Framing and Ambiguity

EEA-ESEM, Barcelona, 2023

Evgenii Safonov, Queen Mary University of London

Motivation

\triangleright Framing matters for choice under ambiguity: Maher and Kashima (1997), Esponda and Vespa (2016), Schneider, Leland and Wilcox (2018), Leland, Schneider, Wilcox (2019)

Motivation

\triangleright Framing matters for choice under ambiguity: Maher and Kashima (1997), Esponda and Vespa (2016), Schneider, Leland and Wilcox (2018), Leland, Schneider, Wilcox (2019)
\triangleright Framing matters for belief assessment: Fischoff, Slovic, Lichtenstein (1978), Fox and Rottenstreich (2003), Fox and Clemen (2005), Sonneman, Camerer, Fox and Langer (2013)

Motivation

\triangleright Framing matters for choice under ambiguity: Maher and Kashima (1997), Esponda and Vespa (2016), Schneider, Leland and Wilcox (2018), Leland, Schneider, Wilcox (2019)
\triangleright Framing matters for belief assessment: Fischoff, Slovic, Lichtenstein (1978), Fox and Rottenstreich (2003), Fox and Clemen (2005), Sonneman, Camerer, Fox and Langer (2013)

- "Partition-dependent expected utility" Ahn and Ergin (2010)

Motivation

\triangleright Framing matters for choice under ambiguity: Maher and Kashima (1997), Esponda and Vespa (2016), Schneider, Leland and Wilcox (2018), Leland, Schneider, Wilcox (2019)
\triangleright Framing matters for belief assessment: Fischoff, Slovic, Lichtenstein (1978), Fox and Rottenstreich (2003), Fox and Clemen (2005), Sonneman, Camerer, Fox and Langer (2013)

- "Partition-dependent expected utility" Ahn and Ergin (2010)
\triangleright Theoretical perspective: bounded rational agent is not able to integrate all payoff-relevant details coherently

Motivation

\triangleright Framing matters for choice under ambiguity: Maher and Kashima (1997), Esponda and Vespa (2016), Schneider, Leland and Wilcox (2018), Leland, Schneider, Wilcox (2019)
\triangleright Framing matters for belief assessment: Fischoff, Slovic, Lichtenstein (1978), Fox and Rottenstreich (2003), Fox and Clemen (2005), Sonneman, Camerer, Fox and Langer (2013)

- "Partition-dependent expected utility" Ahn and Ergin (2010)
\triangleright Theoretical perspective: bounded rational agent is not able to integrate all payoff-relevant details coherently
\triangleright What if framing is unobservable?

An Example of Ambiguity Framing

\triangleright Alice prepares for an exam
\triangleright Difficulty of the exam is unknown
\triangleright Study for the exam or work on something else?

An Example of Ambiguity Framing

\triangleright Alice prepares for an exam
\triangleright Difficulty of the exam is unknown
\triangleright Study for the exam or work on something else?
\triangleright A friend: think if exam is hard or not

An Example of Ambiguity Framing

\triangleright Alice prepares for an exam
\triangleright Difficulty of the exam is unknown
\triangleright Study for the exam or work on something else?
\triangleright A friend: think if exam is hard or not

- If hard, then fail exam anyway

An Example of Ambiguity Framing

\triangleright Alice prepares for an exam
\triangleright Difficulty of the exam is unknown
\triangleright Study for the exam or work on something else?
\triangleright A friend: think if exam is hard or not

- If hard, then fail exam anyway
- If not hard, then pass if study, but could fail if does not study

An Example of Ambiguity Framing

\triangleright Alice prepares for an exam
\triangleright Difficulty of the exam is unknown
\triangleright Study for the exam or work on something else?
\triangleright A friend: think if exam is hard or not

- If hard, then fail exam anyway
- If not hard, then pass if study, but could fail if does not study
- Alice studies for the exam

An Example of Ambiguity Framing

\triangleright Alice prepares for an exam
\triangleright Difficulty of the exam is unknown
\triangleright Study for the exam or work on something else?
\triangleright A friend: think if exam is hard or not

- If hard, then fail exam anyway
- If not hard, then pass if study, but could fail if does not study
- Alice studies for the exam
\triangleright A sister: think if exam is easy or not

An Example of Ambiguity Framing

\triangleright Alice prepares for an exam
\triangleright Difficulty of the exam is unknown
\triangleright Study for the exam or work on something else?
\triangleright A friend: think if exam is hard or not

- If hard, then fail exam anyway
- If not hard, then pass if study, but could fail if does not study
- Alice studies for the exam
\triangleright A sister: think if exam is easy or not
- If easy, then pass anyway

An Example of Ambiguity Framing

\triangleright Alice prepares for an exam
\triangleright Difficulty of the exam is unknown
\triangleright Study for the exam or work on something else?
\triangleright A friend: think if exam is hard or not

- If hard, then fail exam anyway
- If not hard, then pass if study, but could fail if does not study
- Alice studies for the exam
\triangleright A sister: think if exam is easy or not
- If easy, then pass anyway
- If not easy, then could fail anyway

An Example of Ambiguity Framing

\triangleright Alice prepares for an exam
\triangleright Difficulty of the exam is unknown
\triangleright Study for the exam or work on something else?
\triangleright A friend: think if exam is hard or not

- If hard, then fail exam anyway
- If not hard, then pass if study, but could fail if does not study
- Alice studies for the exam
\triangleright A sister: think if exam is easy or not
- If easy, then pass anyway
- If not easy, then could fail anyway
- Alice works on something else

This Project

\triangleright A decision-theoretic model of framing under ambiguity

This Project

\triangleright A decision-theoretic model of framing under ambiguity
\triangleright Framing organizes reasoning about uncertainty

This Project

\triangleright A decision-theoretic model of framing under ambiguity
\triangleright Framing organizes reasoning about uncertainty

- Framing is not "gains" versus "losses" as in Tversky and Kahneman (1981)

This Project

\triangleright A decision-theoretic model of framing under ambiguity
\triangleright Framing organizes reasoning about uncertainty

- Framing is not "gains" versus "losses" as in Tversky and Kahneman (1981)
- Framing is not a status quo or endowment option

This Project

\triangleright A decision-theoretic model of framing under ambiguity
\triangleright Framing organizes reasoning about uncertainty

- Framing is not "gains" versus "losses" as in Tversky and Kahneman (1981)
- Framing is not a status quo or endowment option
- Framing is not an order of alternatives or salience of alternatives

This Project

\triangleright A decision-theoretic model of framing under ambiguity
\triangleright Framing organizes reasoning about uncertainty

- Framing is not "gains" versus "losses" as in Tversky and Kahneman (1981)
- Framing is not a status quo or endowment option
- Framing is not an order of alternatives or salience of alternatives
- Framing is not a property of alternatives, but a property of a choice problem

This Project

\triangleright A decision-theoretic model of framing under ambiguity
\triangleright Framing organizes reasoning about uncertainty

- Framing is not "gains" versus "losses" as in Tversky and Kahneman (1981)
- Framing is not a status quo or endowment option
- Framing is not an order of alternatives or salience of alternatives
- Framing is not a property of alternatives, but a property of a choice problem
\triangleright What data is consistent with framing of ambiguity?
\triangleright Can the frames be identified from the behavior?
\triangleright How to connect the frames to become more consistent in choices?

