# Decomposing the (In)Sensitivity of CPI to Exchange Rates

Marco Errico

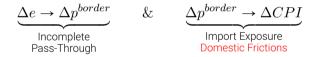
- The response of domestic prices to fluctuations in exchange rates matters for:
  - Monetary and exchange rate policy; Cross-border shocks transmission.
    Corsetti et al. (2008), Benigno & Benigno (2003), Corsetti et al. (2010)
  - Redistribution and inequality dynamics, Jaravel (2021), Cravino & Levchenko (2017)

- The response of domestic prices to fluctuations in exchange rates matters.
- Stylized fact: low CPI sensitivity,  $\Delta e = 1\% \rightarrow \Delta CPI \approx 0.05\% 0.1\%$ .

Campa & Goldberg (2010), Gopinath (2015)

- The response of domestic prices to fluctuations in exchange rates matters.
- Stylized fact: low CPI sensitivity,  $\Delta e = 1\% \rightarrow \Delta CPI \approx 0.05\% 0.1\%$ .
- Natural candidates: low pass-through into border price and import exposure.

$$\underbrace{\Delta e = 1\% \rightarrow \Delta p^{border} \approx 0.75\%}_{\text{Incomplete Pass-Through}} \qquad \& \qquad \underbrace{\Delta p^{border} \rightarrow \Delta CPI}_{\text{Import Exposure} \approx 20\% - 30\%}$$


- The response of domestic prices to fluctuations in exchange rates matters.
- Stylized fact: low CPI sensitivity,  $\Delta e = 1\% \rightarrow \Delta CPI \approx 0.05\% 0.1\%$ .
- Majority of literature focus on pass-through into border price and import exposure.

$$\underbrace{\Delta e = 1\% \rightarrow \Delta p^{border} \approx 0.75\%}_{\text{Incomplete Pass-Through}} \qquad \& \qquad \underbrace{\Delta p^{border} \rightarrow \Delta CPI}_{\text{Import Exposure} \approx 20\% - 30\%}$$

• Back-of-the-envelope-calculations: implied CPI sensitivity  $\times 3$  than estimated.

$$\Delta CPI \approx \text{Import Exposure} \times \Delta p^{border} \approx 0.15\% - 0.3\%$$

- The response of domestic prices to fluctuations in exchange rates matters.
- Stylized fact: low CPI sensitivity,  $\Delta e = 1\% \rightarrow \Delta CPI \approx 0.05 0.1\%$ .
- Majority of literature focus on pass-through into border price and import exposure.



- This paper: role of **domestic frictions** for the (in)sensitivity of CPI.
  - Domestic frictions: variable markups, nominal rigidities, and distribution costs.
  - Insensitivity vs Sensitivity.

#### This Paper

- Pricing model of domestic CPI. Campa & Goldberg (2010)
  - Unified framework to connect exchange rate, frictions and border price dynamics.
  - Derive a measurement equation for the exchange rate pass-through into CPI.

$$\Delta CPI = (I - \Phi \Delta \Gamma S_d)^{-1} \underbrace{\Phi}_{\text{Distribution Nominal Markup Import Exposure}} \Delta p^{border}$$

- Discipline at product level using detailed micro data.
  - Input-output tables  $\rightarrow$  IO network, distribution costs, consumption shares.
  - Balance-sheet data  $\rightarrow$  PF estimation and markup elasticity.
  - Import transaction data  $\rightarrow$  Incomplete and heterogeneous ERPT into border prices.

Model matches the (untargeted) estimated CPI sensitivity.

## What curbs/drives the response of domestic prices?

- 1. 60% of insensitivity due to domestic frictions.
  - Focus on incomplete border pass-through largely overestimates CPI sensitivity.
  - All mechanisms are individually relevant, reduce sensitivity by 20% 35%.
- 2. 75% of CPI sensitivity due to imported final goods:
  - Conflicting with previous literature, abstracting from frictions. Campa & Goldberg (2010)
  - Heterogeneity: Composition + Identity.
  - $\rightarrow$  Optimal monetary policy and inflation targeting; Redistribution dynamics.



