

defined by the corresponding condition for cases α,β,γ .

Lemma 26. The decision rule ψ = {(S,g,τ)ϵ}ϵ→0, where (S,g,τ)ϵ =R(Q,⪰) is well-defined:

(i) If s = s(r) for some step r, then J s, V s, As ⊆ A have been already defined, and |As| > 1;

(ii) The cases α, β, γ are mutually exclusive and exhaust all possibilities;

(iii) For each of the cases α, β, γ , the index i is well-defined;

(iv) The procedure finishes after a finite number of steps r;

(v) The interrogation rule ι and the stochastic transition rule τ are defined for all states s ∈ S;

(vi) The state space S, the interrogation rule ι and the set of positive-probability transitions T
do not depend on ϵ ∈ (0,1).

Proof. The proofs of statements (i),(ii),(v),(vi) are straightforward, but bulky, and omit-

ted. The statement (iii) is true since the languageQ is adequate for the preference relation

⪰. To prove statement (iv), consider

h(r) =
∑
s∈Kr

10|A
s |

Let us show that h(r + 1) < h(r) if the procedure was not finished at steps r and r + 1.

Suppose Case α realized at step r, then Kr+1 = Kr\{s}, thus h(r) − h(r + 1) = 10|A
s | > 0.

Suppose Case α realized at step r, then Kr+1 =
(
Kr\{s}

)
∪ {s′ + 1} and As

′+1 = As\{a}, hence

h(r)−h(r+1) = 10|A
s |−10|A

s\{a}| > 0. Suppose Case γ realized at step r, thenKr+1 =
(
Kr\{s}

)
∪

{s′ + 1} ∪ {s′ + 2}, As′+1 = {a ∈ As|ai = 1}, As′+2 = {a ∈ As|ai = 0}. Since function h′ given by

h′(x) = 10x is strictly convex, then h(r)− h(r + 1) = 10|A
s′+1|+|As′+2| − 10|A

s′+1| − 10|A
s′+2| > 0.

Therefore, h is a decreasing integer-valued function of the step r. It follows that r ≤
h(1) = 10|A| for any step r of procedure R, proving statement (iv). ■

Lemma 27. Let ψ = {σϵ}ϵ→0 = R(Q,⪰) be the decision rule, constructed via procedure R.

Then:

(i) ψ solves the choice problem (Q,⪰).

57

(ii) κ(ψ) = 3|A| − 2− x, where x = |{a ∈ A|a ⪰ a′ ∀a′ ∈ A}|;
(iii) |Sψ | = |A| − 1.

Proof. First, let us prove statement (i). Note that for an arbitrary alternative b ∈ A, there

is a unique valid simple path l = l∗(b); indeed, for each memory state of the automaton

that is reached with positive probability while investigating a ∈ A, there is only one link

to the other state. Next, this path goes via states for which the procedureR applies either

case γ or case α for some a , b; in this cases, the probability of a transition to the next

state in the path is 1. Finally, finally l∗(b) reaches a state s′ such that either case β applies,

or case α applies with a = b. In both cases, the last link in the path l∗(b) has probability

τs′ (⋄, g(s′),bg(s′)) = ϵm(b)−1. Thus, for all b ∈ A,

ω∗(b) = ϵm(b)−1

By Lemma 16, the decision rule ψ = R(Q,⪰) solves the choice problem (Q,⪰), proving

statement (i).

Second, let us prove statement (ii). Note that type(s) = α if and only if there are no

s′ ∈ S such that s ∈ V s′ ; thus, states where case α applies are leafs of the binary tree of

transitions between the flexible memory states, and only such states are leafs. For a state

s ∈ S, denote by ξ(s) the maximum length of the path to the state ⋄ ; in other words, define

ξ(s) recursively as follows:

(1) ξ(s) = 1 for all s such that type(s) = α;

(2) if type(s) = β or type(s) = γ , then ξ(s) = maxv: s∈V v ξ(s) + 1.

Next, for s ∈ Sψ, define

D(s) =
⋃

s′ : s∈V (s)

|Tψ(s)|, k(B) = {a ∈ B | m(a) = 1}

Thus, D(s) is the number of transitions outgoing from the states of the branch of the

tree that starts at state s, and k(As) is the number of first-best alternatives that reach this

branch of the tree.

Claim 11. If D(s) and k(As) are as defined above, then:

D(s) = 3|As| − 2− k(As)

Proof of the Claim. First, note that the Claim holds for all s such that ξ(s) = 1. Indeed,

if θ(s) = α, then D(s) = 4 if m(a),m(b) > 1, D(s) = 3 if m(a) = 1, m(b) > 1 or if m(a) > 1,

58

m(b) = 1, and D(s) = 2 is m(a) =m(b) = 1. Next, assume that the Claim holds for all s such

that ξ(s) ≤ ξ, and consider arbitrary state with ξ(s) = ξ + 1.

Consider the case when type(s) = β, then |T (s)| = 3 ifm(a) > 1 and |T (s)| = 2 ifm(a) = 1.

Therefore,

D(s) = 3− k({a}) +D(v) = 3− k({a}) + 3|Av | − 2− k(Av) = 3|As| − 2− k(As)

where v = s′ + 1, and s′ = maxSr is the state defined according to the case β by procedure

R; i.e. s′+1 is the successor of s such that τs(s′+1, g(s),1−ai) = 1. In the above equation, we

used Av = As
′+1 = As\{a} and the fact that ξ(s) = ξ(v)+1, hence ξ(v) = ξ and the induction

assumption applies.

Consider the case when type(s) = γ , then |T (s)| = 2, and

D(s) = 2+D(s′+1)+D(s′+2) = 2+3|As
′+1|−2+k(Ss

′+1)+3|As
′+2|−2+k(Ss

′+2) = 3|As|−2−k(As)

where s′ = maxSr is the state defined according to the case γ by procedure R, and states

s′ + 1 and s′ + 2 are the successors of the state s. In the above equation, we used the fact

that {Ss′+1,Ss
′+2} is a partition of Ss, and the fact that ξ(s) = max{ξ(s′ + 1),ξ(s′ + 2)} + 1,

hence ξ(s′ + 1),ξ(s′ + 2) ≤ ξ and the induction assumption applies. □

Statement (ii) of the Lemma follows from Claim 11 applied to the root of the tree:

κ(ψ) =D(1) = 3|A| − 2− k(A).

Finally, let us prove statement (iii). Define

E(s) = |{s′ : s ∈ V s′ }|+ 1

Thus, E(s) is the number of successors of the state s in a tree plus 1.

Claim 12. If E(s) is as defined above, then E(s) = |As| − 1

Assume ξ(s) = 1, then E(s) = 1. Suppose now that the Claim is true for all s such that

ξ(s) ≤ ξ. If type(s) = β, then

E(s) = 1 +E(s′ + 1) = 1 + |As
′+1| − 1 = |As| − 1

where state s′+1 is a unique successor of the state s defined by case β of the procedureR,

and we used the induction assumption for s′ + 1. If type(s) = γ , then

E(s) = 1 +E(s′ + 1) +E(s′ + 2) = 1 + |Ss
′+1| − 1 + |Ss

′+2| − 1 = |As| − 1

59

where states s′+1 and s′+2 are successors of the state s defined by case γ of the procedure

R, and we used the induction assumption for E(s′ + 1) and E(s′ + 2). □

Statement (iii) of the Lemma follows from Claim 11 applied to the root of the tree:

|Sψ | = E(1) = |A| − 1. ■

B.3 Additive languages and automata

I say that language Q with the index set of questions N is additive with respect to prefer-

ence relation ⪰ if there exists a vector λ ∈ RN such that λi , 0 for all i ∈N , and

a ⪰ b ⇐⇒ v(a) ≥ v(b), where v(a) =
∑
i∈N

λiai for a ∈ A

For an additive language Q, let ψ+(Q,⪰) = {σϵ}ϵ→0 ∈ Ψ be the decision rule, defined as

follows: σϵ = (S, ι,τϵ), where |S | = |N |, ι(i) = i, and the stochastic transition rule τ is
τ(s, s+ 1,1) = 1, τ(s, s+ 1,0) = ϵλs , τ(s, s,0) = 1− ϵλs if λs > 0

τ(s, s+ 1,0) = 1, τ(s, s+ 1,1) = ϵ−λs , τ(s, s,1) = 1− ϵ−λs if λs < 0

where τ(|S |, |S |+ 1, ·) ≡ (|S |,⋄, ·)

The set of positive-probability transitions of ψ+(Q,⪰) is

T =
{
(s, s+ 1,1)

}
∪
{
(s, s+ 1,0)

}
∪
{
(s, s,1)|λs < 0

}
∪
{
(s, s,0)|λs > 0

}
where (|S |, |S |+1, ·) ≡ (|S |,⋄, ·). Clearly, T does not depend on ϵ, so the decision ruleψ+(Q,⪰
) ∈ Ψ is well-defined.

