SIZE DISTRIBUTION OF CITIES: EVIDENCE FROM A LAB

Rocco Rante¹ Federico Trionfetti² Priyam Verma²

EEA-ESEM 2023, Barcelona

August 28, 2023

¹ The Louvre Museum, France.

² Aix Marseille Univ, CNRS, AMSE.

- \cdot Many factors determine population size differences across cities
 - $\cdot\,$ Amenity differential (eg. Next to a beach).
 - · Productivity differential (eg. Silicon valley for tech).
 - · Spatial connectedness.
- $\cdot\,$ Aggregation of these factors determines city size distribution.
 - \cdot For instance, agglomeration can result in fatter tails (NY pop is 8 mil).
 - $\cdot\,$ Factors hard to measure and often time-varying.
- $\cdot\,$ What is the distribution when most factors are almost uniform?
 - $\cdot\,$ Use 9 th century archaeological data from the oasis of Bukhara.
 - $\cdot\,$ Examine the role of geography in city size distribution.

- $\cdot\,$ Standard tests of log-normality and pareto don't fit the data.
 - · Zipf's law: Linear slope of (log) population rank and size is -1.
 - $\cdot\,$ If data is Pareto with shape parameter 1, Zipf's law should hold
 - \cdot For cities in most of Europe and US, this slope is > -1.

Table 1, Table 2

- · Using 9th century archaeological data from Bukhara (Uzbekistan)
 - $\cdot\,$ Construct cities using statistical methods.
 - \cdot Which distribution best describes the data? Any stylized facts?
- $\cdot\,$ Write a discrete choice model of locations
 - \cdot Estimate three key parameters while fitting the data to our model
 - $\cdot\,$ Show how distribution changes with the three shocks:
 - · Amenity, Agglomeration, and Geography.
- $\cdot\,$ Re-estimate the parameters with 21st century data from Uzbekistan
 - \cdot See how the distribution changed?
 - · Which of three contributed more?

- $\cdot\,$ Extends over delta of the Zerafshan in southeastern Uzbekistan.
 - $\cdot\,$ Irrigates a surface of land whose area measures about 5,100 sq km.
 - · Flat surface (Maximum difference in altitude is 200 meters)
 - $\cdot\,$ Outside the delta lays a desert made of clay giving natural boundary.
- · Consists of 618 sites:
 - · Manufacturing cities (53)
 - · Agricultural cities (284)
 - · Hamlets (266)
 - Forts (15)

OASIS OF BUKHARA

- $\cdot\,$ Non-manufacturing cities surround manufacturing cities.
 - $\cdot\,$ We count them together as one urban unit.
- $\cdot\,$ Test if this is a valid assumption by calculating

$$\mathcal{K}(r) = \left(\frac{\sum_{i \in M} v_i(r)}{\sum_{i \in M} n_i(r)}\right) \left(\frac{V}{N-1}\right)^{-1} \tag{1}$$

where

- $\cdot v_i(r)$: # of non-manufacturing cities around manu. city i within radius r.
- \cdot $n_i(r)$: # of neighboring cities around manu. city i within radius r.
- · V: Total non-manufacturing cities
- N: Total cities (man. + non-man.)
- \cdot Also calculate 95% CI based on simulated city distribution.

CO-CONCENTRATION INDEX

· Non-Man. cities concentrate around Manu. cities at 7 kilometers.

A: Skwenes-Kurtosis and Shapiro-Wilkinson tests for log-normality

			Sk-Kurt		SW
Measure of 'size'	Type of unit	Sk.	Kurt	Joint	
Population	Urban System	0.6428	0.8190	0.8748	0.5597

 $\cdot\,$ The urban systems pass the test of normality.

B: OLS	<u>j</u>
Measure of 'size'	№ of obs.
Population	53

 $\cdot\,$ Don't conform to Zipf's law and hence not Pareto with parameter 1.

C: Rank-size slope by quartiles								
	Q1	Q2	Q3	Q4				
Urban System	-0.27	-0.74	-1.69	-2.04				
	(.02)	(0.03)	(0.12)	(0.13)				

- $\cdot\,$ Falling slope show presence of concavity in rank size relationship.
 - $\cdot\,$ For smaller cities, concentration forces are active.
 - · For larger cities, dispersion forces are active.

· Location: Utility derived from being located in i:

 $U_i = \mathbb{E}[u_i] + \epsilon_i$ Amenity shocks

· Here location shocks ϵ_i is *i.i.d.* ~ G(0, μ_L).

· Consumption: Utility from consumption is

$$c_i = \alpha \bar{l} + \xi_i$$
 Agglomeration

- \cdot *l* is time endowment, α of which spent of production.
- Preference for traders in market i ξ is *i.i.d.* ~ $G(L_i, \mu_c)$
- Travel across cities: Utility from trip b/w i and j is

$$t_{ij} = \tau_{ij} + \zeta_j \tag{4}$$

- Preference for travel ζ is *i.i.d.* ~ G(0, μ_z).
- · Remainder of time net of travel cost: $\tau_{ij} = (1 \alpha)\overline{l} 2\delta_{ij}/s$.