#### Measuring Pass-Through into Domestic Prices

Calibration and Estimation

#### Results

• Pricing model of domestic CPI.

Campa and Goldberg (2010)

- Key features:
  - I. Domestic frictions for exchange rate transmission into CPI.
    - Distribution margin: retail prices include marketing/service costs;
    - Variable markups: adjust markups instead of prices;
    - Nominal rigidities: possibility to adjust prices;
  - 2. Natural candidate: import exposure and border prices dynamics.
    - Direct + indirect import exposure: sparse network + spillover/amplification;
    - Incomplete ERPT into border prices + heterogeneity.
  - 3. Static, partial equilibrium setting.
    - Short-run view: firms take as given wages and sectoral prices, no GE effects.

• Unit-elastic consumption bundle over domestic and imported sectoral goods.

$$\eta^{P,e} = \boldsymbol{\beta} \times \boldsymbol{\eta}^{\mathbf{p},e} = \underbrace{\boldsymbol{\beta}^{D} \times \boldsymbol{\eta}^{\mathbf{p}^{D},e}}_{\boldsymbol{\mu}} + \underbrace{\boldsymbol{\beta}^{F} \times \boldsymbol{\eta}^{\mathbf{p}^{F},e}}_{\boldsymbol{\mu}}.$$

Indirect exposure

Direct exposure

- Unit-elastic consumption bundle over domestic and imported sectoral goods.
- Domestic sectoral goods aggregate sectoral varieties and distribution costs.
  - 1. Varieties produced by monopolistically symmetric competitive firms.

Domestic + imported intermediate inputs, together with labor. Variable markups + Calvo.

$$\widetilde{p}_i = \mu_i mc_i$$
 with  $mc_i = w^{\alpha_{i,l}} \prod_{j=1}^N p_j^{\alpha_{i,j}}$  and  $\mu_i \equiv \frac{\varepsilon(\widetilde{p}_i)}{\varepsilon(\widetilde{p}_i) - 1}$ .

2. Local competitive distributor aggregates differentiated varieties - VES technology.

$$\sum_{k} A_i \mathcal{K}_i \left( \frac{y_{i,k}}{y_i} \right) = 1, \qquad \mathcal{K}(\cdot) > 0, \mathcal{K}'(\cdot) > 0, \mathcal{K}''(\cdot) < 0 \qquad \Longrightarrow \Gamma_i \equiv -\frac{d \log \mu_i}{d \log \tilde{p}_i} > 0.$$

3. Combine varieties with distribution services paid in labor with unit-elastic technology.

$$p_i = \widetilde{p_i}^{1-\phi_i} w^{\phi_i} \qquad \text{with } \phi_i \leqslant 1.$$

- Unit-elastic consumption bundle over domestic and imported sectoral goods.
- Domestic sectoral goods aggregate sectoral varieties and distribution costs.
  - Varieties produced by monopolistically symmetric competitive firms. Domestic + imported intermediate inputs, together with labor. Competition within sectors (variable markups) + nominal rigidities (one-period Calvo rigidity).
  - 2. Local competitive distributor aggregates differentiated varieties.
  - 3. Combine varieties with distribution services paid in labor with unit-elastic technology.
- Imported sectoral goods purchased and sold locally by distributor.
  - 1. Retail price of imported goods = border price + local distribution costs.
  - 2. Reduced form border price sensitivity.

Pass-through into CPI -  $\eta^{P,e}$ 

• ERPT into CPI: 
$$\eta^{P,e} = \beta \times \eta^{\mathbf{p},e} = \underbrace{\beta^D \times \eta^{\mathbf{p}^D,e}}_{\text{Indirect exposure}} + \underbrace{\beta^F \times \eta^{\mathbf{p}^F,e}}_{\text{Direct exposure}}.$$

• Direct exposure: PT into imported final consumption.



