
Framing and Ambiguity

EEA-ESEM, Barcelona, 2023

Evgenii Safonov, Queen Mary University of London



Motivation

◁ Framing matters for choice under ambiguity: Maher and Kashima

(1997), Esponda and Vespa (2016), Schneider, Leland and Wilcox (2018),

Leland, Schneider, Wilcox (2019)

◁ Framing matters for belief assessment: Fischoff, Slovic, Lichtenstein
(1978), Fox and Rottenstreich (2003), Fox and Clemen (2005),
Sonneman, Camerer, Fox and Langer (2013)

– “Partition-dependent expected utility” Ahn and Ergin (2010)

◁ Theoretical perspective: bounded rational agent is not able to integrate

all payoff-relevant details coherently

◁ What if framing is unobservable?

1



Motivation

◁ Framing matters for choice under ambiguity: Maher and Kashima

(1997), Esponda and Vespa (2016), Schneider, Leland and Wilcox (2018),

Leland, Schneider, Wilcox (2019)

◁ Framing matters for belief assessment: Fischoff, Slovic, Lichtenstein
(1978), Fox and Rottenstreich (2003), Fox and Clemen (2005),
Sonneman, Camerer, Fox and Langer (2013)

– “Partition-dependent expected utility” Ahn and Ergin (2010)

◁ Theoretical perspective: bounded rational agent is not able to integrate

all payoff-relevant details coherently

◁ What if framing is unobservable?

1



Motivation

◁ Framing matters for choice under ambiguity: Maher and Kashima

(1997), Esponda and Vespa (2016), Schneider, Leland and Wilcox (2018),

Leland, Schneider, Wilcox (2019)

◁ Framing matters for belief assessment: Fischoff, Slovic, Lichtenstein
(1978), Fox and Rottenstreich (2003), Fox and Clemen (2005),
Sonneman, Camerer, Fox and Langer (2013)

– “Partition-dependent expected utility” Ahn and Ergin (2010)

◁ Theoretical perspective: bounded rational agent is not able to integrate

all payoff-relevant details coherently

◁ What if framing is unobservable?

1



Motivation

◁ Framing matters for choice under ambiguity: Maher and Kashima

(1997), Esponda and Vespa (2016), Schneider, Leland and Wilcox (2018),

Leland, Schneider, Wilcox (2019)

◁ Framing matters for belief assessment: Fischoff, Slovic, Lichtenstein
(1978), Fox and Rottenstreich (2003), Fox and Clemen (2005),
Sonneman, Camerer, Fox and Langer (2013)

– “Partition-dependent expected utility” Ahn and Ergin (2010)

◁ Theoretical perspective: bounded rational agent is not able to integrate

all payoff-relevant details coherently

◁ What if framing is unobservable?

1



Motivation

◁ Framing matters for choice under ambiguity: Maher and Kashima

(1997), Esponda and Vespa (2016), Schneider, Leland and Wilcox (2018),

Leland, Schneider, Wilcox (2019)

◁ Framing matters for belief assessment: Fischoff, Slovic, Lichtenstein
(1978), Fox and Rottenstreich (2003), Fox and Clemen (2005),
Sonneman, Camerer, Fox and Langer (2013)

– “Partition-dependent expected utility” Ahn and Ergin (2010)

◁ Theoretical perspective: bounded rational agent is not able to integrate

all payoff-relevant details coherently

◁ What if framing is unobservable?

1



An Example of Ambiguity Framing

◁ Alice prepares for an exam

◁ Difficulty of the exam is unknown

◁ Study for the exam or work on something else?

◁ A friend: think if exam is hard or not

– If hard, then fail exam anyway

– If not hard, then pass if study, but could fail if does not study

– Alice studies for the exam

◁ A sister: think if exam is easy or not

– If easy, then pass anyway

– If not easy, then could fail anyway

– Alice works on something else
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This Project

◁ A decision-theoretic model of framing under ambiguity

◁ Framing organizes reasoning about uncertainty

– Framing is not “gains” versus “losses” as in Tversky and Kahneman (1981)

– Framing is not a status quo or endowment option

– Framing is not an order of alternatives or salience of alternatives

– Framing is not a property of alternatives, but a property of a choice problem

◁ What data is consistent with framing of ambiguity?