Model

Setup

Decision maker (DM) chooses from menus of Anscombe-Aumann acts

$\triangleright X$ —arbitrary set of prizes
$\triangleright \triangle X$ - probability distributions with finite support on X
$\triangleright S$-finite set of states
$\triangleright \mathrm{f}, \mathrm{g}, \mathrm{h}, \ldots$ —Anscombe-Aumann acts $S \rightarrow \triangle X$
$\triangleright \mathrm{p}, \mathrm{q}, \mathrm{r}, \ldots$-constant acts $p(s)=p \forall s \in S$
$\triangleright A, B, \ldots-$ non-empty compact sets of acts (menus) with finite set of potential prizes $\{x \in X \mid \exists f \in A \exists s \in S: f(s)(x)>0\}$

Choice Correspondence

Primitive: a subset of acts that could be chosen from a menu
\triangleright Choice correspondence $\varnothing \neq c(A) \subseteq A$
\triangleright Ways to observe choice correspondence:

- Repeated observations of choices from each menu
- Choices of a group of agents (population interpretation)

WARP Is Relaxed

(A1) Framed Uncertainty:
$\triangleright \alpha:$

$$
c(A \cup B) \cap A \subseteq c(A)
$$

$\triangleright \mathbf{C}-\boldsymbol{\beta}: \quad$ for constant acts $c(A \cup B) \cap A \neq \varnothing \Longrightarrow c(A) \subseteq c(A \cup B)$
\triangleright Aizerman's Property: $\quad f \notin c(A \cup\{f\}) \Longrightarrow c(A) \subseteq c(A \cup\{f\})$

WARP Is Relaxed

(A1) Framed Uncertainty:
$\triangleright \alpha:$

$$
c(A \cup B) \cap A \subseteq c(A)
$$

$\triangleright \mathbf{C}-\boldsymbol{\beta}: \quad$ for constant acts $c(A \cup B) \cap A \neq \varnothing \Longrightarrow c(A) \subseteq c(A \cup B)$
\triangleright Aizerman's Property: $\quad f \notin c(A \cup\{f\}) \Longrightarrow c(A) \subseteq c(A \cup\{f\})$

Recall that WARP is equivalent to $[\alpha$ and β]
\triangleright WARP holds for (menus of) constant acts
\triangleright Aizerman's Property relaxes β
(A2) C-Independence:

$$
c(\lambda A+(1-\lambda) p)=\lambda c(A)+(1-\lambda) p
$$

(A3) Strict Monotonicity:
$g(s) \notin c(\{f(s), g(s)\}) \forall s \Longrightarrow g \notin c(\{f, g\})$
(A4) Continuity:
$\{(A, f) \mid f \in c(A)\}$ is closed
(A5) C-Non-Degeneracy: $\exists p, q: \quad\{p\}=c(\{p, q\})$

A New Axiom: No Hedging by Constant Acts

(A6) No C-Hedging: $\quad f, p \in A \Longrightarrow c(A) \subseteq c(A \cup\{\lambda f+(1-\lambda) p\})$

A New Axiom: No Hedging by Constant Acts

(A6) No C-Hedging: $\quad f, p \in A \Longrightarrow c(A) \subseteq c(A \cup\{\lambda f+(1-\lambda) p\})$

If WARP holds, follows from C-Independence and Strict Monotonicity

Ambiguity Aversion Robust to the Framing

(A7) Indirect Ambiguity Aversion: for $h \in A$
$h \notin c(A \cup\{f\})$ and $h \notin c(A \cup\{g\}) \Longrightarrow h \notin c(A \cup\{\lambda f+(1-\lambda) g\})$

Representation

Framed ambiguity representation (U, \mathcal{A})
$\triangleright U: \triangle X \rightarrow \mathbb{R}-\mathrm{vNM}$ expected utility
$\triangleright \mathcal{A}$-non-empty closed family of non-empty compact convex sets of beliefs
where

$$
\begin{aligned}
& c(B)=\bigcup_{P \in \mathcal{A}} \underset{f \in B}{\arg \max } W_{P}(f) \\
& W_{P}(f)=\min _{\mu \in P} \sum_{s \in S} \mu(s) U(f(s))
\end{aligned}
$$

Representation

Framed ambiguity representation (U, \mathcal{A})
$\triangleright U: \triangle X \rightarrow \mathbb{R}-\mathrm{vNM}$ expected utility
$\triangleright \mathcal{A}$ —non-empty closed family of non-empty compact convex sets of beliefs
where

$$
\begin{aligned}
c(B) & =\bigcup_{P \in \mathcal{A}} \underset{f \in B}{\arg \max } W_{P}(f) \\
W_{P}(f) & =\min _{\mu \in P} \sum_{s \in S} \mu(s) U(f(s))
\end{aligned}
$$

Theorem 1. A choice correspondence $c(\cdot)$ has a framed ambiguity representation if and only if axioms $1-7$ hold.

Representation

Framed ambiguity representation (U, \mathcal{A})
$\triangleright U: \triangle X \rightarrow \mathbb{R}-\mathrm{vNM}$ expected utility
$\triangleright \mathcal{A}$ —non-empty closed family of non-empty compact convex sets of beliefs
where

$$
\begin{aligned}
c(B) & =\bigcup_{P \in \mathcal{A}} \underset{f \in B}{\arg \max } W_{P}(f) \\
W_{P}(f) & =\min _{\mu \in P} \sum_{s \in S} \mu(s) U(f(s))
\end{aligned}
$$

Theorem 1. A choice correspondence $c(\cdot)$ has a framed ambiguity representation if and only if axioms 1-7 hold.

Proposition. Axioms 1-7 are independent.

Identification

Definition: $P=\bigcap_{Q \in \mathcal{C}} Q \neq \varnothing$ is a coherent intersection of sets of beliefs in a closed (in Hausdorff metric) family \mathcal{C} if for any linear subspace \mathbb{T} of \mathbb{R}^{S},

$$
\operatorname{proj}_{\mathbb{T}}\left(\bigcap_{Q \in \mathcal{C}} P^{\prime}\right)=\bigcap_{Q \in \mathcal{C}} \operatorname{proj}_{\mathbb{T}}(Q) \text {. }
$$

Identification

Definition: $P=\bigcap_{Q \in \mathcal{C}} Q \neq \varnothing$ is a coherent intersection of sets of beliefs in a closed (in Hausdorff metric) family \mathcal{C} if for any linear subspace \mathbb{T} of \mathbb{R}^{S},

$$
\operatorname{proj}_{\mathbb{T}}\left(\bigcap_{Q \in \mathcal{C}} P^{\prime}\right)=\bigcap_{Q \in \mathcal{C}} \operatorname{proj}_{\mathbb{T}}(Q)
$$

Theorem 2. Let $c(\cdot)$ satisfy axioms 1-7. Then there is a unique minimum family of frames \mathcal{A}, a unique maximum family of frames \mathcal{B} and VNM expected utility function U such that:
(i) $\left(U^{\prime}, \mathcal{A}^{\prime}\right)$ represents $c(\cdot)$ if and only if $U^{\prime} \approx U$, and $\mathcal{A} \subseteq \mathcal{A}^{\prime} \subseteq \mathcal{B}$;
(ii) $P \in \mathcal{B}$ if and only if P is a coherent intersection of some $\mathcal{C} \subseteq \mathcal{A}$.