• Indirect exposure: PT into domestic final consumption.

$$\boldsymbol{\eta}^{\mathbf{p}^{D},e} = \underbrace{(I - \Phi \Delta \Gamma S_d)^{-1} \Phi \Delta \Gamma S_m}_{\text{Domestic network}} \times \underbrace{\boldsymbol{\eta}^{\mathbf{p}^{F},e}}_{\substack{\text{ERPT into}\\ \text{imported inputs}}}$$

.



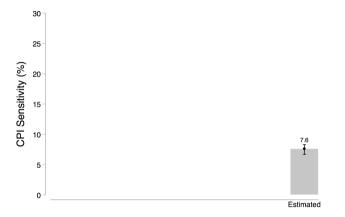
Measuring Pass-Through into Domestic Prices

Calibration and Estimation

Results

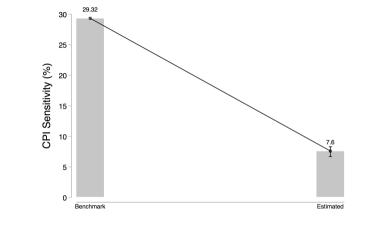
# Calibration - Summary

• Several data sources from Chile, 2000-2019.

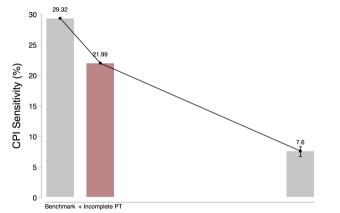

| Parameter(s) | Description Data                      |                      |  |
|--------------|---------------------------------------|----------------------|--|
| $S_m \& S_d$ | Import and domestic Leontief matrices | IO tables            |  |
| $\beta$      | Consumption share                     | IO tables            |  |
| $\Phi$       | Distribution margin                   | IO tables            |  |
| Г            | Markup elasticity                     | ENIA Survey          |  |
| $\Psi$       | ERPT into Border Price                | Customs Data         |  |
| Δ            | Calvo parameter                       | Arouba et al. (2022) |  |



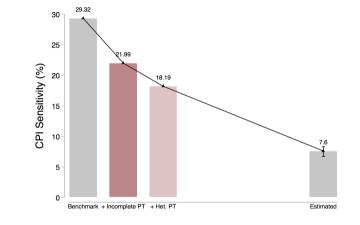
Measuring Pass-Through into Domestic Prices


Calibration and Estimation

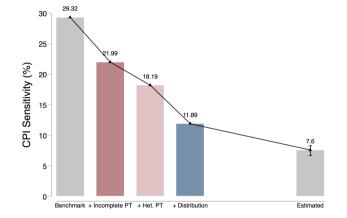
#### Results



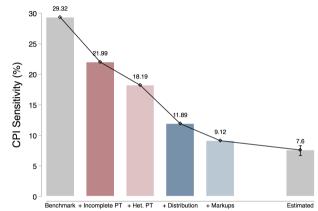

• Estimated average CPI sensitivity over 2009-2019: 7.6%


Estimated Sensitivity

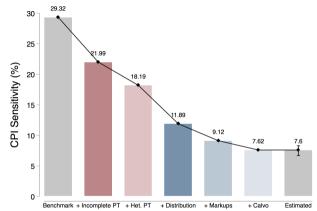



Benchmark:  $\eta^{p^F,e} = 1$   $\eta^{p^D,e} = (I - S_d)^{-1} S_m \eta^{p^F,e} \approx 4x$  Estimated.

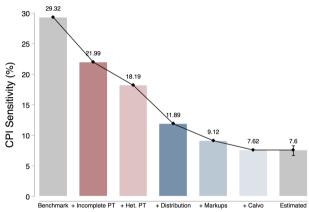



+ Incomplete PT: 
$$\eta^{p^F,e} = \Psi$$
  $\eta^{p^D,e} = (I - S_d)^{-1} S_m \eta^{p^F,e} \approx 25\%$  lower

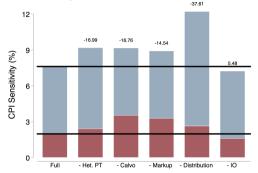



+ Het. PT:  $\eta^{p^F,e} = \Psi_i$   $\eta^{p^D,e} = (I - S_d)^{-1} S_m \eta^{p^F,e} \approx 20\%$  lower.