◁ Can the frames be identified from the behavior?

◁ How to connect the frames to become more consistent in choices?
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Model



Setup

Decision maker (DM) chooses from menus of Anscombe-Aumann acts

◁ X—arbitrary set of prizes

◁ △X— probability distributions with finite support on X

◁ S—finite set of states

◁ f,g,h,...—Anscombe-Aumann acts S → △X

◁ p,q,r,...—constant acts p(s) = p ∀s ∈ S

◁ A,B,...—non-empty compact sets of acts (menus) with finite set of

potential prizes {x ∈ X |∃f ∈ A ∃s ∈ S : f (s)(x) > 0}
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Choice Correspondence

Primitive: a subset of acts that could be chosen from a menu

◁ Choice correspondence ∅ ̸= c(A) ⊆ A

◁ Ways to observe choice correspondence:

– Repeated observations of choices from each menu

– Choices of a group of agents (population interpretation)
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WARP Is Relaxed

(A1) Framed Uncertainty:

◁ 𝛼: c(A ∪ B) ∩ A ⊆ c(A)

◁ C-𝛽: for constant acts c(A ∪ B) ∩ A ̸= ∅ =⇒ c(A) ⊆ c(A ∪ B)

◁ Aizerman’s Property: f ̸∈ c(A ∪ {f }) =⇒ c(A) ⊆ c(A ∪ {f })

Recall that WARP is equivalent to [𝛼 and 𝛽]

◁ WARP holds for (menus of) constant acts

◁ Aizerman’s Property relaxes 𝛽
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“Standard” Axioms

(A2) C-Independence: c(𝜆A+ (1− 𝜆)p) = 𝜆c(A) + (1− 𝜆)p

(A3) Strict Monotonicity: g(s) ̸∈ c({f (s), g(s)}) ∀s =⇒ g ̸∈ c({f , g})

(A4) Continuity: {(A, f )
⃒⃒
f ∈ c(A)} is closed

(A5) C-Non-Degeneracy: ∃p, q : {p} = c({p, q})

7



A New Axiom: No Hedging by Constant Acts

(A6) No C-Hedging: f , p ∈ A =⇒ c(A) ⊆ c(A ∪ {𝜆f + (1− 𝜆)p})

If WARP holds, follows from C-Independence and Strict Monotonicity
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Ambiguity Aversion Robust to the Framing

(A7) Indirect Ambiguity Aversion: for h ∈ A

h ̸∈ c(A ∪ {f }) and h ̸∈ c(A ∪ {g}) =⇒ h ̸∈ c(A ∪ {𝜆f + (1− 𝜆)g})
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Representation

Framed ambiguity representation (U,𝒜)

◁ U : △X → R —vNM expected utility

◁ 𝒜 —non-empty closed family of non-empty compact convex sets of beliefs

c(B) =
⋃︁
P∈𝒜

arg max
f∈B

WP(f )

where WP(f ) = min
𝜇∈P

∑︁
s∈S

𝜇(s)U(f (s))

Theorem 1. A choice correspondence c(·) has a framed ambiguity

representation if and only if axioms 1–7 hold.

Proposition. Axioms 1–7 are independent.
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Identification

Definition: P =
⋂︀

Q∈𝒞 Q ̸= ∅ is a coherent intersection of sets of beliefs in a

closed (in Hausdorff metric) family 𝒞 if for any linear subspace T of RS ,

projT

(︃⋂︁
Q∈𝒞

P ′

)︃
=
⋂︁
Q∈𝒞

projT(Q).

Theorem 2. Let c(·) satisfy axioms 1–7. Then there is a unique minimum family

of frames 𝒜, a unique maximum family of frames ℬ and VNM expected utility

function U such that:

(i) (U ′,𝒜′) represents c(·) if and only if U ′ ≈ U, and 𝒜 ⊆ 𝒜′ ⊆ ℬ;

(ii) P ∈ ℬ if and only if P is a coherent intersection of some 𝒞 ⊆ 𝒜.