Identification

Definition: $P=\bigcap_{Q \in \mathcal{C}} Q \neq \varnothing$ is a coherent intersection of sets of beliefs in a closed (in Hausdorff metric) family \mathcal{C} if for any linear subspace \mathbb{T} of \mathbb{R}^{S},

$$
\operatorname{proj}_{\mathbb{T}}\left(\bigcap_{Q \in \mathcal{C}} P^{\prime}\right)=\bigcap_{Q \in \mathcal{C}} \operatorname{proj}_{\mathbb{T}}(Q)
$$

Theorem 2. Let $c(\cdot)$ satisfy axioms 1-7. Then there is a unique minimum family of frames \mathcal{A}, a unique maximum family of frames \mathcal{B} and VNM expected utility function U such that:
(i) $\left(U^{\prime}, \mathcal{A}^{\prime}\right)$ represents $c(\cdot)$ if and only if $U^{\prime} \approx U$, and $\mathcal{A} \subseteq \mathcal{A}^{\prime} \subseteq \mathcal{B}$;
(ii) $P \in \mathcal{B}$ if and only if P is a coherent intersection of some $\mathcal{C} \subseteq \mathcal{A}$.

Corollary. If all frames $P \in \mathcal{A}$ are singletons, then \mathcal{A} is unique.

Comparative Statics

Consistency of Choices

Definition: DM 1 is more consistent than DM 2 if for all menus A $\left|c_{2}(A)\right|=1 \Longrightarrow\left|c_{1}(A)\right|=1$.

Consistency of Choices

Definition: DM 1 is more consistent than DM 2 if for all menus A $\left|c_{2}(A)\right|=1 \Longrightarrow\left|c_{1}(A)\right|=1$.

Alternative characterization:

Proposition. Let $c_{1}(\cdot)$ and $c_{2}(\cdot)$ satisfy axioms $1-7$. Then DM 1 is more consistent than DM 2 if and only if $c_{1}(\{f, g\}) \subseteq c_{2}(\{f, g\})$ for all acts f, g.

A Convex Combination of Sets of Beliefs

Crès, Gilboa, and Vieille (2011): let λ be convex weights: $\lambda_{i} \geq 0, \sum_{i=1}^{N} \lambda_{i}=1$;

$$
P=\sum_{i=1}^{N} \lambda_{i} P_{i} \equiv\left\{\mu \in \triangle S \mid \exists \mu_{i} \in P_{i}: \mu=\sum_{i=1}^{N} \lambda_{i} \mu_{i}\right\}
$$

A Convex Combination of Sets of Beliefs

Crès, Gilboa, and Vieille (2011): let λ be convex weights: $\lambda_{i} \geq 0, \sum_{i=1}^{N} \lambda_{i}=1$;

$$
P=\sum_{i=1}^{N} \lambda_{i} P_{i} \equiv\left\{\mu \in \triangle S \mid \exists \mu_{i} \in P_{i}: \mu=\sum_{i=1}^{N} \lambda_{i} \mu_{i}\right\}
$$

The associated maxmin utility function: $W_{P}(f)=\sum_{i=1}^{N} \lambda_{i} W_{P_{i}}(f)$

A Convex Combination of Sets of Beliefs

Crès, Gilboa, and Vieille (2011): let λ be convex weights: $\lambda_{i} \geq 0, \sum_{i=1}^{N} \lambda_{i}=1$;

$$
P=\sum_{i=1}^{N} \lambda_{i} P_{i} \equiv\left\{\mu \in \triangle S \mid \exists \mu_{i} \in P_{i}: \mu=\sum_{i=1}^{N} \lambda_{i} \mu_{i}\right\}
$$

The associated maxmin utility function: $W_{P}(f)=\sum_{i=1}^{N} \lambda_{i} W_{P_{i}}(f)$

Observation. DM $\left(U, \sum_{i=1}^{N} \lambda P_{i}\right)$ is more consistent than $\operatorname{DM}\left(U,\left\{P_{1}, \ldots, P_{N}\right\}\right)$

A Convex Union of Sets of Beliefs

Crès, Gilboa, and Vieille (2011):

$$
P=\operatorname{conv}\left(\bigcup_{Q \in \mathcal{C}} Q\right), \text { where } \mathcal{C} \text { is non-empty and closed }
$$

A Convex Union of Sets of Beliefs

Crès, Gilboa, and Vieille (2011):

$$
P=\operatorname{conv}\left(\bigcup_{Q \in \mathcal{C}} Q\right), \text { where } \mathcal{C} \text { is non-empty and closed }
$$

The associated maxmin utility function: $W_{P}(f)=\min _{Q \in \mathcal{C}} W_{Q}(f)$

A Convex Union of Sets of Beliefs

Crès, Gilboa, and Vieille (2011):

$$
P=\operatorname{conv}\left(\bigcup_{Q \in \mathcal{C}} Q\right), \text { where } \mathcal{C} \text { is non-empty and closed }
$$

The associated maxmin utility function: $W_{P}(f)=\min _{Q \in \mathcal{C}} W_{Q}(f)$

Observation. $\mathrm{DM}\left(U, \operatorname{conv}\left(\bigcup_{Q \in \mathcal{C}} Q\right)\right)$ is more consistent than $\operatorname{DM}(U, \mathcal{A})$ if $\mathcal{C} \subseteq \mathcal{A}$

A Coherent Intersection of Sets of Beliefs

This project:

$$
P=\bigcap_{Q \in \mathcal{C}} Q, \quad \text { if the intersection is coherent }
$$

A Coherent Intersection of Sets of Beliefs

This project:

$$
P=\bigcap_{Q \in \mathcal{C}} Q, \quad \text { if the intersection is coherent }
$$

The associated maxmin utility function: $W_{P}(f)=\max _{Q \in \mathcal{C}} W_{Q}(f)$

A Coherent Intersection of Sets of Beliefs

This project:

$$
P=\bigcap_{Q \in \mathcal{C}} Q, \quad \text { if the intersection is coherent }
$$

The associated maxmin utility function: $W_{P}(f)=\max _{Q \in \mathcal{C}} W_{Q}(f)$

Observation. $\operatorname{DM}\left(U, \bigcap_{Q \in \mathcal{C}} Q\right)$ is more consistent than $\operatorname{DM}(U, \mathcal{A})$ if $\mathcal{C} \subseteq \mathcal{A}$, and the intersection $\bigcap_{Q \in \mathcal{C}} Q$ is coherent

Using Different Operation of Frame Connection

Definition: Given a compact collection of frames \mathcal{A}, its closure with respect to operations of convex combination, convex union and coherent intersection is the minumum compact collection of frames $\Gamma(\mathcal{A})$ such that:
(i) $\forall\left\{P_{1}, \ldots, P_{N}\right\} \subseteq \Gamma(\mathcal{A}) \forall \lambda \quad \sum_{i=1}^{N} \lambda_{i} P_{i} \in \Gamma(\mathcal{A})$;
(ii) $\forall \mathcal{C} \subseteq \Gamma(\mathcal{A})$ if \mathcal{C} non-empty, closed, then $\operatorname{conv}\left(\bigcup_{P \in \mathcal{C}}\right) \in \Gamma(\mathcal{A})$;
(iii) $\forall \mathcal{C} \subseteq \Gamma(\mathcal{A})$ if $\bigcap_{P \in \mathcal{C}} P$ is coherent, then $\bigcap_{P \in \mathcal{C}} P \in \Gamma(\mathcal{A})$.

Using Different Operation of Frame Connection

Definition: Given a compact collection of frames \mathcal{A}, its closure with respect to operations of convex combination, convex union and coherent intersection is the minumum compact collection of frames $\Gamma(\mathcal{A})$ such that:
(i) $\forall\left\{P_{1}, \ldots, P_{N}\right\} \subseteq \Gamma(\mathcal{A}) \forall \lambda \quad \sum_{i=1}^{N} \lambda_{i} P_{i} \in \Gamma(\mathcal{A})$;
(ii) $\forall \mathcal{C} \subseteq \Gamma(\mathcal{A})$ if \mathcal{C} non-empty, closed, then $\operatorname{conv}\left(\bigcup_{P \in \mathcal{C}}\right) \in \Gamma(\mathcal{A})$;
(iii) $\forall \mathcal{C} \subseteq \Gamma(\mathcal{A})$ if $\bigcap_{P \in \mathcal{C}} P$ is coherent, then $\bigcap_{P \in \mathcal{C}} P \in \Gamma(\mathcal{A})$.