+ Distribution:  $\eta^{p^F,e} = \Phi \Psi_i$   $\eta^{p^D,e} = (I - \Phi S_d)^{-1} \Phi S_m \eta^{p^F,e} \approx 35\%$  lower.




+ Markup:  $\eta^{p^{F},e} = \Phi \Psi_{i}$   $\eta^{p^{D},e} = (I - \Gamma \Phi S_{d})^{-1} \Gamma \Phi S_{m} \eta^{p^{F},e} \approx 25\%$  lower.



+ Calvo: 
$$\eta^{p^F,e} = \Phi \Psi_i$$
  $\eta^{p^D,e} = (I - \Delta \Gamma \Phi S_d)^{-1} \Delta \Gamma \Phi S_m \eta^{p^F,e} \approx 17\%$  lower.



- Full model closely reproduces estimated level of CPI insensitivity.
- Domestic frictions more relevant than the response of border prices. order



 Main source of sensitivity: Direct exposure/imported consumption, ≈ 75%. Conflicting evidence with previous literature.
 Campa and Goldberg (2010), Burnstein et al. (2005), Gopinath (2015)

• Intuition: Frictions stronger on  $n_D$   $(\eta^{p^D,e} = (I - \Delta \Gamma \Phi S_d)^{-1} \Delta \Gamma \Phi S_m \eta^{p^F,e}).$ 

- Not just about domestic frictions:
- 1. Heterogeneous frictions reduces transmission Composition effect. Details
- 2. Presence of domestic frictions reduces IO effects/amplification. Details
- 3. Heterogeneity in consumption shares Composition effect. Details
- 4. Network centrality and imported inputs negatively correlated. Details
- Previous literature overlook domestic frictions (heterogeneity) and sparse network.

#### **Discussion - Implications**

- (In)Sensitivity of domestic prices to ER key in open economy macroeconomics.
  ERPT to CPI: fear of floating vs misalignment → Determines optimal index (PPI vs CPI).
  Benigno and Benigno (2003), Corsetti et al. (2008)
- Predominant role of direct exposure and domestic frictions; Heterogeneity.

 $\rightarrow$  Inflation targeting: CPI/PPI weights might not coincide with optimal weights. Rubbo (2020), Pasten et al. (2022)

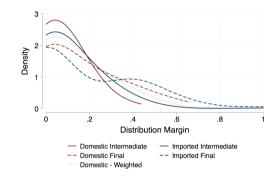
 $\rightarrow$  Redistribution: low income consumers more exposed (higher direct exposure). Jaravel (2020)

#### Conclusion

- I decompose CPI (in)sensitivity:
  - Expression for pass-through rate into CPI with usual and unusual suspects.
  - Discipline it with multiple, granular data sources.
  - Focus on heterogeneity across sectors/products.
- Main results:
  - 1. Predominant role of domestic frictions and direct exposure.
  - 2. Disaggregation and heterogeneities key to understand role of each element.
- Implications for:
  - 1. Policy: Monetary policy and inflation targeting debate in open economy; Inequality dynamics.
  - 2. Future modelling and calibrations: need (heterogeneity in) frictions.

# Appendix

# **Distribution Margins**


- Source: 2013 IO tables from Central Bank of Chile.
- Distribution margin:

 $\phi_i = \frac{\text{Value at purchaser prices - value at basic prices}}{\text{Value at purchaser prices}}$ 

corresponding to retail, wholesale, and transportation costs.

- For each i, compute  $\phi_i$  separately for
  - imported vs domestic goods;
  - final vs intermediate consumption.
- For domestic products,  $\phi_i$  weighted average of final and intermediate margins.

#### **Distribution Margins**



• Rich heterogeneity across products and use: Final > intermediate; imported > domestic.