Corollary. If all frames P ∈ 𝒜 are singletons, then 𝒜 is unique.
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Comparative Statics



Consistency of Choices

Definition: DM 1 is more consistent than DM 2 if for all menus A

|c2(A)| = 1 =⇒ |c1(A)| = 1.

Alternative characterization:

Proposition. Let c1(·) and c2(·) satisfy axioms 1–7. Then DM 1 is more con-

sistent than DM 2 if and only if c1({f , g}) ⊆ c2({f , g}) for all acts f , g .
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A Convex Combination of Sets of Beliefs

Crès, Gilboa, and Vieille (2011): let 𝜆 be convex weights: 𝜆i ≥ 0,
∑︀N

i=1 𝜆i = 1;

P =
N∑︁
i=1

𝜆iPi ≡
{︁
𝜇 ∈ △S

⃒⃒⃒
∃𝜇i ∈ Pi : 𝜇 =

N∑︁
i=1

𝜆i𝜇i

}︁

The associated maxmin utility function: WP(f ) =
N∑︁
i=1

𝜆iWPi (f )

Observation. DM (U,
∑︀N

i=1 𝜆Pi ) is more consistent than DM (U, {P1, ...,PN})

13
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A Convex Union of Sets of Beliefs

Crès, Gilboa, and Vieille (2011):

P = conv

(︃⋃︁
Q∈𝒞

Q

)︃
, where 𝒞 is non-empty and closed

The associated maxmin utility function: WP(f ) = min
Q∈𝒞

WQ(f )

Observation. DM
(︁
U, conv

(︁ ⋃︀
Q∈𝒞

Q
)︁)︁

is more consistent than DM (U,𝒜) if

𝒞 ⊆ 𝒜

14



A Convex Union of Sets of Beliefs

Crès, Gilboa, and Vieille (2011):

P = conv

(︃⋃︁
Q∈𝒞

Q

)︃
, where 𝒞 is non-empty and closed

The associated maxmin utility function: WP(f ) = min
Q∈𝒞

WQ(f )

Observation. DM
(︁
U, conv

(︁ ⋃︀
Q∈𝒞

Q
)︁)︁

is more consistent than DM (U,𝒜) if

𝒞 ⊆ 𝒜

14



A Convex Union of Sets of Beliefs

Crès, Gilboa, and Vieille (2011):

P = conv

(︃⋃︁
Q∈𝒞

Q

)︃
, where 𝒞 is non-empty and closed

The associated maxmin utility function: WP(f ) = min
Q∈𝒞

WQ(f )

Observation. DM
(︁
U, conv

(︁ ⋃︀
Q∈𝒞

Q
)︁)︁

is more consistent than DM (U,𝒜) if

𝒞 ⊆ 𝒜

14



A Coherent Intersection of Sets of Beliefs

This project:

P =
⋂︁
Q∈𝒞

Q, if the intersection is coherent

The associated maxmin utility function: WP(f ) = max
Q∈𝒞

WQ(f )

Observation. DM
(︁
U,
⋂︀

Q∈𝒞
Q
)︁
is more consistent than DM (U,𝒜) if 𝒞 ⊆ 𝒜,

and the intersection
⋂︀

Q∈𝒞
Q is coherent
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Using Different Operation of Frame Connection

Definition: Given a compact collection of frames 𝒜, its closure with respect to

operations of convex combination, convex union and coherent intersection is

the minumum compact collection of frames Γ(𝒜) such that:

(i) ∀ {P1, ...,PN} ⊆ Γ(𝒜) ∀𝜆
∑︀N

i=1 𝜆iPi ∈ Γ(𝒜);

(ii) ∀𝒞 ⊆ Γ(𝒜) if 𝒞 non-empty, closed, then conv
(︀⋃︀

P∈𝒞
)︀
∈ Γ(𝒜);

(iii) ∀𝒞 ⊆ Γ(𝒜) if
⋂︀

P∈𝒞 P is coherent, then
⋂︀

P∈𝒞 P ∈ Γ(𝒜).

Remark: Γ(𝒜) is well-defined.