Remark: $\Gamma(\mathcal{A})$ is well-defined.

Characterization of Comparative Consistency

Theorem 3. Consider decision makers 1 and 2 represented by models $\left(U_{1}, \mathcal{A}_{1}\right)$ and $\left(U_{2}, \mathcal{A}_{2}\right)$, where \mathcal{A}_{2} is finite. Then the following statements are equivalent:
(i) DM 1 is more consistent than $D M$ 2;
(ii) $U_{1} \approx U_{2}$, and $\mathcal{A}_{1} \subseteq \Gamma\left(\mathcal{A}_{2}\right)$;
(iii) $U_{1} \approx U_{2}$, and any $P \in \mathcal{A}_{1}$ is a coherent intersection of convex unions of convex combinations of frames in \mathcal{A}_{2}.

An Application to Aggregation of Preferences

\triangleright A group of (maxmin) ambiguity averse agents agree on utilities but disagree on beliefs
\triangleright Want to aggregate their preferences into a (maxmin) representative

Definition. A preference relation \succeq satisfies Unanimity with respect to $\left\{\succeq_{i}\right\}_{i=1}^{N}$ if $\left[f \succeq_{i} g \forall i=1, \ldots, N\right]$ implies $f \succeq g$.

An Application to Aggregation of Preferences

\triangleright A group of (maxmin) ambiguity averse agents agree on utilities but disagree on beliefs
\triangleright Want to aggregate their preferences into a (maxmin) representative

Definition. A preference relation \succeq satisfies Unanimity with respect to $\left\{\succeq_{i}\right\}_{i=1}^{N}$ if $\left[f \succeq_{i} g \forall i=1, \ldots, N\right]$ implies $f \succeq g$.

Corollary. Let $\left\{\succeq_{i}\right\}_{i=1}^{N}$ and \succeq admit maxmin representations with the same utility index and different sets of beliefs $\left\{P_{i}\right\}_{i=1}^{N}$ and P. Then \succeq satisfies Unanimity with respect to $\left\{\succeq_{i}\right\}_{i=1}^{N}$ if and only if P is a coherent closure of convex unions of convex combinations of $\left\{P_{1}, \ldots, P_{N}\right\}$.

Identification of Frames from Preference Relation

Definition. Framed ambiguity model (U, \mathcal{A}) represents \succeq if (U, \mathcal{A}) represents c such that $f \succeq g$ iff $f \in c(\{f, g\})$.

Identification of Frames from Preference Relation

Definition. Framed ambiguity model (U, \mathcal{A}) represents \succeq if (U, \mathcal{A}) represents c such that $f \succeq g$ iff $f \in c(\{f, g\})$.

Corollary. Framed ambiguity models (U, \mathcal{A}) and $\left(U^{\prime}, \mathcal{A}^{\prime}\right)$ with $|\mathcal{A}|,\left|\mathcal{A}^{\prime}\right|<\infty$ represent \succeq if and only if $U \approx U^{\prime}$ and $\Gamma(\mathcal{A})=\Gamma\left(\mathcal{A}^{\prime}\right)$.

Identification of Frames from Preference Relation

Definition. Framed ambiguity model (U, \mathcal{A}) represents \succeq if (U, \mathcal{A}) represents c such that $f \succeq g$ iff $f \in c(\{f, g\})$.

Corollary. Framed ambiguity models (U, \mathcal{A}) and $\left(U^{\prime}, \mathcal{A}^{\prime}\right)$ with $|\mathcal{A}|,\left|\mathcal{A}^{\prime}\right|<\infty$ represent \succeq if and only if $U \approx U^{\prime}$ and $\Gamma(\mathcal{A})=\Gamma\left(\mathcal{A}^{\prime}\right)$.

Remark. There is \succeq such that its framed ambiguity representations do not admit a minimum family of frames.

Optimistic Learning

Proposition. Let (U, \mathcal{A}) represents $c_{2}(\cdot)$, and either Condition 1 or Condition 2 holds for \mathcal{A}. Then the following statements are equivalent:
(i) $c_{1}(\cdot)$ satisfies WARP and Continuity, and

$$
f \in c_{1}(\{f, p\}) \Longleftrightarrow \exists \text { decomposition }\left\{\begin{array}{l}
\lambda f+(1-\lambda) q=\sum_{i=1}^{k} \sigma_{i} f_{i} \\
\forall i f_{i} \in c_{2}\left(\left\{f_{i}, \lambda p+(1-\lambda) q\right\}\right)
\end{array}\right.
$$

(ii) $c_{1}(\cdot)$ is represented by the maxmin model $\left(U, \bigcap_{Q \in \mathcal{A}} Q\right)$.

Optimistic Learning

Proposition. Let (U, \mathcal{A}) represents $c_{2}(\cdot)$, and either Condition 1 or Condition 2 holds for \mathcal{A}. Then the following statements are equivalent:
(i) $c_{1}(\cdot)$ satisfies WARP and Continuity, and

$$
f \in c_{1}(\{f, p\}) \Longleftrightarrow \exists \text { decomposition }\left\{\begin{array}{l}
\lambda f+(1-\lambda) q=\sum_{i=1}^{k} \sigma_{i} f_{i} \\
\forall i f_{i} \in c_{2}\left(\left\{f_{i}, \lambda p+(1-\lambda) q\right\}\right)
\end{array}\right.
$$

(ii) $c_{1}(\cdot)$ is represented by the maxmin model $\left(U, \bigcap_{Q \in \mathcal{A}} Q\right)$.

Condition 1: \mathcal{A} is finite, $\bigcap_{Q \in \mathcal{A}} Q \neq \varnothing$, and each $P \in \mathcal{A}$ is polyhedral.
Condition 2: \mathcal{A} is finite, and $\bigcap_{P \in \mathcal{A}} r i(P)$ is non-empty.

Literature and Conclusion

Related Literature

\triangleright Gilboa and Schmeidler (1989), Salant and Rubinstein (2008)
\triangleright Lu (2014), Kopylov (2021), Chandrasekher, Frick, lijima, and Yaouang (2022), Stoye (2011)
\triangleright Lehrer and Teper (2011), Heller (2012)
\triangleright Bourgeois-Gironde and Giraud (2009), Ahn and Ergin (2010), Caplin and Martin (2020)
\triangleright Ok, Ortoleva, and Riella (2012), Galaabaatar and Karni (2013), Hara, Ok, and Riella (2019)
\triangleright Crès, Gilboa, and Vieille (2011), Hill (2011)

Conclusion

\triangleright A model of framing under Knightian Uncertainty is developed
\triangleright The analyst identifies the minimum set of frames from the choice
\triangleright The agent becomes less susceptible to framing by combining frames in cautious, optimistic way, or by linear combination

Supplementary Slides

WARP Is Relaxed

Recall that utility representation $\approx W A R P=$ conditions $\alpha+\beta$:
$\triangleright \alpha: \quad c(A \cup B) \cap A \subseteq c(A)$
$\triangleright \boldsymbol{\beta}: c(A \cup B) \cap A \neq \varnothing \Longrightarrow c(A) \subseteq c(A \cup B)$