Lemma 28. Let Q be an additive language for preference relation Q, and ψ+(Q,⪰) be the

decision rule, described above, then:

(i) ψ+(Q,⪰) solves the choice problem (Q,⪰);

(ii) The complexity of the decision rule ψ+(Q,⪰) is 3|N |, i.e.

κ(ψ+(Q,⪰)) = 3|N |

Proof. For the decision rule ψ+, a simple path l for any alternative a ∈ A should go via

states 1,2, ..., |S |,⋄ consequently, and also, for every state s and any alternative a ∈ A, there

is only one link outgoing from state s that can be a part of the simple path, namely, link

60

(s, s+1, aι(s)). It follows that for any alternative a ∈ A, the set of simple paths is a singleton:

L0(a,σϵ) = {l∗(a)}, where l∗(a) = (l∗1(a), ..., l∗|S |(a)), l∗s (a) = (s, s + 1, aι(s)) with the convention

that (|S |, |S |+ 1, aι(s)) = (|S |,⋄, aι(s)). Therefore,

(1− η)1−|S |ω∗(a) =
∏
s∈S:

ω((s, s+ 1, aι(s))) =

=
(∏
s∈S: λg(s)>0, ai=0

ϵλι(s)
)
·
(∏
s∈S: λg(s)<0, ai=1

ϵ−λι(s)
)

=
(∏
s∈S

ϵλι(s)·(1−aι(s))
)
·
(∏
s∈S: λι(s)<0

ϵ−λι(s)
)

Thus, ω∗(a) > 0 for all a ∈ A. Moreover, if a ≻ b, then v(a) > v(b), and

ω∗(b)/ω∗(a) =
∏
s∈S

ϵλι(s)·(aι(s)−bι(s)) = ϵv(a)−v(b) −→ 0

By Lemma 16, the decision rule ψ+(Q,⪰) solves the choice problem (Q,⪰), proving state-

ment (i).

Statement (ii) follows from

Tψ+(Q,⪰) =
{
(s, s+ 1,1)

}
∪
{
(s, s+ 1,0)

}
∪
{
(s, s,1)

∣∣∣λι(s) < 0
}
∪
{
(s, s,0)

∣∣∣λι(s) > 0
}

where (|S |, |S |+ 1, ·) ≡ (|S |,⋄, ·). ■

For a given preference relation ⪰ and language Q with |N | ≥ n = ⌈log2(m)⌉ questions,

I denote by Ψ ++
n the set of decision rules ψ = σϵ, where ϵ = (ϵ1, ...,ϵn) ∈ Rn++ with ϵi −→ 0

for all i ∈ {1, ...,n}, that have the following properties:

(i) The state space is S = {1, ...,n};

(ii) The interrogation rule ι : S→N is an injection;

(iii) There is x = (x1, ...,xn) ∈ {0,1}n and permutation h : {1, ...,n} → {1, ...,n} such that

h(1) = 1, and the transitional probabilities satisfy the following properties for all

s ∈ S:

(a) τ(s,h−1(h(s) + 1),xs) = 1, where h−1(n+ 1) denotes ⋄;

(b) τ(s,h−1(h(s) + 1),1− xs) = ϵs, where h−1(n+ 1) denotes ⋄;

(c) There exists a unique s′ such that h(s′) ≤ h(s) such that τ(s, s′,1− xs) = 1− ϵs.

Note that ψ is well-defined, since transitional probabilities conditional on any event (s, ι)

that may occur sum up to one. Note also that there are no other positive-probability

transitions of ψ except those described in (a),(b),(c).

61

Note also that Ψ ++
n = Ψ +

n , where Ψ +
n the set of decision rules, defined in Section 4 of

the main part of the paper.

Lemma 29. Let the preference relation ⪰ have m indifference classes, and n = ⌈log2(m)⌉. Then

for any ψ ∈ Ψ ++
n , κ(ψ) = 3n

Proof. In each of the n states, there are exactly 3 transitions outgoing: (s,h−1(h(s) + 1),xs),

(s,h−1(h(s) + 1),1− xs) and (s, s′,1− xs). Hence, κ(ψ) = 3n. ■

Lemma 30. Let ψ ∈ Ψ ++
n . Then:

(i) For an arbitrary alternative a ∈ A for arbitrary valid simple path l ∈ L0(a), l goes conse-

quently via states h(1) = 1, h(2),...,h(n), ⋄;
(ii) For a ∈ A, any simple path that consists of positive-probability links starting from a state

s such that s = h(k) and ending in state ⋄, consequently goes via states h(k),h(k + 1), ...,h(n),⋄;
moreover, the total number of different simple paths with the described properties is 2n−k+1.

Proof. A valid simple path should start at s = 1. The only two positive-probability transi-

tions outgoing from state 1 and ending not in s, end at state s′ = h(2), hence one of these

to links should be l1. Recursively, there are exactly 2 positive-probability transitions out-

going from state s = h(k) that end at state s′ such that h−1(s′) > k, and these transitions end

at state s′ = h(k + 1), where h(n + 1) denotes ⋄. The third transition outgoing from state

s = h(s) goes via one of the already visited states {s ∈ S |h−1(s) ≤ k} and, hence, cannot be a

part of a simple path. Therefore, one of these two transitions should be a link lk of l ∈ L0.

The same argument works for a simple path that starts from an arbitrary state s ∈ S.

Note that in state s, there are exactly two possible links that can be used in such simple

path, and a path goes consequently via h(k),h(k + 1), ...,h(n),⋄, hence the total number of

such paths is 2n−k+1. ■

The next lemma facilitates the proof of Theorem 3. Let us first introduce the following

notation:

Ñ =
{
m ∈N\{1}

∣∣∣ ∃n ∈N : (3/4) · 2n < m ≤ 2n
}

Thus, Ñ = {2,4,7,8,13,14,15,16, ...} is the set of natural numbers that represents the con-

dition on m given in statement (ii) of Theorem 3.

62

Lemma 31. Let the number of indifference classes of preference relation ⪰ be m ∈ Ñ, and

n = ⌈log2(m)⌉. If a regular decision rule ψ = {σr}r=1,2,... ∈ Ψ0 solves the choice problem (Q,⪰),

and κ(ψ) = 3n, then ψ ∈ Ψ ++.

Proof. First, let’s prove the following claims.

Claim 13. If a regular decision rule ψ = {σr}r=1,2,... ∈ Ψ0 solves the choice problem (Q,⪰) above,

and κ(ψ) = 3n, then:

(1) The state space of ψ is Sψ = {1, ...,n};
(2) The interrogation rule ι : S→N is an injection;

(3) There are exactly n weak links, and from each state there is exactly one outgoing weak link.

Proof of the Claim. First, note that by Lemma 24, language Q should contain at least

n questions. Each question is associated with a state at which it is asked and with at

least 2 strong links. Hence, the number of strong links is at least 2n. By lemma 21 and

the pigeonhole principle, the number of weak links should satisfy 2|T
weak | ≥ m, hence

|T weak | ≥ n. Since κ(ψ) = 3n, the number of weak links should be exactly n, and the

number of strong links should be exactly 2n. Since n state are associated with 3n links,

and κ(ψ) = 3n, then Sψ = {1, ...,n}; since there are n difference questions asked, then g :

S→N is an injection. This proves statements (1) and (2).

Next, Let xs be the number of weak links outgoing from state s. By Lemmas 20 and

19, for ψ to solve (Q,⪰), it should be that f n(x) ≥m, where f n : (N∪ {0})n→N is given by

f n(x) =
∏n
s=1(xs + 1).