16
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Definition: Given a compact collection of frames 𝒜, its closure with respect to

operations of convex combination, convex union and coherent intersection is

the minumum compact collection of frames Γ(𝒜) such that:
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Characterization of Comparative Consistency

Theorem 3. Consider decision makers 1 and 2 represented by models (U1,𝒜1)

and (U2,𝒜2), where 𝒜2 is finite. Then the following statements are equivalent:

(i) DM 1 is more consistent than DM 2;

(ii) U1 ≈ U2, and 𝒜1 ⊆ Γ(𝒜2);

(iii) U1 ≈ U2, and any P ∈ 𝒜1 is a coherent intersection of convex unions of

convex combinations of frames in 𝒜2.
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An Application to Aggregation of Preferences

◁ A group of (maxmin) ambiguity averse agents agree on utilities but

disagree on beliefs

◁ Want to aggregate their preferences into a (maxmin) representative

Definition. A preference relation ⪰ satisfies Unanimity with respect to {⪰i}Ni=1

if [f ⪰i g ∀i = 1, ...,N] implies f ⪰ g .

Corollary. Let {⪰i}Ni=1 and⪰ admit maxmin representations with the same utility

index and different sets of beliefs {Pi}Ni=1 and P. Then ⪰ satisfies Unanimity

with respect to {⪰i}Ni=1 if and only if P is a coherent closure of convex unions

of convex combinations of {P1, ...,PN}.
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Identification of Frames from Preference Relation

Definition. Framed ambiguity model (U,𝒜) represents ⪰ if (U,𝒜) represents

c such that f ⪰ g iff f ∈ c({f , g}).

Corollary. Framed ambiguity models (U,𝒜) and (U ′,𝒜′) with |𝒜|, |𝒜′| < ∞
represent ⪰ if and only if U ≈ U ′ and Γ(𝒜) = Γ(𝒜′).

Remark. There is ⪰ such that its framed ambiguity representations do not admit

a minimum family of frames.
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Optimistic Learning

Proposition. Let (U,𝒜) represents c2(·), and either Condition 1 or Condition

2 holds for 𝒜. Then the following statements are equivalent:

(i) c1(·) satisfies WARP and Continuity, and

f ∈ c1({f , p}) ⇐⇒ ∃ decomposition

⎧⎨⎩ 𝜆f + (1− 𝜆)q =
∑︀k

i=1 𝜎i fi

∀i fi ∈ c2({fi , 𝜆p + (1− 𝜆)q})

(ii) c1(·) is represented by the maxmin model
(︁
U,
⋂︁
Q∈𝒜

Q
)︁
.

Condition 1: 𝒜 is finite,
⋂︁
Q∈𝒜

Q ̸= ∅, and each P ∈ 𝒜 is polyhedral.

Condition 2: 𝒜 is finite, and
⋂︀

P∈𝒜
ri(P) is non-empty.

20



Optimistic Learning

Proposition. Let (U,𝒜) represents c2(·), and either Condition 1 or Condition

2 holds for 𝒜. Then the following statements are equivalent:

(i) c1(·) satisfies WARP and Continuity, and

f ∈ c1({f , p}) ⇐⇒ ∃ decomposition

⎧⎨⎩ 𝜆f + (1− 𝜆)q =
∑︀k

i=1 𝜎i fi

∀i fi ∈ c2({fi , 𝜆p + (1− 𝜆)q})

(ii) c1(·) is represented by the maxmin model
(︁
U,
⋂︁
Q∈𝒜

Q
)︁
.

Condition 1: 𝒜 is finite,
⋂︁
Q∈𝒜

Q ̸= ∅, and each P ∈ 𝒜 is polyhedral.

Condition 2: 𝒜 is finite, and
⋂︀

P∈𝒜
ri(P) is non-empty.