(2)

(3)

 $\cdot\,$ The expected indirect utility from location i is

$$\mathbb{E}\left[u_{i}\right] = \bar{l} + \underbrace{\mu_{C} \ln L_{i}^{m}}_{\text{Market Size}} + \underbrace{\mu_{Z} \ln \left(\sum_{j=1}^{N} \exp\left(-\delta_{ij}/\mu_{Z}\right)\right)}_{\text{centrality}}$$
(5)

 $\cdot\,$ In equilibrium, population share of location i is

$$\ln \lambda_{i}^{*} = \underbrace{\frac{\mu_{C}}{\mu_{L} - \mu_{C}} \ln s_{i}}_{\text{Silk Dummy}} + \underbrace{\frac{\mu_{Z}}{\mu_{L} - \mu_{C}} \ln \sum_{j=1}^{N} e^{\frac{-\delta_{ij}}{\mu_{Z}}} - \ln \sum_{k=1}^{N} s_{i} \lambda_{i}^{*} \left(\sum_{j=1}^{N} e^{\frac{-\delta_{kj}}{\mu_{Z}}} \right)^{\frac{\mu_{Z}}{\mu_{L}}}_{\text{Relative centrality}}$$
(6)

· Geographical advantage is a key determinant of population.

TESTING THE MODEL: RANK SIZE RELATION

· Model replicates the rank size concavity as seen in the data.

Low Travel Shocks \rightarrow Fatter Tails + Smaller Size

- · The importance of geography increases as travel shocks fall.
- \cdot Makes the distribution more skewed towards central places.

Higher Market Shocks ightarrow Increase Range and Size

- · Agglomeration Forces: Higher market-size shocks make
 - · Big cities bigger.
 - · Small cities smaller.

Higher Amenity Shocks ightarrow Reduces Range

- · Higher amenity shocks reduce
 - · Importance of geography
 - Population range

DATA AND ESTIMATES: CITY SIZE DISTRIBUTION

	Market size (μ_c)	Amenity (μ_l)	Travel (μ_z)
Historical	0.18	1.74	3.3
Current	3.15	3.28	1.63

- · Agglomeration forces much more important today
- \cdot Geography explains most of the skewness in the data.

- $\cdot\,$ New evidence on city size distribution using archaeological data.
- \cdot Log-normality is a good fit under homogeneous conditions.
 - $\cdot\,$ Rank size relation is concave and hence Zipf's law doesn't hold.
- \cdot As agglomeration forces increase, distribution shifts to right.
- \cdot Geographic centrality important for explaining fat tails.

ARCHEOLOGICAL SURVEY

- $\cdot\,$ Models of city size has focused on stochastic TFP and amenities.
 - · But geography plays no role in determining city size.
 - $\cdot\,$ Some spatial models with implications for city size.
 - Caliendo, Dvorkin, and Parro (2019), Allen and Arkolakis (2014), Redding and Sturm (2008).
- $\cdot\,$ Can size distribution in Bukhara be explained by a model of
 - \cdot traveling people across cities where
 - · some cities are more central than others?

 \cdot With 618 sites, create 53 clusters around manufacturing sites.

Country	Sk.	Kurt.	Joint	Country	Sk.	Kurt.	Joint
Austria	.0000	.0000	.0000	Liecht.	.0607	.3459	.1034
Belgium	.3323	.0000	.0000	Lithuania	.0000	.0006	.0000
Bulgaria	.0000	.0020	.0000	Luxembourg	.0004	.0125	.0005
Croatia	.0000	.0000	.0000	Malta	.0408	.3460	.0820*
Cyprus	.0191	.8962	.0632 [*]	Norway	.0000	.0617	.0001
Czech Rep.	.0000	.0000	.0000	Poland	.0000	.0000	.0000
Denmark	.1059	.0001	.0009	Portugal	.0000	.1412	.0000
Estonia	.0000	.0000	.0000	Romania	.0000	.0000	.0000
Finland	.0036	.0082	.0012	Slovakia	.0000	.0000	.0000
France	.0000	.0000	.0000	Slovenia	.1550	.0374	.0465
Germany	.0000	.0002	.0000	Spain	.0000	.1962	.0000
Greece	.0023	.3875	.0101	Sweden	.0000	.0313	.0001
Hungary	.0000	.0000	.0000	Switzerland	.2033	.0349	.0488
Iceland	.1448	.5410	.2739*	UK	.0008	.7839	.0034
Ireland	.0000	.4217	.0000	Europe-31	.0000	.0000	.0000
Italy	.0000	.0000	.0000	US (2010)	.0000	.1011	.0000
Latvia	.0000	.0014	.0000	US (2000) [†]	.019	.000	.0000

 $\cdot\,$ Except for 4 out of 34 countries, tests rejects normality.