# **Distribution Margin**

|                                 | Intermediate Goods |          | Final Goods |          |
|---------------------------------|--------------------|----------|-------------|----------|
|                                 | Domestic           | Imported | Domestic    | Imported |
| Farms                           | 0.0701             | 0.0778   | 0.258       | 0.183    |
| Fishing and Forestry            | 0.0135             | 0.000166 | 0.113       | 0.0224   |
| Oil, Coal and Gas Extraction    | 0.0000500          | 0.0236   | 0           | 0        |
| Mining                          | 0.000593           | 0.0216   | 0           | 0        |
| Food, Beverages and Tobacco     | 0.0896             | 0.207    | 0.265       | 0.366    |
| Textile and Apparel             | 0.128              | 0.248    | 0.342       | 0.529    |
| Wood, Paper and Printing        | 0.103              | 0.142    | 0.181       | 0.257    |
| Petroleum and Chemical Products | 0.150              | 0.172    | 0.307       | 0.386    |
| Plastic Rubber and Construction | 0.0580             | 0.146    | 0.146       | 0.401    |
| Fabricated Metal Products       | 0.0577             | 0.133    | 0.0309      | 0.0809   |
| Machinery and Equipment         | 0.0918             | 0.194    | 0.134       | 0.336    |
| Motor Vehicles                  | 0.0335             | 0.0988   | 0.0744      | 0.333    |
| Furniture                       | 0.112              | 0.225    | 0.312       | 0.369    |
| Utilities                       | 0.0310             | 0.000800 | 0.106       | 0        |
| Construction                    | 0.00269            | 0        | 0           | 0        |
| Wholesale and Retail Trade      | 0.00384            | 0.00180  | 0.0229      | 0        |
| Transportation                  | 0.0107             | 0.00803  | 0.0183      | 0        |
| Health Care and Education       | 0.00190            | 0        | 0.0250      | 0        |
| Accomodation and Recreation     | 0.0381             | 0.0216   | 0.0894      | 0        |
| Professional Services           | 0.0208             | 0.0157   | 0.0525      | 0.0226   |
| Communication                   | 0.0451             | 0.0153   | 0.149       | 0        |
| Other Products or Services      | 0.0908             | 0.0701   | 0.0391      | 0.118    |



# Markup Elasticity

Autor et al. (2020) • Robustness

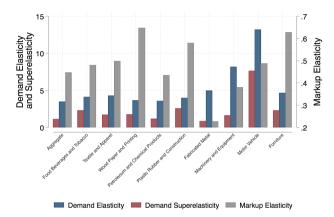
• Assume Klenow-Willis (2016) for distributor's VES technology. In steady-state:

$$\Gamma_i = \frac{\epsilon_i}{\sigma_i - 1},$$

with  $\sigma_i$  and  $\epsilon_i$  being the elasticity and the super-elasticity of demand.

 Use ENIA dataset to estimate production function and markups at sector level. Levinsoohn and Petrin (2003), Ackerberg et al. (2015), De Loecker and Warzynski (2012)
 Data Description

• As robustness, I estimate markups using accounting cost share approach.


#### Markup Elasticity (cont'd)

- Calibrate  $\sigma_i$  to match the estimated average markup,  $\bar{\mu_i}$ :  $\sigma_i = \frac{\bar{\mu_i}}{\bar{\mu_i}-1}$ . Markup Estimates
- Estimate  $\epsilon_i$  using within-industry relationship between markups and market shares implied by Klenow-Willis specification. Edmond et al. (2019)

$$\frac{1}{\mu_{ikt}} + \log\left(1 - \frac{1}{\mu_{ikt}}\right) = a_i + b_i \log \mathtt{share}_{ikt} + \iota_k + \iota_t, \qquad b_i = \frac{\epsilon_i}{\sigma_i}$$

- Retrieve  $\epsilon_i$  given  $\hat{b}_i$  and  $\sigma_i$ .
- Missing products (mostly services) are calibrated using aggregate estimates.

# Markup Elasticity (cont'd)



- Markup elasticities are in line with values used in the literature. Gopinath et al. (2010)
- Large heterogeneity in implied pass-through rates (ranging between 0.5 and 0.9).