20



Literature and Conclusion



Related Literature

◁ Gilboa and Schmeidler (1989), Salant and Rubinstein (2008)

◁ Lu (2014), Kopylov (2021), Chandrasekher, Frick, Iijima, and Yaouang

(2022), Stoye (2011)

◁ Lehrer and Teper (2011), Heller (2012)

◁ Bourgeois-Gironde and Giraud (2009), Ahn and Ergin (2010), Caplin and

Martin (2020)

◁ Ok, Ortoleva, and Riella (2012), Galaabaatar and Karni (2013), Hara, Ok,

and Riella (2019)

◁ Crès, Gilboa, and Vieille (2011), Hill (2011)

21



Conclusion

◁ A model of framing under Knightian Uncertainty is developed

◁ The analyst identifies the minimum set of frames from the choice

◁ The agent becomes less susceptible to framing by combining frames in

cautious, optimistic way, or by linear combination
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Supplementary Slides



WARP Is Relaxed

Recall that utility representation ≈ WARP = conditions 𝛼 + 𝛽:

◁ 𝛼: c(A ∪ B) ∩ A ⊆ c(A)

◁ 𝛽: c(A ∪ B) ∩ A ̸= ∅ =⇒ c(A) ⊆ c(A ∪ B)

23



WARP Is Relaxed

(A1) Framed Uncertainty:

◁ 𝛼: c(A ∪ B) ∩ A ⊆ c(A)

◁ C-𝛽: for constant acts c(A ∪ B) ∩ A ̸= ∅ =⇒ c(A) ⊆ c(A ∪ B)

◁ Aizerman’s Property: f ̸∈ c(A ∪ {f }) =⇒ c(A) ⊆ c(A ∪ {f })
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Weaker then 𝛼+ 𝛽 = WARP. For example, CAN HAVE:
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– c({f , g}) = {f , g};

– c({f , h}) = {f , h};

– c({g , h}) = {g , h};

– c({f , g , h}) = {f , g}.

h is not chosen from {f , g , h}, although g and f are chosen, and h “is as good

as g and f in pairwise comparisons.”
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Ideas Why Axioms Imply Representation

◁ 𝛼, C-𝛽, Continuity, C-Independence, C-Non-Degeneracy =⇒ ∃U

◁ + Aizerman’s Property, Strict Monotonicity =⇒
WLOG, X = {x , y}, H = [0, 1]|S|

◁ B is maximal for f if f ∈ c(A), and [f ∈ c(B), B ⊆ A] =⇒ A = B

By Zorn’s Lemma, f ∈ c(D) =⇒ ∃B maximal for f such that D ⊆ B

◁ + No-C-Hedging, Indirect Ambiguity Aversion =⇒ B is a lower counter

set of f according to Gilboa and Schmeidler’s (1989) maxmin expected

utility for some P = P(B)

◁
(︀
U, cl({P(B)|B is maximal for interior f })

)︀
represents c ′, and c ⊆ c ′

◁ Aizerman’s Property, C-Independence, Continuity =⇒ c ′ ⊆ c.

Remark. cl({P(B)|B is maximal for interior f }) is the minimum family of

frames that must be part of any representation of c.

24
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Redundancy example

◁ H = [0, 1]2, U(x) = x , 𝒜 = {P1,P2}, P1 = [0.2, 0.6], P2 = [0.5, 0.9]
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Redundancy example

◁ H = [0, 1]2, U(x) = x , 𝒜 = {P1,P2}, P1 = [0.2, 0.6], P2 = [0.5, 0.9]

W1(f ) =

{︃
0.2f1 + 0.8f2 if f1 ≥ f2

0.6f1 + 0.4f2 if f1 < f2
, W2(f ) =

{︃
0.5f1 + 0.5f2 if f1 ≥ f2

0.9f1 + 0.1f2 if f1 < f2
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◁ If W3(f ) ≥ W3(g) ∀g ∈ A then ∃i ∈ {1, 2}: Wi (f ) ≥ Wi (g) ∀g ∈ A
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◁ (U, {P1,P2,P3}) represents the same c(·) as (U, {P1,P2})

◁ P3 = P1 ∩ P2 is a redundant frame
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Connection to the literature

c(B) =
⋃︁
P∈𝒜

arg max
f∈B

WP(f )

◁ Special case of c(B) =
⋃︀

i∈frames ci (B) in Salant and Rubinstein (2008)

◁ If 𝒜 = {P}, the model reduces to Gilboa and Schmeidler (1989)

◁ If each Pi = {𝜇i}, DM is frame-sensitive expected utility maximizer.