Towards a contradiction, assume that xs , 1 for some s. Since
∑n
s=1xi = n, then there

are s′, s′′ such that xs′ = 0 and xs′′ > 1. Consider z ∈ (N∪ {0})n given by zl = xl for l , s′, s′′,

zs′ = 1, and zs′′ = xs′′ − 1. By Lemma 23, f n(z) ≥ (3/4) · f n(x). Note that the number of

states such that zs = 0 is the number of states such that xs = 0 minus one. Keep replacing

z by ẑ ∈ (N∪ {0})n in the manner described above, until zs > 0 for all s—this process stops

in no more than n steps. Note that the result of this procedure is z = (1, ...,1). Let k be

the number of steps of the described above procedure that is needed to transform x into

(1, ...,1). Then f n(1, ...,1) ≥ (4/3)k · f n(x) ≥ (4/3) · f n(x), since k > 0 for x , (1, ...,1). Then,

f n(x) ≤ (3/4) · f n(1, ..,1) = (3/4) · 2n < m

in contradiction to f n(x) ≥m, proving statement (3) of the Claim is proven. □

Claim 14. Suppose ψ = {σr}r∈N ∈ Ψ0 solves the choice problem (Q,⪰). Define the decision rule

ψ′ = {σ ′r }r∈N as follows:

63

1. Sψ′ = Sψ and ιψ′ = ιψ;

2. If s = 1 or s′ , 1, s, then τψ′ (s, s′, j) = τψ(s, s′, j);

3. τψ′ (s,1, j) = 0 for s , 1;

4. If s , 1, then τψ′ (s, s, j) = τψ(s,1, j) + τψ(s, s, j) for all s , 1.

Then the decision rule ψ′ solves the choice problem (Q,⪰), and κ(ψ′) ≤ κ(ψ).

Proof of the Claim. Since links (s, s, j) and (s,1, j) cannot appear in the simple path l∗(a)

for any alternative a, then ω∗ψ′ (a) = ω∗ψ(a) for all a ∈ A. Since ψ solves (Q,⪰), then by

Lemma 16, ψ′ solves (Q,⪰) as well. Next, if (s, s, j) ∈ Tψ′\Tψ, then (s,1, j) ∈ Tψ\Tψ. It

follows that |Tψ′ | ≤ |Tψ |, proving the Claim. □

Consider m = 2, then n = ⌈log2(m)⌉ = 1. Suppose ψ solves (Q,⪰), and κ(ψ) = 3n. By

Lemma 21, ψ should have at least one weak link, and by lemma 24, at least one question

i should be asked, thus there are at least two strong links, associated with this question

at a state s. It follows that ψ should have one state s = 1 with g(1) = i for some i ∈ N , one

transition—strong link—corresponding to some answer Qi(a) = x1, i.e. link (1,⋄,x1), and

two transitions—strong and weak links—corresponding to the opposite answer Qi(a) =

1 − x1. If link (1,⋄,1 − x1) is strong, then q(a) > 0 in the limit for all alternatives, and by

Lemma 11, ψ does not solve (Q,⪰), in contradiction. Hence, link (1,⋄,1 − x1) is strong,

and (1,1,1− x1) is weak. Denote by ϵ1 = τ(1,⋄,1− x1), then ψ ∈ Ψ ++.

Suppose that the statement of the Lemma holds for all m0 ∈N such that ⌈log2(m0)⌉ ≤
n0, where n0 ≥ 1 and consider arbitrary m ∈N such that n0 < ⌈log2(m)⌉ ≤ n0 + 1. Consider

state s = 1. By Claim 13, there is exactly one weak link, outgoing from this state. Without

loss of generality, this link is v1 = (1, ŝ,1 − x1) for some ŝ ∈ S\{1} and x1 ∈ {0,1}—recall

that a weak link cannot end at the same state as it begins. Since there are two strong

links associated with each state s ∈ S, then the other two outgoing links from s = 1 are

v2 = (1, s′,1− x1) and v3 = (1, s′′,x1) for some s′, s′′ ∈ S.

If s′′ = 1, then an alternative with ag(1) = x1 is not chosen from a singleton menu,

consisting of this alternative—note that by the definition of a language, there should

be at least one such alternative, since the partition {Qg(1)x1
,Qg(1)1−x1

} of A is non-trivial.

Hence, s′′ , 1.

Towards a contradiction, assume that s′′ = ⋄, then for all alternatives a ∈ A such that

ag(1) = x1 we have q(a) = 1 and ω(φ(a)) = 1. Consider T̂ ⊆ T given by T̂ =
{
(1, ŝ,1 − x1)

}
×[

×s>1

(
T weak ∪ {∅}

)]
. Since aι(1) = 1 − x1 implies (φ(a))1 = (1, ŝ,1 − x1), then by Lemma

64

20, for all a ∈ A such that ag(1) = 1 − x1 there exists e ∈ T̂ such that φ(a) ∼̂ψ e. Thus,

φ(A) =
{
e ∈T

∣∣∣∃a ∈ A : e = φ(a)
}

contains at most 1+
∏
s>1

(
|T weak |+1

)
= 1+2n−1 indifference

classes, then by Lemma 19, ⪰ cannot contain more than 1 + 2n−1 indifference classes.

Thus, m ≤ 1 + 2n−1 ≤ (3/4) ·2n < m in contradiction, where we used 1 + 2n−1 ≤ (3/4) ·2n for

n = n0 + 1 > 1. Hence, s′′ , ∅.

Claim 15. If (1, s′,1− x1) is a strong link described above, then s′ = 1.

Proof of the Claim. Towards a contradiction, assume that s′ , 1. If s′ = ⋄, then for all a ∈ A
such that aι(1) = 1−x1, we have ω(φ(a)) = 1. Then, we can repeat the argument above with

T̂ =
{
(1, s′′,x1)

}
×
[
×s>1

(
T weak ∪ {∅}

)]
and get a contradiction m ≤ 1 + 2n−1 ≤ (3/4) · 2n < m.

Thus, s′ ∈ S\{1,⋄}.
Let v4 be a weak link, outgoing from state s′; that is, T weak = {v4}. Towards a con-

tradiction, assume that there is a ∈ A such that the path l∗(a) contains both a weak link

v1 = (1, ŝ,1−x1) and a weak link v4. Thus, l∗(a) = v1l
1v4l

2 for some (possibly, empty) paths

l1, l2. Note that an alternative path l̃ ∈ L(a) is v2v4l
2. Then

ω(l∗(a))

ω(l̃)
≤ ω(v1)
ω(v2)

−→ 0

since v2 is a strong link, and v1 is a weak link. Hence, ω(l̃) > ω(l∗(a)), contradicting the

definition of l∗(a). Thus, for all alternatives a ∈ A, both weak links v1 and v4 are never in

use in a path l∗(a). Let T̂ ⊂T be the following set:

T̂ =
{
e ∈T′

∣∣∣ (e1, es′) , (v1,v4)
}
, where T′ = ×s∈S

(
T weak(s)∪ {∅}

)
By Lemma 20 and the proven fact that v1,v4 are never used together in l∗(a), for any

a ∈ A, there is e ∈ T̂ such that φ(a) ∼̂ψ e. Note that |T̂| = 3 · 2n−2, since only 3 out of

four combinations {v1,∅} × {v4,∅} are possible, and |T weak(s)| = 1 for all s. By Lemma 19,

(3/4) · 2n = 3 · 2n−2 ≥m, contradicting (3/4) · 2n < m. The Claim is proven. □

Thus, the 3 links outgoing from state 1 are: a weak link v1 = (1, ŝ,1 − x1) with transi-

tional probability τ(s, ŝ,1− x1) ≡ ϵ1 −→ 0, a strong link v2 = (1,1,1− x1) with transitional

probability τ(1,1,1 − x1) = 1 − ϵ1 −→ 1, and a strong link v3 = (1, s′′,x1) with transitional

probability τ(1, s′′,x1) = 1.

Let A1 = {a ∈ A|aι(1) = x1}, and A2 = {a ∈ A|aι(1) = 1 − x1}, then (A1,A2) is a partition

of A. Let m1 be the number of indifference classes of ⪰ on A1, and m2 be the number of

65

indifference classes of ⪰ on A2, then m1 +m2 ≥ m. It follows that there is i ∈ {1,2} such

that mi > (3/4) · 2n−1.

Suppose m2 > (3/4) · 2n−1. Let ψ′ be the decision rule constructed according to Claim

14, then it has the same set of links, outgoing from state 1 such that ψ′, it solves (Q,⪰),

and κ(ψ′) ≤ κ(ψ) = 3n. By Lemma 25, κ(ψ′) ≥ 3n, hence κ(ψ′) = 3n. Moreover, by Lemma

17, there is a regular decision rule ψ′′ that consists of a subsequence of automatons of ψ′

and solves the choice problem (Q,⪰). Without loss of generality, ψ′′ = ψ′.