# ENIA - Survey of Manufacturing

- 2000-2007 Annual National Industrial Surveys (ENIA): 5000 plants with > 10 employees.
- Data on sales, inputs expenditures, employment and wage bill, investment, industry.
- Summary Statistics:

|                       | Mean      | p25     | Median  | p75       |  |
|-----------------------|-----------|---------|---------|-----------|--|
| Sales                 | 5,666,147 | 151,802 | 407,989 | 1,607,334 |  |
| Wage Bill             | 438,828.1 | 37,268  | 88,067  | 279,700   |  |
| Material Expenditure  | 3,067,797 | 74,545  | 209,090 | 866,560   |  |
| Capital Stock         | 3,001,394 | 31,636  | 130,379 | 620,612   |  |
| Electricity Used (MW) | 3,520.978 | 27      | 77      | 357       |  |
| Observations          | 31,027    |         |         |           |  |

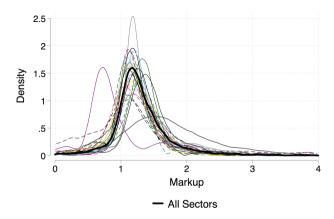


### Markup Estimation - Production Function

• I estimate a Cobb-Douglas production function of the form:

$$\log y_{ik} = \beta_i^k \log k_{ik} + \beta_i^l \log l_{ik} + \beta_i^x \log x_{ik} + \omega_{ik} + \xi_{ik}$$

where  $y_{ik}$ ,  $k_{ik}$ ,  $l_{ik}$ ,  $x_{ik}$ ,  $\omega_{ik}$  and  $\xi_{ik}$  represent quantity sold, capital stock, labor, materials, log productivity and the error term, respectively.


- Deflate variables using sectoral output, capital and inputs specific deflators.
- Endogeneity due to unobserved  $\omega_{ik}$ : control function approach. Ackerberg et al (2015)
- Use electricity consumption in MWs as proxy variable. Treat capital as dynamic input.
- Variable inputs: composite expenditure on labor and material (cost of goods sold). De Looecker et al (2022)
- Compute markups following De Loecker et al. (2012):  $\mu_{ik} = \widehat{\beta_i^{\text{Cost}}} \underbrace{\text{Sales}_{ik}}_{\text{Cost}_{ik}}$ .

## Markup Estimation - Accounting Cost Share

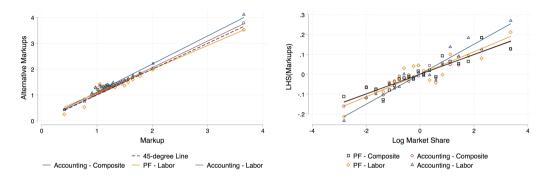
- Weaknesses in estimating markups via production function. Bond et al. (2022)
- Under CRS production function, output elasticity of input *i* = cost share of input *i*. Autor et al. (2020), Edmond et al. (2018)
- Assume output elasticity common within each sector across firms.
- Calibrate sectoral output elasticity to the median input share across firms.
- Use Cost of goods sold or labor only as input.
- Compute markups using De Loecker et al. (2012):  $\mu_{ik} = \widehat{\beta_i^{\text{Cost}}} \underbrace{\frac{\text{Sales}_{ik}}{\text{Cost}_{ik}}}_{i}$ .



#### Estimated Markup



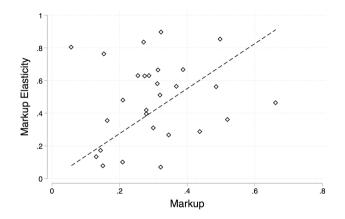
• Estimates and distributions in line with previous results. Levinsohn and Petrin (2003), Garcia-Marin et al. (2019)