Generalizes “justifiable” preferences/choice: Lehrer and Teper (2011)/

Heller (2012) (they require convex set of justifications (beliefs))

◁ In Kopylov (2021), c(B) = arg max
f∈B

WP(B)(f )

◁ In Chandrasekher, Frick, Iijima, and Le Yaouanq (2022),

c(B) = arg max
f∈B

(︀
max
P∈𝒜

WP(f )
)︀

◁ In Stoye (2011), c(B) = arg max
f∈B

min
g∈B

min
𝜇∈P

∑︀
s∈S(u(f (s))− u(g(s))) ·𝜇(s)
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Relation to Other Axioms

Define f ⪰ g iff ∃A : g ∈ A, f ∈ c(A). Under 𝛼, f ⪰ g iff f ∈ c({f , g})

Revealed Preference Rationality: ⪰ is complete and transitive

𝛾:
⋂︀

B∈𝒟 c(B) ⊆ c(
⋃︀

B∈𝒟 B)

Normality: c(A) = {f ∈ A|f ⪰ g ∀g ∈ A}

Ambiguity Aversion:

{f , g , 𝜆f + (1− 𝜆)g} ⊆ A, f , g ∈ c(A) =⇒ 𝜆f + (1− 𝜆)g ∈ c(A)

“Pairwise No-C-Hedging”:

h ∈ c({h, f }) and h ∈ c({h, p}) =⇒ h ∈ c({h, 𝜆f + (1− 𝜆)p})

Proposition 2

Let (U,𝒜) represents c(·). Then |𝒜| = 1 is equivalent to c(·) satisfying any of

the following properties: 𝛽, WARP, Revealed Preference Rationality, 𝛾, Normal-

ity, Ambiguity Aversion, Pairwise No-C-Hedging.
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Comparative Decisiveness

Definition: DM 1 is more decisive than DM 2 if c1 ⊆ c2.

Proposition

Let c1(·) and c2(·) be represented by (U1,𝒜1) and (U2,𝒜2). Then DM 1 is more

decisive than DM 2 if and only if U1 ≈ U2, and 𝒜1 is a subset of the maximum

family of frames representing c2(·).
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Connection to the Literature

Unanimity ⇐⇒ convex combinations + convex unions + coherent intersections
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i ∀i =⇒ f ⪰

∑︁
k

𝛼kp
fk , where pfk

i ∼i fk , p
fk ∼ fk

Unanimity ⇐= EUA ⇐⇒ convex combinations + convex unions

◁ Hill (2012) imposes “Weak Independence” axiom that connects

aggregation rules for different preferences’ profiles

Unanimity + WI ⇐⇒ convex combinations + convex unions
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Non-Existence of a Minimum Family of Frames Representing ⪰

Pr (s=2)

Pr (s=1)

𝑃! = {𝜇!}

𝑃"

𝑃# = {𝜇#}

𝜇"

𝜇$

Pr (s=2)

Pr (s=1)

𝑃! = {𝜇!}
𝑃" 𝑃#

𝑃$ = {𝜇$}

𝜇%

𝜇&

◁ 𝒜 = {P1,P2,P3} (left plot)

◁ 𝒜′ = {P1,P2,P5,P6} (right plot)

◁ P5 = conv(P1 ∪ P3), P6 = conv(P2,P3), hence 𝒜′ ∈ Γ(𝒜)

◁ P3 = P5 ∩ P6, and the intersection is coherent, hence 𝒜 ∈ Γ(𝒜′)
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Optimistic learning

Proposition. Let (U,𝒜) represents c2(·), and (V , {P}) represents c1(·). Then
the following statements are equivalent:

(i) If fi ∈ c2({fi , p}) for all i = 1, .., k, then
∑︀k

i 𝜎i fi ∈ c1
(︁{︁∑︀k

i 𝜎i fi , p
}︁)︁

for

all convex weights 𝜎.

(ii) V is a positive affine transformation of U, and P ⊆
⋂︁
Q∈𝒜

Q ̸= ∅.
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