Consider the following auxiliary choice problem: the set of alternatives is A2, the

preference relation is ⪰, restricted on A2, and the language is Q. Construct the decision

rule ψ̂ as follows. Let χ : {2, ...,n} → {1, ...,n − 1} be the following bijection (recall that

state ŝ is the state at which the weak link beginning from state 1 in the decision rules

ψ and ψ′ ends): χ(ŝ) = 1, χ(s) = s for all s < ŝ, and χ(s) = s − 1 for all s > ŝ. Then, the

flexible state space of ψ̂ is Ŝ = {1, ...,n− 1}, the interrogation function is ι̂(s) = ι(h−1(s)) for

s ∈ {1, ...,n− 1}, and the transitional probabilities are τ̂(s, s′, j) = τ ′(χ−1(s),χ−1(s′), j), where

τ ′ are the transitional probabilities of the decision rule ψ′, described above.

Claim 16. The decision rule ψ̂ solves the auxiliary choice problem with the set of alternatives

A2, preference relation ⪰ and language Q.

Proof of the Claim. For an arbitrary alternative a ∈ A2, let L̂0(a) be the set of simple

paths defined with respect to the decision rule ψ̂, and L0(a) be the set of simple paths

defined with respect to the decision rule ψ′. Note that for any a ∈ A2 for any l ∈ L0,

l1 = v1 = (1, ŝ,1 − x1). Then χ : {2, ...,n} → {1, ...,n − 1} defined above induces a natural a

bijection between L0(a) and L̂0(a): for l = v1vj1 ...vjk , χ(l) = χ(vj1)...χ(vjk) , where χ(s, s′, j) =

(χ(s),χ(s′), j). Note that

(1− η) · τ(1, ŝ,1− x1) ·ω(χ(l)) = ω(l)

Denote by ω̂∗(a) = maxl̂∈L̂0
(ω(l̂)). Then for all a ∈ A2 we have

ω̂∗(a) = (ω∗(a))/((1− η) · τ(1, ŝ,1− x1))

Since ψ′ solves the original choice problem, then by Lemma 16, ω∗(a) > 0 for all a ∈ A2,

and for all a,b ∈ A2 such that a ≻ b, (ω∗(b))/(ω∗(a))→ 0. It follows that ω̂∗ has the same

properties, thus by Lemma 16, ψ̂ solves the auxiliary choice problem. □

Note that κ(ψ̂) = 3n−3, since it has the same (after re-numeration of states via mapping

χ) set of links as ψ′, except of the 3 links, outgoing from the state s = 1 in ψ′. Since ψ̂

66

solves the auxiliary choice problem, by Lemma 25, it should be that m2 ≤ 2n−1. Thus,

(3/4)·2n−1 < m2 ≤ 2n−1, and we can apply the induction assumption to show that ψ̂ ∈ Ψ ++
n−1.

In particular, there is x̂ = (x̂1, ..., x̂n−1) ∈ {0,1}, (ϵ̂1, ...ϵ̂n−1) ∈ (0,1)n−1 with ϵ̂i → 0, and a

permutation ĥ : {1, ...,n− 1} → {1, ...,n− 1} such that ĥ(1) = 1, and

(a) For all s ∈ {1, ...,n− 1}, τ̂(s, ĥ−1(ĥ(s) + 1), x̂s) = 1, where ĥ−1(n+ 1) denotes ⋄;

(b) For all s ∈ {1, ...,n− 1}, τ̂(s, ĥ−1(ĥ(s) + 1),1− x̂s) = ϵ̂s, where ĥ−1(n+ 1) denotes ⋄;

(c) For all s ∈ {1, ...,n − 1}, there exists a unique s′′′ ∈ {1, ...,n − 1} such that ĥ(s′′′) ≤ ĥ(s)

such that τ(s, s′′′,1− x̂s) = 1− ϵ̂s.

where τ̂ are the transitional probabilities of ψ̂.

Claim 17. Let v1 = (1, s′,1− x1), v3 = (1, s′′,x1) be links of ψ defined above. Then s′ = s′′.

Proof of the Claim. Let x̂, ϵ̂, ĥ are defined above. Towards a contradiction, assume

that s′′ , s′, then k = ĥ(χ(s′′)) , ĥ(χ(s′)) = 1, hence k > 1. Lemma 30 applied for the

decision rule ψ̂ ∈ Ψ ++
n−1 implies that, when we consider a decision rule ψ′, a valid simple

path l ∈ L0(a) for arbitrary alternative a ∈ A1 should go consequently via states 1, χ(ĥ(k)),

χ(ĥ(k + 1)), ...,χ(ĥ(n)),⋄; moreover, the total number of different simple paths that can be

used by all alternatives a ∈ A1 is 2n−1+k+1. It follows that∣∣∣{z ∈ [0,1]
∣∣∣ ∃a ∈ A1 :ω∗(a) = z

}∣∣∣ ≤ 2n−1+k+1 ≤ 2n−2

where we used k > 1, because s′′ , s′. Since ψ′ solves the original choice problem, By

Lemma 16, A1 should contain no more than 2n−2 indifference classes, that is, m1 ≤ 2n−2.

Since m2 ≤ 2n−1, it follows that m ≤m1 +m2 ≤ 2n−2 + 2n ≤ (3/4) · 2n, in contradiction. □

Thus, s′ = s′′. Define a permutation h as follows: h(1) = 1, h(s) = ĥ(χ(s)) + 1 for s ∈
{2, ...,n − 1}. Note that h−1(1) = 1, and h−1(k) = χ−1(ĥ(k − 1)) for k ∈ {2, ...,n}. Next, x1 and

ϵ1 has already been defined. Define x2, ...,xn by xs = x̂χ(s), and ϵ2, ...,ϵn by ϵs = ϵ̂χ(s) for all

s ∈ {2, ...,n}.

Claim 18. The decision ruleψ′ with h,x,ϵ defined as above, satisfy conditions (i),(ii),(iii)(a,b,c)

in the definition of ψ ∈ Ψ ++
n .

Proof of the Claim. We already know that Sψ′ = {1, ...,n} and gψ′ is an injection. Next, let

us check (iii). For s = 1, we get h−1(h(1) + 1) = h−1(2) = χ−1(ĥ−1(1)) = χ−1(1) = s′ = s′′. The

set of links, outgoing from s = 1 is v1 = (1,2,1 − x1) with probability τ(1,2,1 − x1) = ϵ1,

67

v2 = (1,1,1− x1) with probability τ(1,1,1− x1) = 1− ϵ1 and v3 = (1,2,x1) with probability

τ(1,2,x1) = 1. Hence, properties (iii)(a,b,c) hold for state s = 1.

Third, let s > 1, then, by the definition of the decision rule ψ̂, the transitional proba-

bilities of the decision rule ψ′, outgoing from state s, are:

(a) 1 = τ
(
s,χ−1[ĥ−1(ĥ(χ(s)) + 1)], x̂χ(s)

)
= τ

(
s,h−1(h(s) + 1),xs

)
;

(b) ϵs = ϵ̂χ(s) = τ
(
s,χ−1[ĥ−1(ĥ(χ(s)) + 1)],1− x̂χ(s)

)
= τ

(
s,h−1(h(s) + 1),1− xs

)
;

(c) 1− ϵs = 1− ϵ̂χ(s) = τ
(
s,χ−1[ĥ−1(ĥ(χ(s)))],1− x̂χ(s)

)
= τ

(
s, s,1− xs

)
.

Thus, property (iii) in the definition of Ψ ++
n holds for ψ′ as well. □

Claim 19. If ψ′ ∈ Ψ ++
n , where ψ′ is constructed via ψ ∈ Ψ0 according to Claim 14, and ψ

satisfies the properties stated in Claim 13, then ψ ∈ Ψ ++
n .

Proof of the Claim. Clearly, properties (i) and (ii) in the definition of Ψ ++
n hold for ψ. We

show that if h, x and ϵ are such that property (iii) of the definition of Ψ ++
n holds for ψ′

than this property also holds for ψ with the same h, x and ϵ.