WARP Is Relaxed

(A1) Framed Uncertainty:
$\triangleright \alpha$:

$$
c(A \cup B) \cap A \subseteq c(A)
$$

$\triangleright \mathbf{C}-\boldsymbol{\beta}: \quad$ for constant acts $c(A \cup B) \cap A \neq \varnothing \Longrightarrow c(A) \subseteq c(A \cup B)$
\triangleright Aizerman's Property: $\quad f \notin c(A \cup\{f\}) \Longrightarrow c(A) \subseteq c(A \cup\{f\})$

WARP Is Relaxed

(A1) Framed Uncertainty:

$\triangleright \alpha$:

$$
c(A \cup B) \cap A \subseteq c(A)
$$

$\triangleright \mathbf{C}-\boldsymbol{\beta}: \quad$ for constant acts $c(A \cup B) \cap A \neq \varnothing \Longrightarrow c(A) \subseteq c(A \cup B)$
\triangleright Aizerman's Property: $\quad f \notin c(A \cup\{f\}) \Longrightarrow c(A) \subseteq c(A \cup\{f\})$

Weaker then $\alpha+\beta=$ WARP. For example, CAN HAVE:
$-c(\{f, g\})=\{f, g\}$;
$-c(\{f, h\})=\{f, h\}$;
$-c(\{g, h\})=\{g, h\} ;$
$-c(\{f, g, h\})=\{f, g\}$.

WARP Is Relaxed

(A1) Framed Uncertainty:
$\triangleright \alpha$:

$$
c(A \cup B) \cap A \subseteq c(A)
$$

$\triangleright \mathbf{C}-\boldsymbol{\beta}: \quad$ for constant acts $c(A \cup B) \cap A \neq \varnothing \Longrightarrow c(A) \subseteq c(A \cup B)$
\triangleright Aizerman's Property: $\quad f \notin c(A \cup\{f\}) \Longrightarrow c(A) \subseteq c(A \cup\{f\})$

Weaker then $\alpha+\beta=$ WARP. For example, CAN HAVE:
$-c(\{f, g\})=\{f, g\}$;
$-c(\{f, h\})=\{f, h\} ;$
$-c(\{g, h\})=\{g, h\} ;$
$-c(\{f, g, h\})=\{f, g\}$.
h is not chosen from $\{f, g, h\}$, although g and f are chosen, and h "is as good as g and f in pairwise comparisons."

WARP Is Relaxed

(A1) Framed Uncertainty:

$\triangleright \alpha$:

$$
c(A \cup B) \cap A \subseteq c(A)
$$

$\triangleright \mathbf{C}-\boldsymbol{\beta}: \quad$ for constant acts $c(A \cup B) \cap A \neq \varnothing \Longrightarrow c(A) \subseteq c(A \cup B)$
\triangleright Aizerman's Property: $\quad f \notin c(A \cup\{f\}) \Longrightarrow c(A) \subseteq c(A \cup\{f\})$

But, CANNOT HAVE:
$-c(\{f, g\})=\{f, g\}$;
$-c(\{f, h\})=\{f, h\}$;
$-c(\{g, h\})=\{g, h\} ;$
$-c(\{f, g, h\})=\{f\}$.

WARP Is Relaxed

(A1) Framed Uncertainty:

$\triangleright \boldsymbol{\alpha}$:

$$
c(A \cup B) \cap A \subseteq c(A)
$$

$\triangleright \mathbf{C}-\boldsymbol{\beta}: \quad$ for constant acts $c(A \cup B) \cap A \neq \varnothing \Longrightarrow c(A) \subseteq c(A \cup B)$
\triangleright Aizerman's Property: $\quad f \notin c(A \cup\{f\}) \Longrightarrow c(A) \subseteq c(A \cup\{f\})$

But, CANNOT HAVE:
$-c(\{f, g\})=\{f, g\}$;
$-c(\{f, h\})=\{f, h\}$;
$-c(\{g, h\})=\{g, h\} ;$
$-c(\{f, g, h\})=\{f\}$.

Ideas Why Axioms Imply Representation

$\triangleright \alpha, C-\beta$, Continuity, C-Independence, C-Non-Degeneracy $\Longrightarrow \exists U$

Ideas Why Axioms Imply Representation

$\triangleright \alpha, C-\beta$, Continuity, C-Independence, C-Non-Degeneracy $\Longrightarrow \exists U$
$\triangleright+$ Aizerman's Property, Strict Monotonicity \Longrightarrow

$$
\text { WLOG, } X=\{x, y\}, H=[0,1]^{|S|}
$$

Ideas Why Axioms Imply Representation

$\triangleright \alpha, C-\beta$, Continuity, C-Independence, C-Non-Degeneracy $\Longrightarrow \exists U$
$\triangleright+$ Aizerman's Property, Strict Monotonicity \Longrightarrow WLOG, $X=\{x, y\}, H=[0,1]^{|S|}$
$\triangleright B$ is maximal for f if $f \in c(A)$, and $[f \in c(B), B \subseteq A] \Longrightarrow A=B$ By Zorn's Lemma, $f \in c(D) \Longrightarrow \exists B$ maximal for f such that $D \subseteq B$

Ideas Why Axioms Imply Representation

$\triangleright \alpha, C-\beta$, Continuity, C-Independence, C-Non-Degeneracy $\Longrightarrow \exists U$
$\triangleright+$ Aizerman's Property, Strict Monotonicity \Longrightarrow WLOG, $X=\{x, y\}, H=[0,1]^{|S|}$
$\triangleright B$ is maximal for f if $f \in c(A)$, and $[f \in c(B), B \subseteq A] \Longrightarrow A=B$ By Zorn's Lemma, $f \in c(D) \Longrightarrow \exists B$ maximal for f such that $D \subseteq B$
$\triangleright+$ No-C-Hedging, Indirect Ambiguity Aversion $\Longrightarrow B$ is a lower counter set of f according to Gilboa and Schmeidler's (1989) maxmin expected utility for some $P=P(B)$

Ideas Why Axioms Imply Representation

$\triangleright \alpha, C-\beta$, Continuity, C-Independence, C-Non-Degeneracy $\Longrightarrow \exists U$
$\triangleright+$ Aizerman's Property, Strict Monotonicity \Longrightarrow WLOG, $X=\{x, y\}, H=[0,1]^{|S|}$
$\triangleright B$ is maximal for f if $f \in c(A)$, and $[f \in c(B), B \subseteq A] \Longrightarrow A=B$ By Zorn's Lemma, $f \in c(D) \Longrightarrow \exists B$ maximal for f such that $D \subseteq B$
$\triangleright+$ No-C-Hedging, Indirect Ambiguity Aversion $\Longrightarrow B$ is a lower counter set of f according to Gilboa and Schmeidler's (1989) maxmin expected utility for some $P=P(B)$
$\triangleright(U, c l(\{P(B) \mid B$ is maximal for interior $f\}))$ represents c^{\prime}, and $c \subseteq c^{\prime}$

Ideas Why Axioms Imply Representation

$\triangleright \alpha, C-\beta$, Continuity, C-Independence, C-Non-Degeneracy $\Longrightarrow \exists U$
$\triangleright+$ Aizerman's Property, Strict Monotonicity \Longrightarrow WLOG, $X=\{x, y\}, H=[0,1]^{|S|}$
$\triangleright B$ is maximal for f if $f \in c(A)$, and $[f \in c(B), B \subseteq A] \Longrightarrow A=B$ By Zorn's Lemma, $f \in c(D) \Longrightarrow \exists B$ maximal for f such that $D \subseteq B$
$\triangleright+$ No-C-Hedging, Indirect Ambiguity Aversion $\Longrightarrow B$ is a lower counter set of f according to Gilboa and Schmeidler's (1989) maxmin expected utility for some $P=P(B)$
$\triangleright(U, c l(\{P(B) \mid B$ is maximal for interior $f\}))$ represents c^{\prime}, and $c \subseteq c^{\prime}$
\triangleright Aizerman's Property, C-Independence, Continuity $\Longrightarrow c^{\prime} \subseteq c$.