## Estimated Markup and Implied Parameters

|                                  | Markup |        |       | Implied Parameters |       |       |       |
|----------------------------------|--------|--------|-------|--------------------|-------|-------|-------|
|                                  | Mean   | Median | StD   | Weighted Mean      | σ     | ε     | Г     |
| Food Beverages and Tobacco       | 1.343  | 1.302  | 0.226 | 1.415              | 4.098 | 2.281 | 0.479 |
| Textile and Apparel              | 1.274  | 1.262  | 0.186 | 1.301              | 4.266 | 1.672 | 0.498 |
| Wood Paper and Printing          | 1.289  | 1.257  | 0.201 | 1.377              | 3.643 | 1.712 | 0.646 |
| Petroleoum and Chemical Products | 1.392  | 1.275  | 0.410 | 1.420              | 3.521 | 1.139 | 0.434 |
| Plastic Rubber and Construction  | 1.292  | 1.262  | 0.209 | 1.391              | 3.930 | 2.546 | 0.578 |
| Fabricated Metal                 | 1.165  | 1.101  | 0.263 | 1.295              | 4.939 | 0.810 | 0.226 |
| Machinery and Equipment          | 1.201  | 1.177  | 0.188 | 1.152              | 8.122 | 1.595 | 0.380 |
| Motor Vehicle                    | 1.088  | 1.119  | 0.265 | 1.047              | 13.18 | 7.582 | 0.486 |
| Forniture                        | 1.244  | 1.227  | 0.172 | 1.275              | 4.641 | 2.283 | 0.627 |
| Aggregate                        | 1.274  | 1.237  | 0.247 | 1.408              | 3.453 | 1.093 | 0.446 |

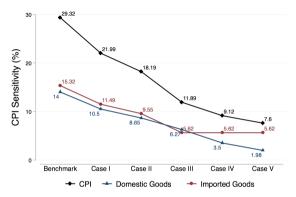



### Estimated Markup - Robustness



- Highly correlated estimated markups across approaches and variable inputs.
- Similar implied markup elasticities.

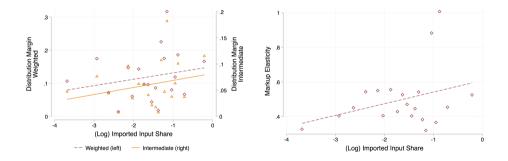



#### Markup Elasticity - Sectors



•  $Cov(\mu_i, \Gamma_i) > 0$  also across sectors.

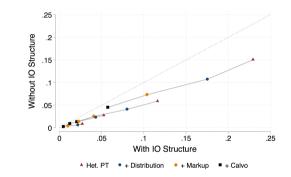



#### Imported vs Domestic Consumption



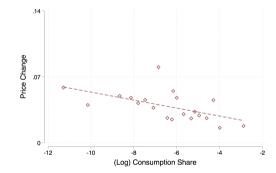
- In full model (Case V): 75% of sensitivity due to consumption of imported goods.
- In benchmark economy: direct vs indirect equally relevant.

1. Heterogeneous frictions reduces transmission – Composition effect.


Imported intermediate inputs positively related to distribution cost and markup elasticity.

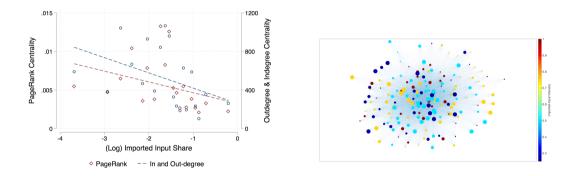


 $\rightarrow$  Composition effect: lower transmission in most relevant goods ( $\approx 10\%$ ). Pasten et al (2022)




2. Presence of domestic frictions reduces IO effects/amplification.




$$\eta^{p^{F},e} = \Phi \Psi_{i} \qquad \eta^{p^{D},e} = (\mathbf{I} - \mathbf{\Delta} \mathbf{\Gamma} \mathbf{\Phi} \mathbf{S}_{\mathbf{d}})^{-1} \Delta \Gamma \Phi S_{m} \eta^{p^{F},e}$$

3. Lower consumption shares for goods with more volatile prices - Composition effect.



→ Composition effect: smaller relevance of most exposed goods. Chen et al (2022) • Back

4. Network centrality and imported inputs negatively correlated.



→ Economic structure/Network shape relevant import exposure & amplification. • Back