Since κ(ψ′) = 3n = κ(ψ), then there is a bijection between the set of links T 1 ≡ Tψ\Tψ′
and T 2 ≡ Tψ′\Tψ. The set T 1 is comprised from the links that go from states s ∈ S ′ to state

1 for some S ′ ⊂ S\{1}, and the set of links T 2 is comprised of links that goes from states

s ∈ S ′ to themselves. Thus, for any s ∈ S ′, the link in T 2 outgoing from s is a strong that

correspond to case (c) in the definition of Ψ ++, but since h(1) = 1, the link in T 1, outgoing

from s corresponds to case (c) in the definition of Ψ ++ as well. Since the other links of ψ

and ψ′ coincide, we conclude that ψ ∈ Ψ ++
n □

The Claim 19 finishes the proof for the case when m2 > (3/4) · 2n−1. The case when

m1 > (3/4) · 2n−1 is analyzed by the analogous way. ■

Lemma 32. Let the preference relation ⪰ have m equivalence classes, and n = ⌈log2(m)⌉. Then

language Q is adaptive if and only if there exists a decision rule ψ ∈ Ψ ++
n that solves the choice

problem (Q,⪰).

Proof. First, suppose that language Q is adaptive for a preference relation ⪰. Then there

is a subset Q′ = {Qi}i∈N ′ of questions such that |N ′ | = n ≡ ⌈log2(m)⌉ and λ ∈RN ′ such that

a ≻ b =⇒ v(a) > v(b), where v(a) =
∑
i∈N ′

λiai

68

Claim 20. Let preference relations ⪰′ and ⪰ on A be such that a ≻ b implies a ≻′ b for all a,b ∈
A, and let Q be an arbitrary language, adequate for ⪰′. If a decision rule ψ = {σr}r=1,2,... ∈ Ψ
solves the choice problem (Q,⪰′), then ψ solves the choice problem (Q,⪰).

Proof of the claim. Consider arbitrary a,b ∈ A such that a ≻ b, then a ≻′ b. Since ψ solves

the choice problem (Q,⪰′), by Lemma 11, qσr (b)/qσr (b) −→ 0. Therefore, by Lemma 11, ψ

solves the choice problem (Q,⪰). □

Let ⪰′ be the preference relation on A, induced by the utility function v(·); that is,

v(a) ≥ v(b) ⇐⇒ a ⪰′ b ∀a,b ∈ A

It follows that the language Q′ is additive for a preference relation ⪰′. Then, by Lemma

28, the decision rule ψ+(Q′,⪰′) solves the choice problem (Q′,⪰′), and the complexity of

this decision rule is κ(ψ+(Q′,⪰′)) = 3n. By Claim 20, ψ+(Q′,⪰′) solves the choice problem

(Q′,⪰) as well, and hence it solves the choice problem (Q,⪰), since Q′ ⊆Q.

Claim 21. Let ψ = ψ+(Q′,⪰′) be the decision rule, defined for an additive (with respect to

preference relation ⪰′) language Q′ as described above, where language Q′ contains exactly

|N ′ | = n = ⌈log2(m)⌉ questions. Then ψ+(Q′,⪰′) ∈ Ψ ++
n .

Proof of the Claim. First, note that Sψ = {1, ...,n}, and the interrogation rule g(i) = i is

an injection; thus, properties (i) and (ii) in the definition of Ψ ++
n hold. Second, consider

a unit permutation h given by h(i) = i, let xi = 1{λi > 1}, and ϵi = ϵ|λi | for all i ∈ {1, ...,n}.
Then it is straightforward to verify that ψ satisfies conditions (iii)(a,b,c) in the definition

of Ψ ++
n . □

Thus, ψ+(Q′,⪰′) ∈ Ψ ++
n solves the choice problem (Q,⪰), proving the only if direction.

Suppose now thatψ ∈ Ψ ++
n solves the choice problem (Q,⪰) withm indifference classes,

and n = ⌈log2(m)⌉. Let x,h,ϵ be as in the definition of Ψ ++
n . Note that for any alternative

a ∈ A, its set of simple paths is a singleton: L0 = {l∗(a)}, where lk = (h(k),h(k + 1),Qι(h(k))(a))

for k ∈ {1, ...,n} with the convention that h(k + 1) = ⋄. Hence,

ω∗(a) = (1− η)n−1 ·
n∏
k=1

(h(k),h(k + 1),Qι(h(k))(a)) =

= (1− η)n−1 ·
n∏
k=1

[
1{Qι(h(k))(a) = xh(k)}+1{Qι(h(k))(a) = 1− xh(k)} · ϵh(k)

]
= (1− η)n−1 ·

∏
k: Qι(h(k))(a)=1−xh(k)

ϵh(k) = (1− η)n−1 ·
∏

s: Qι(s)(a)=1−xs

ϵs

69

It follows that

log(ω∗(a)) = (n− 1) · log(1− η) +
∑

s: Qι(s)(a)=1−xs

log(ϵs)

Since ψ solves (Q,⪰), then by Lemma 16, for all a,b ∈ A, a ≻ b implies

ω∗(b)/ω∗(a) −→ 0

Thus,

log(ω∗(b))/ log(ω∗(a)) =

∑
s: Qg(s)(b)=1−xs log(ϵs)∑
s: Qg(s)(a)=1−xs log(ϵs)

−→ 0

Recall that ϵ = (ϵ1, ...,ϵn) is, in fact, a sequence converging to (0, ...,0). Since the number

of pairs (a,b) with a,b ∈ A is finite, there is an element of this sequence such that∑
s: Qι(s)(b)=1−xs

log(ϵs) <
∑

s: Qι(s)(a)=1−xs

log(ϵs) ∀a,b ∈ A : a ≻ b (18)

For i ∈N ′ = ι(S), for this element of the sequence ϵ, define

λi = λι(s) =

 − log(ϵs) if xs = 1

log(ϵs) if xs = 0

Note that λi are well-defined, since ι : S→N is an injection. Then for any a ∈ A∑
s: Qι(s)(a)=1−xs

log(ϵs) =
∑

s: xs=1, Qι(s)(a)=0

log(ϵs) +
∑

s: xs=0, Qι(s)(a)=1

log(ϵs) =

=
∑
s: xs=1

log(ϵs)
∑

s: xs=1, Qι(s)(a)=1

(
− log(ϵs)

)
+

∑
s: xs=0, Qι(s)(a)=1

log(ϵs) = −
∑
s: xs=1

λs +
∑
s∈S

λsaι(s)

Thus, a ≻ b implies∑
s∈S

λsaι(s) >
∑
s∈S

λsbι(s) =⇒
∑
i∈N ′

λsai >
∑
i∈N ′

λsbi

Since |S | = n = ⌈log2(m)⌉, g(S) =N ′ and ι is an injection, then |N ′ | = ⌈log2(m)⌉. If λi = 0 for

some i ∈N ′, then ∣∣∣{∑
s∈S ′′

logϵs
∣∣∣ ∅ ⊆ S ′′ ⊆ S}∣∣∣ ≤ 2|S |−1 = 2|N

′ |−1 = 2n−1 < m

in contradiction to eq. (18). Thus, Q is an adaptive language, proving the if direction of

the Lemma. ■

70

B.4 Other Lemmas

The next lemma proves a generalized version of Proposition 4.

Lemma 33. For any preference relation ⪰ with m ≥ 2 indifference classes, there is an additive

language Q with n = ⌈log2(m)⌉ questions.

Proof. Enumerate indifference classes of preference relation ⪰ by C0,C1, ...,Cm such that

a ∈ Cj , b ∈ Ck implies a ≻ b iff j > k. Denote by k(a) the index of the indifference class

of a, i.e. k(a) = k′ iff a ∈ Ck′ . Denote by n = ⌈log2(m)⌉. Let x1x2...xn be the expression

of k ∈ {0,1, ...,n − 1} via a base-2 number—it is well defined because of our choice of n—

and denote by ki = xi the corresponding digit of the base-2 expression of k. Consider

the language Q with Qij = {a ∈ A | ki(a) = j} for j ∈ {1,2}, and let λi = 2n−i . Consider an

additive utility function v : A→R with weights λ, then

v(a) =
n∑
i=1

λiai =
n∑
i=1

2n−iki(a) = k(a)

It follows that v(·) represents ⪰. ■

B.5 Proofs of statements in Sections 2-4

In this section, I use previous calculations to prove statements from the main part of the

paper.