Ideas Why Axioms Imply Representation

$\triangleright \alpha, C-\beta$, Continuity, C-Independence, C-Non-Degeneracy $\Longrightarrow \exists U$
$\triangleright+$ Aizerman's Property, Strict Monotonicity \Longrightarrow
WLOG, $X=\{x, y\}, H=[0,1]^{|S|}$
$\triangleright B$ is maximal for f if $f \in c(A)$, and $[f \in c(B), B \subseteq A] \Longrightarrow A=B$ By Zorn's Lemma, $f \in c(D) \Longrightarrow \exists B$ maximal for f such that $D \subseteq B$
$\triangleright+$ No-C-Hedging, Indirect Ambiguity Aversion $\Longrightarrow B$ is a lower counter set of f according to Gilboa and Schmeidler's (1989) maxmin expected utility for some $P=P(B)$
$\triangleright(U, c l(\{P(B) \mid B$ is maximal for interior $f\}))$ represents c^{\prime}, and $c \subseteq c^{\prime}$
\triangleright Aizerman's Property, C-Independence, Continuity $\Longrightarrow c^{\prime} \subseteq c$.

Remark. $c l(\{P(B) \mid B$ is maximal for interior $f\})$ is the minimum family of frames that must be part of any representation of c.

Redundancy example

$\triangleright H=[0,1]^{2}, U(x)=x, \mathcal{A}=\left\{P_{1}, P_{2}\right\}, P_{1}=[0.2,0.6], P_{2}=[0.5,0.9]$

Redundancy example

$$
\begin{aligned}
& \triangleright H=[0,1]^{2}, U(x)=x, \mathcal{A}=\left\{P_{1}, P_{2}\right\}, P_{1}=[0.2,0.6], P_{2}=[0.5,0.9] \\
& \quad W_{1}(f)=\left\{\begin{array}{lll}
0.2 f_{1}+0.8 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.6 f_{1}+0.4 f_{2} & \text { if } f_{1}<f_{2}
\end{array}, W_{2}(f)= \begin{cases}0.5 f_{1}+0.5 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.9 f_{1}+0.1 f_{2} & \text { if } f_{1}<f_{2}\end{cases} \right.
\end{aligned}
$$

Redundancy example

$\triangleright H=[0,1]^{2}, U(x)=x, \mathcal{A}=\left\{P_{1}, P_{2}\right\}, P_{1}=[0.2,0.6], P_{2}=[0.5,0.9]$

$$
W_{1}(f)=\left\{\begin{array}{ll}
0.2 f_{1}+0.8 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.6 f_{1}+0.4 f_{2} & \text { if } f_{1}<f_{2}
\end{array}, W_{2}(f)= \begin{cases}0.5 f_{1}+0.5 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.9 f_{1}+0.1 f_{2} & \text { if } f_{1}<f_{2}\end{cases}\right.
$$

\triangleright Consider $P_{3}=P_{1} \cap P_{2}=[0.5,0.6]$

$$
W_{3}(f)= \begin{cases}0.5 f_{1}+0.5 f_{2} & \text { if } f_{1} \geq f_{2} \\ 0.6 f_{1}+0.4 f_{2} & \text { if } f_{1}<f_{2}\end{cases}
$$

Redundancy example

$\triangleright H=[0,1]^{2}, U(x)=x, \mathcal{A}=\left\{P_{1}, P_{2}\right\}, P_{1}=[0.2,0.6], P_{2}=[0.5,0.9]$

$$
W_{1}(f)=\left\{\begin{array}{ll}
0.2 f_{1}+0.8 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.6 f_{1}+0.4 f_{2} & \text { if } f_{1}<f_{2}
\end{array} \quad, W_{2}(f)= \begin{cases}0.5 f_{1}+0.5 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.9 f_{1}+0.1 f_{2} & \text { if } f_{1}<f_{2}\end{cases}\right.
$$

\triangleright Consider $P_{3}=P_{1} \cap P_{2}=[0.5,0.6]$

$$
W_{3}(f)=\left\{\begin{array}{ll}
0.5 f_{1}+0.5 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.6 f_{1}+0.4 f_{2} & \text { if } f_{1}<f_{2}
\end{array}=\max \left\{W_{1}(f), W_{2}(f)\right\}\right.
$$

Redundancy example

$\triangleright H=[0,1]^{2}, U(x)=x, \mathcal{A}=\left\{P_{1}, P_{2}\right\}, P_{1}=[0.2,0.6], P_{2}=[0.5,0.9]$

$$
W_{1}(f)=\left\{\begin{array}{ll}
0.2 f_{1}+0.8 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.6 f_{1}+0.4 f_{2} & \text { if } f_{1}<f_{2}
\end{array}, W_{2}(f)= \begin{cases}0.5 f_{1}+0.5 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.9 f_{1}+0.1 f_{2} & \text { if } f_{1}<f_{2}\end{cases}\right.
$$

\triangleright Consider $P_{3}=P_{1} \cap P_{2}=[0.5,0.6]$

$$
W_{3}(f)=\left\{\begin{array}{ll}
0.5 f_{1}+0.5 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.6 f_{1}+0.4 f_{2} & \text { if } f_{1}<f_{2}
\end{array}=\max \left\{W_{1}(f), W_{2}(f)\right\}\right.
$$

\triangleright If $W_{3}(f) \geq W_{3}(g) \forall g \in A$ then $\exists i \in\{1,2\}: W_{i}(f) \geq W_{i}(g) \forall g \in A$

Redundancy example

$\triangleright H=[0,1]^{2}, U(x)=x, \mathcal{A}=\left\{P_{1}, P_{2}\right\}, P_{1}=[0.2,0.6], P_{2}=[0.5,0.9]$

$$
W_{1}(f)=\left\{\begin{array}{ll}
0.2 f_{1}+0.8 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.6 f_{1}+0.4 f_{2} & \text { if } f_{1}<f_{2}
\end{array}, W_{2}(f)= \begin{cases}0.5 f_{1}+0.5 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.9 f_{1}+0.1 f_{2} & \text { if } f_{1}<f_{2}\end{cases}\right.
$$

\triangleright Consider $P_{3}=P_{1} \cap P_{2}=[0.5,0.6]$

$$
W_{3}(f)=\left\{\begin{array}{ll}
0.5 f_{1}+0.5 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.6 f_{1}+0.4 f_{2} & \text { if } f_{1}<f_{2}
\end{array}=\max \left\{W_{1}(f), W_{2}(f)\right\}\right.
$$

\triangleright If $W_{3}(f) \geq W_{3}(g) \forall g \in A$ then $\exists i \in\{1,2\}: W_{i}(f) \geq W_{i}(g) \forall g \in A$
$\triangleright\left(U,\left\{P_{1}, P_{2}, P_{3}\right\}\right)$ represents the same $c(\cdot)$ as $\left(U,\left\{P_{1}, P_{2}\right\}\right)$