$\ln(rank) = c_0 + c_1 \ln(Population) + \epsilon$

Country	C1	s.e.	Nº cities	Country	С1	s.e.	№ cities
Austria	-1.019	.0078	2357	Liecht.	7125	.1889	11
Belgium	-1.043	.0179	589	Lithuania	9100	.0092	540
Bulgaria	8571	.0161	264	Luxemb.	9802	.0221	116
Croatia	9730	.0101	556	Malta	8365	.0623	68
Cyprus	4799	.0090	395	Norway	7928	.0123	430
Czech Rep.	7871	.0027	6251	Poland	-1.195	.0038	2479
Denmark	9678	.0572	99	Portugal	7043	.0041	4260
Estonia	8336	.0168	226	Romania	-1.018	.0083	3181
Finland	7565	.0143	336	Slovakia	-0.782	.0005	2926
France	7047	.0011	36700	Slovenia	8684	.0247	192
Germany	6128	.0022	11355	Spain	5172	.0019	7517
Greece	7206	.0237	316	Sweden	9792	.0162	290
Hungary	6855	.0046	3154	Switzerland	6826	.0061	2515
Iceland	5331	.0197	76	UK	-1.315	.0065	10292
Ireland	9297	.0049	3409	Europe-31	5742	.0007	109111
Italy	6795	.0031	8092	US (2010)	5081	.0012	29494
Latvia	9196	.0216	119	US (2000)	5258	0.0014	25358

We find evidence of Zipf's conformity in only 4 out of 34 countries.

- \cdot Truncate distribution tail to match upper tail c_1 to -1.
- $\cdot\,$ Fit upper tail rank data to population size and its square.

 $log(Rank_i) = \alpha + \beta_1 \log(Population_i) + \beta_2 \log(Population_i)^2 + \epsilon_i$

	Uppe	r Tail	Qua	dratic regr.	within upp	er tail	Upper tail's
Country	c1	Std	B1	Std	B2	Std	Quadratic
Bulgaria	-1.004	0.01	0.43	0.09	-0.07	0.004	Conc
Croatia	-1.003	0.008	0.37	0.06	-0.07	0.003	Conc
Cyprus	-1.004	0.03	2.7	0.52	-0.19	0.02	Conc
Cz.Rep.	-0.999	0.001	-0.52	0.006	-0.031	0.0004	Conc
Estonia	-0.994	0.01	-1.16	0.101	0.009	0.005	Lin
Finland	-1.004	0.007	0.56	0.05	-0.07	0.002	Conc
France	-1.0006	0.0008	0.04	0.003	-0.064	0.0001	Conc
Germany	-0.9995	0.002	0.64	0.01	-0.08	0.0006	Conc
Greece	-1	0.02	4.95	0.14	-0.29	0.007	Conc
Hungary	-0.999	0.002	-0.18	0.016	-0.04	0.0009	Conc
Irland	-1.006	0.017	-1.68	0.16	0.03	0.008	Conv
Italy	-0.999	0.002	1.19	0.01	-0.12	0.0006	Conc
Latvia	-1.008	0.02	-0.84	0.24	-0.008	0.01	Lin
Liecht.	-1.03	0.25	17.25	6.25	-1.16	0.39	Conc
Lithuania	-1.001	0.007	0.58	0.06	-0.09	0.003	Conc
Malta	-1.04	0.06	7.88	0.65	-0.52	0.03	Conc

	Upper	Tail	Qua	Quadratic regr. within upper tail				
Country	c ₁	Std	B1	Std	B2	Std	Quadratic	
Norway	-1.004	0.01	0.94	0.07	-0.1	0.003	Conc	
Portugal	-1.001	0.004	1.84	0.02	-0.17	0.001	Conc	
Slovakia	-0.999	0.003	-0.1	0.021	-0.05	0.001	Conc	
Slovenia	-1.009	0.02	1.71	0.16	-0.14	0.009	Conc	
Spain	-1.003	0.004	1.07	0.02	-0.103	0.001	Conc	
Sweden	-1.007	0.015	2.3	0.11	-0.16	0.005	Conc	
Switzerland	-1.003	0.005	1.43	0.025	-0.14	0.001	Conc	
US(2000)	-1.001	0.001	1.02	0.007	-0.1	0.0003	Conc	
US(2011)	-1.0003	0.001	1.11	0.006	-0.1	0.0003	Conc	

- \cdot We can get an upper tail Zipf in 24/34 countries.
- \cdot Find concavity in upper tails for 21 countries.

RANK SIZE RELATION ACROSS CITY SIZES

 \cdot Zipf coefficient falls with increasing city size.

 \cdot In line with Duranton (2007) predictions.

SIMULATED CLUSTERS WITHIN OASIS