B.5.1 Proof of Lemma 1

The Lemma follows from Lemma 10 by substituting ρB(a) = ρ(a)/
∑
b∈Bρ(b). ■

B.5.2 Proof of Lemma 2

By Lemma 27, for any preference relation ⪰ and adequate language Q, the decision rule

R(Q,⪰) solves the choice problem (Q,⪰). ■

71

B.5.3 Proof of Theorem 1

The lower bound is proven in Lemma 25.

Consider an arbitrary preference relation ⪰ on A with m ≥ 2 indifference classes. By

Lemma 33, there is an additive with respect to preference relation ⪰ language Q with

n = ⌈log2(m)⌉ questions. By Lemma 28, the sequence of decision rules ψ+(Q,⪰) solves

(Q,⪰); moreover, κ(ψ+(Q,⪰)) = 3|N | = 3 · ⌈log2(m)⌉ proving the tightness of the lower

bound. ■

B.5.4 Proof of Proposition 1

First, by Lemma 24, if ψ ∈ Ψ solves (Q,⪰), then at least n = ⌈log2(m)⌉ should be asked in

various states, thus |S | ≥ ⌈log2(m)⌉.
Second, assume that ψ ∈ Ψ solves (Q,⪰) solves (Q,⪰), and κ(ψ) = 3n = 3·⌈log2(m)⌉. To-

wards a contradiction, assume |S | > n = ⌈log2(m)⌉. Similar to the proof of Theorem 1 given

above, by Lemma 21 and pigeonhole principle, 2|T
weak | ≥ m, thus |T weak | ≥ ⌈log2(m)⌉ = n.

Next, by Lemma 24, there should be at least n states with question asked in each state,

and there are at least two strong links outgoing from each such state. Since from every

state there is an outgoing strong link, then |T strong | > 2n, and hence,

κ(ψ) = |T weak |+ |T strong | > n+ 2n = 3n

in contradiction to our assumption that κ(ψ) = 3n = 3 · ⌈log2(m)⌉ ■

B.5.5 Proof of Proposition 2

Consider set A = {a} ∪ {b1, ...,bk} with k + 1 alternatives, and preference relation ⪰ on A

such that a ≻ bi and bi ∼ bi′ for all i, i′. Then ⪰ has m = 2 indifference classes. Consider

language Q = {Qi}ki=1 with Qi1 = {bi} and Qi0 = A\{bi} for all i = 1, ..., k. Note that the

language Q is adequate, since for any i ∈ {1, ..., k}, bii , c
′
i for any c′ , bi .

Suppose ψ ∈ Ψ solves (Q,⪰). Towards a contradiction, assume that question Qi is not

asked in ψ, i.e. ∄s ∈ S : ι(s) = i. Then the set of links that can be used for transitions

between the states for alternatives a and bi coincide, that is, T a(s) = T bi (s) for all s ∈ S.

It follows that q(a) = q(bi), which is a contradiction by Lemma 11, since a ≻ bi . Thus,

questions Q1, ...,Qk should be asked in ψ. Note that each question i asked in state s is as-

sociated with at least two links (s, s′,0), (s, s′′,1) ∈ T , and different questions are associated

72

with different links, thus

κ(ψ) = |T | ≥ 2k ∀ψ ∈ Ψ : ψ solves (Q,⪰)

Thus, κ(Q) > k, proving the Proposition. ■

B.5.6 Proof of Theorem 2

Statement (i) of the Theorem follows from the Lemma 27, since the universal decision

rule ψ =R(Q,⪰) solves the choice problem (Q,⪰) and uses κ(ψ) = 3|A| − 3 transitions.

Let m ∈ {2, ..., |A|}. Let ⪰ be a preference relation such that ã ≻ b for all b ∈ A; that

is, ã is a unique ⪰-best element in A, and let ⪰ have m indifference classes; clearly, such

preference relation exists. Enumerate alternatives in A\{ã} by a1, ..., a|A|−1, and consider

language Q = {Qi}
|A|−1
i=1 with Qi1 = {ai}, Qi0 = A\{ai}.

Assume a decision rule ψ solves the choice problem (Q,⪰); by Lemma 17, it is without

loss of generality to assume that ψ is regular. Note that all questions of the language Q

should be asked inψ; otherwise, ifQi is not asked, then l∗(ã) ∈ L(ai),ω∗(ã) ≤ω∗(ai), and by

Lemma 16, ψ does not solve (Q,⪰), in contradiction. Thus, Tψ contains at least 2 · (|A| −1)

strong links. Next, since ⪰ hasm indifference classes, then by Lemma 21, the sets of weak

links used by alternatives from distinct indifference classes should be different. It follows

that 2|T
weak
ψ | ≥m, hence |T weakψ | ≥ ⌈log2(m)⌉. Hence,

κ(ψ) = |Tψ | = |T strongψ |+ |T weakψ | ≥ 2|A| − 2 + ⌈log2(m)⌉

Since the above inequality holds for arbitrary decision rule ψ that solves the choice prob-

lem (Q,⪰), then κ(Q) ≥ 2|A| − 2 + ⌈log2(m)⌉, proving statement (ii) of the Theorem. ■

B.5.7 Proof of Proposition 3

The proof of the Proposition mirrors the proof of Theorem 2 above. Statement (i) of the

Proposition follows from the Lemma 27, since the universal decision rule ψ = R(Q,⪰)

solves the choice problem (Q,⪰) and uses |Sψ | = |A| − 1 memory states.

Let m ∈ {2, ..., |A|}. Let ⪰ be a preference relation such that ã ≻ b for all b ∈ A; that

is, ã is a unique ⪰-best element in A, and let ⪰ have m indifference classes; clearly, such

preference relation exists. Enumerate alternatives in A\{ã} by a1, ..., a|A|−1, and consider

language Q = {Qi}
|A|−1
i=1 with Qi1 = {ai}, Qi0 = A\{ai}.

73

Assume a decision rule ψ solves the choice problem (Q,⪰); by Lemma 17, it is without

loss of generality to assume that ψ is regular. Note that all questions of the language

Q should be asked in ψ; otherwise, if Qi is not asked, then l∗(ã) ∈ L(ai), ω∗(ã) ≤ ω∗(ai),
and by Lemma 16, ψ does not solve (Q,⪰), in contradiction. Since all questions of the

language Q must be asked in Ψ , then |Sψ | ≥ |Q| = |A| −1. It follows thatM(Q) ≥ |A| −1. By

the proven statement (i),M(Q) ≤ |A| − 1, henceM(Q) = |A| − 1, proving statement (ii) of

the Proposition. ■

B.5.8 Proof of Proposition 4

The Proposition follows from Lemma 33. ■

B.5.9 Proof of Theorem 3

Suppose that language Q is adaptive for a preference relation ⪰ with m indifference

classes, and n = ⌈log2(m)⌉. By Lemma 32, there is a decision rule ψ ∈ Ψ ++
n that solves

the choice problem (Q,⪰). By Lemma 29, κ(ψ) = 3n, thus the language Q is simple.

Suppose now that (3/4) · 2n < m ≤ 2n for some natural n, ψ ∈ Ψ solves the choice

problem (Q,⪰), and κ(ψ) = 3n. By Lemma 31, ψ ∈ Ψ ++
n , and thus by Lemma 32, the

language Q is adaptive. ■

B.5.10 Proof of Proposition 5

Statement (i) of the Proposition is proved in Lemma 32. Statement (ii) of the Proposition

proved in Lemma 31 ■

B.6 Proofs of lemmas and claims from Section 5

Lemma 3 is proven in Lemma 11 in this Appendix, Lemma 4 is proven in Lemma 16 in

this Appendix, Claim 1 follows from Lemma 19 and Lemma 22 in the Appendix, Claim 2

is proven in Lemma 23 in the Appendix, Claim 3 follows from Claim 13 in the Appendix,

Claim 4 is proven in Claim 15 in the Appendix, Claim 6 follows from Claim 16 in the

Appendix.

74

B.7 Formalizing the dynamics

The realized menu B ⊆ A and the sampling probability ρB from B determine the economic

environment. The language Q and the automaton σ = (S, ι,τ) ∈ Σ determines the agent’s

decision procedure. Together, the economic environment and the decision procedure,

induce a dynamic random choice in a straightforward way.