Redundancy example

$\triangleright H=[0,1]^{2}, U(x)=x, \mathcal{A}=\left\{P_{1}, P_{2}\right\}, P_{1}=[0.2,0.6], P_{2}=[0.5,0.9]$

$$
W_{1}(f)=\left\{\begin{array}{ll}
0.2 f_{1}+0.8 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.6 f_{1}+0.4 f_{2} & \text { if } f_{1}<f_{2}
\end{array}, W_{2}(f)= \begin{cases}0.5 f_{1}+0.5 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.9 f_{1}+0.1 f_{2} & \text { if } f_{1}<f_{2}\end{cases}\right.
$$

\triangleright Consider $P_{3}=P_{1} \cap P_{2}=[0.5,0.6]$

$$
W_{3}(f)=\left\{\begin{array}{ll}
0.5 f_{1}+0.5 f_{2} & \text { if } f_{1} \geq f_{2} \\
0.6 f_{1}+0.4 f_{2} & \text { if } f_{1}<f_{2}
\end{array}=\max \left\{W_{1}(f), W_{2}(f)\right\}\right.
$$

\triangleright If $W_{3}(f) \geq W_{3}(g) \forall g \in A$ then $\exists i \in\{1,2\}: W_{i}(f) \geq W_{i}(g) \forall g \in A$
$\triangleright\left(U,\left\{P_{1}, P_{2}, P_{3}\right\}\right)$ represents the same $c(\cdot)$ as $\left(U,\left\{P_{1}, P_{2}\right\}\right)$
$\triangleright P_{3}=P_{1} \cap P_{2}$ is a redundant frame

Connection to the literature

$$
c(B)=\bigcup_{P \in \mathcal{A}} \underset{f \in B}{\arg \max } W_{P}(f)
$$

Connection to the literature

$$
c(B)=\bigcup_{P \in \mathcal{A}} \underset{f \in B}{\arg \max } W_{P}(f)
$$

\triangleright Special case of $c(B)=\bigcup_{i \in \text { frames }} c_{i}(B)$ in Salant and Rubinstein (2008)

Connection to the literature

$$
c(B)=\bigcup_{P \in \mathcal{A}} \underset{f \in B}{\arg \max } W_{P}(f)
$$

\triangleright Special case of $c(B)=\bigcup_{i \in \text { frames }} c_{i}(B)$ in Salant and Rubinstein (2008)
\triangleright If $\mathcal{A}=\{P\}$, the model reduces to Gilboa and Schmeidler (1989)

Connection to the literature

$$
c(B)=\bigcup_{P \in \mathcal{A}} \underset{f \in B}{\arg \max } W_{P}(f)
$$

\triangleright Special case of $c(B)=\bigcup_{i \in \text { frames }} c_{i}(B)$ in Salant and Rubinstein (2008)
\triangleright If $\mathcal{A}=\{P\}$, the model reduces to Gilboa and Schmeidler (1989)
\triangleright If each $P_{i}=\left\{\mu_{i}\right\}$, DM is frame-sensitive expected utility maximizer. Generalizes "justifiable" preferences/choice: Lehrer and Teper (2011)/ Heller (2012) (they require convex set of justifications (beliefs))

Connection to the literature

$$
c(B)=\bigcup_{P \in \mathcal{A}} \underset{f \in B}{\arg \max } W_{P}(f)
$$

\triangleright Special case of $c(B)=\bigcup_{i \in \text { frames }} c_{i}(B)$ in Salant and Rubinstein (2008)
\triangleright If $\mathcal{A}=\{P\}$, the model reduces to Gilboa and Schmeidler (1989)
\triangleright If each $P_{i}=\left\{\mu_{i}\right\}$, DM is frame-sensitive expected utility maximizer. Generalizes "justifiable" preferences/choice: Lehrer and Teper (2011)/ Heller (2012) (they require convex set of justifications (beliefs))
\triangleright In Kopylov (2021), $c(B)=\underset{f \in B}{\arg \max } W_{P(B)}(f)$

Connection to the literature

$$
c(B)=\bigcup_{P \in \mathcal{A}} \underset{f \in B}{\arg \max } W_{P}(f)
$$

\triangleright Special case of $c(B)=\bigcup_{i \in \text { frames }} c_{i}(B)$ in Salant and Rubinstein (2008)
\triangleright If $\mathcal{A}=\{P\}$, the model reduces to Gilboa and Schmeidler (1989)
\triangleright If each $P_{i}=\left\{\mu_{i}\right\}, \mathrm{DM}$ is frame-sensitive expected utility maximizer. Generalizes "justifiable" preferences/choice: Lehrer and Teper (2011)/ Heller (2012) (they require convex set of justifications (beliefs))
\triangleright In Kopylov (2021), $c(B)=\underset{f \in B}{\arg \max } W_{P(B)}(f)$
\triangleright In Chandrasekher, Frick, lijima, and Le Yaouanq (2022),

$$
c(B)=\underset{f \in B}{\arg \max }\left(\max _{P \in \mathcal{A}} W_{P}(f)\right)
$$

Connection to the literature

$$
c(B)=\bigcup_{P \in \mathcal{A}} \underset{f \in B}{\arg \max } W_{P}(f)
$$

\triangleright Special case of $c(B)=\bigcup_{i \in \text { frames }} c_{i}(B)$ in Salant and Rubinstein (2008)
\triangleright If $\mathcal{A}=\{P\}$, the model reduces to Gilboa and Schmeidler (1989)
\triangleright If each $P_{i}=\left\{\mu_{i}\right\}, \mathrm{DM}$ is frame-sensitive expected utility maximizer. Generalizes "justifiable" preferences/choice: Lehrer and Teper (2011)/ Heller (2012) (they require convex set of justifications (beliefs))
\triangleright In Kopylov (2021), $c(B)=\underset{f \in B}{\arg \max } W_{P(B)}(f)$
\triangleright In Chandrasekher, Frick, lijima, and Le Yaouanq (2022), $c(B)=\underset{f \in B}{\arg \max }\left(\max _{P \in \mathcal{A}} W_{P}(f)\right)$
\triangleright In Stoye (2011), $c(B)=\underset{f \in B}{\arg \max } \min _{g \in B} \min _{\mu \in P} \sum_{s \in S}(u(f(s))-u(g(s))) \cdot \mu(s)$

Relation to Other Axioms

Define $f \succeq g$ iff $\exists A: g \in A, f \in c(A)$. Under $\alpha, f \succeq g$ iff $f \in c(\{f, g\})$
Revealed Preference Rationality: \succeq is complete and transitive

Relation to Other Axioms

Define $f \succeq g$ iff $\exists A: g \in A, f \in c(A)$. Under $\alpha, f \succeq g$ iff $f \in c(\{f, g\})$
Revealed Preference Rationality: \succeq is complete and transitive
$\gamma: \bigcap_{B \in \mathcal{D}} c(B) \subseteq c\left(\bigcup_{B \in \mathcal{D}} B\right)$

Relation to Other Axioms

Define $f \succeq g$ iff $\exists A: g \in A, f \in c(A)$. Under $\alpha, f \succeq g$ iff $f \in c(\{f, g\})$
Revealed Preference Rationality: \succeq is complete and transitive
$\gamma: \bigcap_{B \in \mathcal{D}} c(B) \subseteq c\left(\bigcup_{B \in \mathcal{D}} B\right)$
Normality: $c(A)=\{f \in A \mid f \succeq g \forall g \in A\}$