Let YB = B× S be the global state space; denote by y = (a,s) its generic element. Thus,

a ∈ B represents the currently drawn alternative, and s ∈ S represents the state of the

automaton. In the following, I will omit a superscript B in the notations whenever the

menu B is fixed. Let Y = (Y1,Y2, ...) be a Markov chain with realizations y = (y1, y2, ...) ∈ YN

that describes the dynamics of the model in periods t = 1,2, ... as follows.

In the first period, a random alternative is drawn and the automaton’s state is s = 1:

P r
(
Y1 = (a,s)

)
= ρB(a) · δs1

where I denote by δki = 1 if i = k and δki = 0 if i , k. The dynamics of the Markov chain Y

in the subsequent periods (t > 1) is described by the following stochastic Y ×Y matrix:

P r
(
Yt = (a,s)

∣∣∣ Yt−1 = (b,v)
)

=

=



(
1− τ

(
v,⋄,Qι(v)(b)

))
· η · ρB(a) · δs1 + (1− η) · δab · τ

(
v,s,Qι(v)(b)

)
if v,s , ⋄

τ
(
v,⋄,Qι(v)(b)

)
· δab if v , ⋄, s = ⋄

δba · δs⋄ if v = ⋄

(19)

Thus, the first case in eq. (19) tells that a transition between the two memory states

occurs in one of the two ways. First, if the alternative has not been chosen in the previous

period, then with probability η a new alternative is drawn according to the probability

distribution ρB(a), and the state moves to s = 1, hence the term δs1. Second, it can be

that the decision procedure prescribes to go to state s with probability τ
(
v,s,Qι(v)(b)

)
as a

result of the information “Qι(v)(b) = j” with j ∈ {0,1} acquired in the previous period. If

this transition occurs, it must be that a new alternative is not drawn, hence the multiple

(1 − η), and the current alternative remains the same, hence the multiple δab. The other

two cases in eq. (19) are interpreted similarly.

For each period t ∈ {1,2, ...}, the probability that alternative a ∈ B is chosen in some

period t′ < t is given by

P r
(
a is chosen from B in period t′ < t

)
= P r

(
Y Bt = (a,⋄)

)
75

In this paper, I am concerned with the total probability of an alternative to be chosen in

some period from the menu. Thus, I analyze the stochastic choice rule given by

pB(a) := lim
t→∞

P r
(
Y Bt = (a,⋄)

)
(20)

Note that pB(a) depends on the languageQ and the automaton σ via the stochastic matrix

given by eq. (19) that governs the evolution of the Markov chain Y. I will use a subscript

σ to show this dependence when needed.

C Proofs for the extensions

C.1 Proof for the model with endogenous dismissal decision

C.1.1 Proof of Proposition 6

First, note that analysis, performed in the Appendix A, applies for the model with en-

dogenous dismissal decision. Let Ψ be the set of decision rules in the baseline model, and

Ψ ′ be the set of decision rules in the model with endogenous dismissal decision. Then

Ψ ⊂ Ψ ′, and, hence, for any language, its memory load and complexity in a model with

endogenous dismissal decision should be weakly less than in a baseline model. To prove

the reverse statement, let us consider a mapping ζ : Ψ ′→ Ψ defined as follows.

Let ψ′ = ζ(ψ). Then Sψ′ = Sψ and ιψ′ = ιψ. Next, for all s ∈ So, j ∈ {0,1},

τψ′ (s,v, j) =

 τψ(s,v, j) if v , s

τψ(s, s, j) + τψ(s,new,j) if v = s

Thus, the decision rule ψ′ = ζ(ψ) has the same state space and the same interrogation

rule as ψ. Moreover, it has the same probability of transitions between two distinct mem-

ory states. The only difference is that, instead of transitioning to the dismissal decision

with probability τψ(s,new,j), the agent remains in the same memory state. Note that

M(ψ′) =M(ψ), κ(ψ′) ≤ κ(ψ)

Note that the highest-probability paths of the decision rules ψ′ and ψ are identical,

since non of them can contain transitions to the dismissal state or a loop transition to the

same memory state. Thus, by Lemma 4, if ψ′ solves (Q,⪰), then ψ solves (Q,⪰) as well.

Hence, for any language, its memory load and complexity in a baseline model is weakly

less than in a model with endogenous dismissal decision, completing the proof of the

proposition. ■

76

C.1.2 Proof of Corollary 2

The corollary follows immediately from Proposition 6. ■

C.1.3 Proof of Proposition 7

For convenience, denote by Ψ ′ the set of decision rules in the model with endogenous

dismissal decision, and by Ψ the set of decision rules in the baseline model. Then Ψ ⊂ Ψ ′.

Let us prove an analogue of Lemma 32:

Lemma 34. Consider the model with endogenous dismissal decision. Let the preference relation

⪰ have m equivalence classes, and n = ⌈log2(m)⌉. Then language Q is adaptive if and only if

there exists a decision rule ψ ∈ Ψ +dismissal
n that solves the choice problem (Q,⪰).

Proof of Lemma 34. Suppose first that language Q is adaptive for preference relation

⪰, then Q is additive for ⪰ as defined in Section B.3. In this case, ψ+(Q,⪰) ∈ Ψ ⊂ Ψ ′,

where ψ+(Q,⪰) is defined in Section B.3. Next, it is straightforward to see that Claim 20

continues to hold in the model with endogenous dismissal decision as well. It follows that

the decision rule ψ+(Q,⪰) solves the choice problem (Q,⪰). Moreover, κ(ψ+(Q,⪰)) = 3n,

hence ψ+(Q,⪰) ∈ Ψ +dismissal
n , proving the if direction of the lemma.

The proof of the only if direction of the lemma is identical to the corresponding part

of the proof of Lemma 32. □

Lemma 34 proves the first statement of the proposition. By Corollary 2, Theorem 3

continue to hold for the model with endogenous dismissal decision, which in conjunction

with the proven first statement of this Proposition implies its second statement. ■

C.2 Proofs for the model with recall of the past investigations

In the model with recall of the past investigations, analysis, performed in Section A is

no longer valid, since the Markov chain that describes the evolution of the system is no

longer a Markov chain with renewal property according to the corresponding definition.

Let us define formally the Markov chain that we are interested in.

As in the baseline model, let YB = B × S × {new,old} be the global state space, where

a ∈ B denotes the currently drawn alternative, s ∈ S = So ∪ {⋄} denotes the automaton’s

state, and x ∈ {new,old} denotes if the current alternative has been just drawn from the

menu (x = new), or not (x = old). Denote by y = (a,s,x) a generic element of the global

77

state space. In the first period, a random alternative is drawn and the automaton’s state

is s = 1:

P r
(
Y B1 = (a,s,x)

)
= ρB(a) · δs1 · δ

x
new

The dynamics of the Markov chain Y in the subsequent periods (t > 1) in the model with

recall of past investigations is described by the following stochastic Y ×Y matrix:

P r
(
Y Bt = (a,s,x)

∣∣∣ Y Bt−1 = (b,v,z)
)

=

=



[(
1− τ

(
v,⋄,Qι(v)(b)

))
· η · τ2(v,s) + τ1

(
v,s,Qι(v)(b),new

)]
· ρB(a) if v,s , ⋄, x = new

(1− η) · δab · τ
1
(
v,s,Qι(v)(b), old

)
if v,s , ⋄, x = old

τ
(
v,⋄,Qι(v)(b)

)
· δab · δ

x
old if v , ⋄, s = ⋄

δba · δs⋄ · δxold if v = ⋄

As usual, I analyze the stochastic choice rule given by

pB(a) := lim
t→∞

P r
(
Y Bt = (a,⋄, old) + P r

(
Y Bt = (a,⋄,new)

)
= lim

t→∞
P r

(
Y Bt = (a,⋄, old)

)
Lemma 35. Consider the model with recall of the past investigations. If the decision rule ψ

solves the choice problem (Q,⪰), and N ′ is the image of the interrogation rule τψ, then for any

c,d ∈ A such that c ≻ d there exists i ∈N ′ such that ci , di .

Proof of Lemma 35. Towards a contradiction, assume that ψ solves (Q,⪰), and there are

c,d ∈ A such that c ≻ d and ci = di for all N ′. Consider the menu B = {c,d}.

Claim 22. Consider the model with recall of the past investigations. Let N ′ be the image of

the interrogation rule τψ of a decision rule ψ. If ci = di for all i ∈ N ′, then p{c,d}(c)/ρ{c,d}(c) =

p{c,d}(d)/ρ{c,d}(d).

Proof of Claim 22. Denote by B = {c,d}. Note that since Qι(v)(c) = Qι(v)(d) for all v ∈ Soψ,

then

P r
(
Y Bt = (a,s,old)

∣∣∣ Y Bt−1 = (a,v,x)
)

= P r
(
Y Bt = (b,s,old)

∣∣∣ Y Bt−1 = (b,v,x′)
)

for all x,x′ ∈ {new,old} for all v ∈ So, s ∈ S. Let q(a,s) be the probability to choose alter-

native a ∈ {c,d} during a single investigation process when starting from memory state

s ∈ So. Applying the above equation recursively, we get

q(c, s) = q(d,s) ∀s ∈ So

78

Thus,

pB(c)
ρB(c)

=
1

ρB(c)

∞∑
t=1

∑
yt∈Y t

∑
v∈So

P r
(
Y t = yt

)
·1{xt = new, at = c, st = v} · q(c,v) =

=
∞∑
t=1

∑
yt∈Y t

∑
v∈So

P r
(
Y t = yt

)
·1{xt = new, st = v} · q(c,v) =

=
1

ρB(d)

∞∑
t=1

∑
yt∈Y t

∑
v∈So

P r
(
Y t = yt

)
·1{xt = new, at = d, st = v} · q(d,v) =

pB(d)
ρB(d)

where Y t = (Y1, ...,Yt), and yt = (y1, ..., yt) ∈ Y t. □

By Claim 22, p{c,d}(c)/ρ{c,d}(c) = p{c,d}(d)/ρ{c,d}(d), hence p{c,d}(c) ≤ ρ{c,d}(c) < 1, hence

p{c,d}(c) does not converge to one in the limit, contradicting the assumption that ψ solves

(Q,⪰), and proving the lemma. ■

C.2.1 Proof of Theorem 4

Let us prove the first statement of the theorem, that is, if ψ solves (Q,⪰), thenM(ψ) ≥ n,

where n = ⌈log2(m)⌉, and m is the number of the indifference classes of ⪰. Towards a

contradiction, assume that ψ solves (Q,⪰) and M(ψ) < n. Let N be a set of attributes

about which the agent inquires when using the decision rule ψ, then |N | < n. It follows

that there is a pair of items a,b ∈ A such that a ≻ b, and ai = bi for all i ∈N , in contradiction

to Lemma 35.

Note that any decision rule that the agent can use in the baseline model is feasible for

the agent in the model with the recall of past investigations. Hence, the second statement

of the theorem follows from Proposition 1.

C.2.2 Proof of Theorem 5

Since any decision rule that the agent can use in the baseline model is feasible for the

agent in the model with the recall of past investigations, the first statement of the theorem

follows from Proposition 3.

Let us prove the second statement of the theorem.Let m ∈ {2, ..., |A|}. Let ⪰ be a pref-

erence relation such that ã ≻ b for all b ∈ A; that is, ã is a unique ⪰-best element in A,

and let ⪰ have m indifference classes; clearly, such preference relation exists. Enumerate

alternatives in A\{ã} by a1, ..., a|A|−1, and consider language Q = {Qi}
|A|−1
i=1 with Qi1 = {ai},

Qi0 = A\{ai}.

79

Towards a contradiction, assume that ψ solves (Q,⪰), and Sψ < |A| − 1. Then there

is i ∈ N = {1, ..., |A| − 1} such that the corresponding attribute is not investigated in any

memory state of ψ. Thus, ã ≻ ai and ãj = aij for all j ∈N , contradicting Lemma 35. Hence,

M(Q) ≥ |A|−1, which in conjunction with the proven first statement of the theorem proves

the second statement of the theorem. ■

80

References

Abreu, D. and A. Rubinstein (1988): “The structure of Nash equilibrium in repeated

games with finite automata,” Econometrica: Journal of the Econometric Society, 1259–

1281.

Banks, J. S. and R. K. Sundaram (1990): “Repeated games, finite automata, and complex-

ity,” Games and Economic Behavior, 2, 97–117.

Börgers, T. and A. Morales (2004): “Complexity constraints in two-armed bandit prob-

lems: an example,” Tech. rep., Citeseer.

Cerreia-Vioglio, S., F. Maccheroni, M. Marinacci, and A. Rustichini (2020): “Multino-

mial logit processes and preference discovery: inside and outside the black box,” arXiv

preprint arXiv:2004.13376.

Cover, T. and M. Hellman (1970): “The two-armed-bandit problem with time-invariant

finite memory,” IEEE Transactions on Information Theory, 16, 185–195.

Cover, T. M. (1969): “Hypothesis testing with finite statistics,” The Annals of Mathemati-

cal Statistics, 40, 828–835.

Dow, J. (1991): “Search decisions with limited memory,” The Review of Economic Studies,

58, 1–14.

Hellman, M. E. and T. M. Cover (1970): “Learning with Finite Memory,” The Annals of

Mathematical Statistics, 41, 765–782.

——— (1971): “On memory saved by randomization,” The Annals of Mathematical Statis-

tics, 1075–1078.

Kalai, E. and E. Solan (2003): “Randomization and simplification in dynamic decision-

making,” Journal of Economic Theory, 111, 251–264.

Kalai, E. and W. Stanford (1988): “Finite rationality and interpersonal complexity in

repeated games,” Econometrica: Journal of the Econometric Society, 397–410.

Kandori, M., G. J. Mailath, and R. Rob (1993): “Learning, mutation, and long run equi-

libria in games,” Econometrica: Journal of the Econometric Society, 29–56.

81

Kifer, Y. (1988): “Random perturbations of dynamical systems,” Nonlinear Problems in

Future Particle Accelerators, 189.

Klabjan, D., W. Olszewski, and A. Wolinsky (2014): “Attributes,” Games and Economic

Behavior, 88, 190–206.

Kocer, Y. (2010): “Endogenous learning with bounded memory,” Economic Theory Center

Working Paper.

Kohn, M. G. and S. Shavell (1974): “The theory of search,” Journal of Economic Theory,

9, 93–123.

Luce, R. D. (1959): Individual choice behavior, John Wiley.

Mandler, M., P. Manzini, and M. Mariotti (2012): “A million answers to twenty ques-

tions: Choosing by checklist,” Journal of Economic Theory, 147, 71–92.

Morgan, P. and R. Manning (1985): “Optimal search,” Econometrica: Journal of the Econo-

metric Society, 923–944.

Oprea, R. (2020): “What makes a rule complex?” American Economic Review, 110, 3913–

51.

Rubinstein, A. (1986): “Finite automata play the repeated prisoner’s dilemma,” Journal

of Economic Theory, 39, 83–96.

Rustichini, A. (2020): “Neural and normative theories of stochastic choice,” Tech. rep.,

Working paper, University of Minnesota.

Sanjurjo, A. (2014): “The role of memory in search and choice,” Available at SSRN

2479561.

——— (2015): “Search, memory, and choice error: An experiment,” PloS one, 10,

e0126508.

——— (2017): “Search with multiple attributes: Theory and empirics,” Games and Eco-

nomic Behavior, 104, 535–562.

Weitzman, M. L. (1979): “Optimal search for the best alternative,” Econometrica: Journal

of the Econometric Society, 641–654.

82

Wilson, A. (2014): “Bounded memory and biases in information processing,” Economet-

rica, 82, 2257–2294.

83

	Introduction
	Related Literature

	Model
	Preference
	Undirected search
	Language
	Automaton
	Stochastic choice
	Near optimal decision procedures

	Complexity
	Adaptive Languages
	Sketches of the Proofs
	Theorem 1—sketch of the proof
	Theorem 2—sketch of the proof
	Theorem 3—sketch of the proof

	Extensions
	Endogenous dismissal decision
	Recall of the past investigations

	Conclusion
	Lemmas for a more general setup
	Preliminaries
	Global dynamics
	Local dynamics
	A Graph Theory Approach

	Proofs for the baseline model
	Other Combinatorics statements
	Universal decision rule
	Additive languages and automata
	Other Lemmas
	Proofs of statements in Sections 2-4
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Theorem 3
	Proof of Proposition 5

	Proofs of lemmas and claims from Section 5
	Formalizing the dynamics

	Proofs for the extensions
	Proof for the model with endogenous dismissal decision
	Proof of Proposition 6
	Proof of Corollary 2
	Proof of Proposition 7

	Proofs for the model with recall of the past investigations
	Proof of Theorem 4
	Proof of Theorem 5