Relation to Other Axioms

Define $f \succeq g$ iff $\exists A: g \in A, f \in c(A)$. Under $\alpha, f \succeq g$ iff $f \in c(\{f, g\})$
Revealed Preference Rationality: \succeq is complete and transitive
$\gamma: \bigcap_{B \in \mathcal{D}} c(B) \subseteq c\left(\bigcup_{B \in \mathcal{D}} B\right)$
Normality: $c(A)=\{f \in A \mid f \succeq g \forall g \in A\}$
Ambiguity Aversion:
$\{f, g, \lambda f+(1-\lambda) g\} \subseteq A, f, g \in c(A) \Longrightarrow \lambda f+(1-\lambda) g \in c(A)$

Relation to Other Axioms

Define $f \succeq g$ iff $\exists A: g \in A, f \in c(A)$. Under $\alpha, f \succeq g$ iff $f \in c(\{f, g\})$
Revealed Preference Rationality: \succeq is complete and transitive
$\gamma: \bigcap_{B \in \mathcal{D}} c(B) \subseteq c\left(\bigcup_{B \in \mathcal{D}} B\right)$
Normality: $c(A)=\{f \in A \mid f \succeq g \forall g \in A\}$
Ambiguity Aversion:
$\{f, g, \lambda f+(1-\lambda) g\} \subseteq A, f, g \in c(A) \Longrightarrow \lambda f+(1-\lambda) g \in c(A)$
"Pairwise No-C-Hedging":
$h \in c(\{h, f\})$ and $h \in c(\{h, p\}) \Longrightarrow h \in c(\{h, \lambda f+(1-\lambda) p\})$

Relation to Other Axioms

Define $f \succeq g$ iff $\exists A: g \in A, f \in c(A)$. Under $\alpha, f \succeq g$ iff $f \in c(\{f, g\})$
Revealed Preference Rationality: \succeq is complete and transitive
$\gamma: \bigcap_{B \in \mathcal{D}} c(B) \subseteq c\left(\bigcup_{B \in \mathcal{D}} B\right)$
Normality: $c(A)=\{f \in A \mid f \succeq g \forall g \in A\}$
Ambiguity Aversion:
$\{f, g, \lambda f+(1-\lambda) g\} \subseteq A, f, g \in c(A) \Longrightarrow \lambda f+(1-\lambda) g \in c(A)$
"Pairwise No-C-Hedging":
$h \in c(\{h, f\})$ and $h \in c(\{h, p\}) \Longrightarrow h \in c(\{h, \lambda f+(1-\lambda) p\})$

Proposition 2

Let (U, \mathcal{A}) represents $c(\cdot)$. Then $|\mathcal{A}|=1$ is equivalent to $c(\cdot)$ satisfying any of the following properties: β, WARP, Revealed Preference Rationality, γ, Normality, Ambiguity Aversion, Pairwise No-C-Hedging.

Comparative Decisiveness

Definition: DM 1 is more decisive than DM 2 if $c_{1} \subseteq c_{2}$.

Comparative Decisiveness

Definition: DM 1 is more decisive than DM 2 if $c_{1} \subseteq c_{2}$.

Proposition

Let $c_{1}(\cdot)$ and $c_{2}(\cdot)$ be represented by $\left(U_{1}, \mathcal{A}_{1}\right)$ and $\left(U_{2}, \mathcal{A}_{2}\right)$. Then DM 1 is more decisive than DM 2 if and only if $U_{1} \approx U_{2}$, and \mathcal{A}_{1} is a subset of the maximum family of frames representing $c_{2}(\cdot)$.

Connection to the Literature

Unanimity \Longleftrightarrow convex combinations + convex unions + coherent intersections

Connection to the Literature

Unanimity \Longleftrightarrow convex combinations + convex unions + coherent intersections
\triangleright Crès, Gilboa, and Vieille (2011) consider Unanimity and "EUA:"

$$
f \succeq_{i} \sum_{k} \alpha_{k} p_{i}^{f_{k}} \forall i \Longrightarrow f \succeq \sum_{k} \alpha_{k} p^{f_{k}}, \quad \text { where } p_{i}^{f_{k}} \sim_{i} f_{k}, p^{f_{k}} \sim f_{k}
$$

Connection to the Literature

Unanimity \Longleftrightarrow convex combinations + convex unions + coherent intersections
\triangleright Crès, Gilboa, and Vieille (2011) consider Unanimity and "EUA:"

$$
f \succeq{ }_{i} \sum_{k} \alpha_{k} p_{i}^{f_{k}} \forall i \Longrightarrow f \succeq \sum_{k} \alpha_{k} p^{f_{k}}, \quad \text { where } p_{i}^{f_{k}} \sim_{i} f_{k}, p^{f_{k}} \sim f_{k}
$$

Unanimity $+E U A \Longleftrightarrow$ convex combinations + convex unions

Connection to the Literature

Unanimity \Longleftrightarrow convex combinations + convex unions + coherent intersections
\triangleright Crès, Gilboa, and Vieille (2011) consider Unanimity and "EUA:"

$$
f \succeq_{i} \sum_{k} \alpha_{k} p_{i}^{f_{k}} \forall i \Longrightarrow f \succeq \sum_{k} \alpha_{k} p^{f_{k}}, \quad \text { where } p_{i}^{f_{k}} \sim_{i} f_{k}, p^{f_{k}} \sim f_{k}
$$

Unanimity $\Longleftarrow E U A \Longleftrightarrow$ convex combinations + convex unions

Connection to the Literature

Unanimity \Longleftrightarrow convex combinations + convex unions + coherent intersections
\triangleright Crès, Gilboa, and Vieille (2011) consider Unanimity and "EUA:"

$$
f \succeq_{i} \sum_{k} \alpha_{k} p_{i}^{f_{k}} \forall i \Longrightarrow f \succeq \sum_{k} \alpha_{k} p^{f_{k}}, \quad \text { where } p_{i}^{f_{k}} \sim_{i} f_{k}, p^{f_{k}} \sim f_{k}
$$

Unanimity $\Longleftarrow E U A \Longleftrightarrow$ convex combinations + convex unions
\triangleright Hill (2012) imposes "Weak Independence" axiom that connects aggregation rules for different preferences' profiles

Unanimity + WI \Longleftrightarrow convex combinations + convex unions

Non-Existence of a Minimum Family of Frames Representing \succeq

$\triangleright \mathcal{A}=\left\{P_{1}, P_{2}, P_{3}\right\}$ (left plot)
$\triangleright \mathcal{A}^{\prime}=\left\{P_{1}, P_{2}, P_{5}, P_{6}\right\}$ (right plot)
$\triangleright P_{5}=\operatorname{conv}\left(P_{1} \cup P_{3}\right), P_{6}=\operatorname{conv}\left(P_{2}, P_{3}\right)$, hence $\mathcal{A}^{\prime} \in \Gamma(\mathcal{A})$
$\triangleright P_{3}=P_{5} \cap P_{6}$, and the intersection is coherent, hence $\mathcal{A} \in \Gamma\left(\mathcal{A}^{\prime}\right)$

Optimistic learning

Proposition. Let (U, \mathcal{A}) represents $c_{2}(\cdot)$, and $(V,\{P\})$ represents $c_{1}(\cdot)$. Then the following statements are equivalent:
(i) If $f_{i} \in c_{2}\left(\left\{f_{i}, p\right\}\right)$ for all $i=1, . ., k$, then $\sum_{i}^{k} \sigma_{i} f_{i} \in c_{1}\left(\left\{\sum_{i}^{k} \sigma_{i} f_{i}, p\right\}\right)$ for all convex weights σ.
(ii) V is a positive affine transformation of U, and $P \subseteq \bigcap_{Q \in \mathcal{A}} Q \neq \varnothing$.

