Slow and Easy: a Theory of Browsing

EEA-ESEM, Barcelona, 2023

Evgenii Safonov, Queen Mary University of London

Motivation

- ▷ Window shopping/browsing
 - \checkmark Not urgent
 - $\checkmark\,$ Attention may jump from item to item
 - $\checkmark~$ Not known what options are available
 - ✓ Multiple attributes

Motivation

- ▷ Window shopping/browsing
 - ✓ Not urgent
 - $\checkmark\,$ Attention may jump from item to item
 - $\checkmark~$ Not known what options are available
 - ✓ Multiple attributes
- \triangleright "Classical" search models: cost of the search
 - $\checkmark~$ Direct: information cost
 - $\checkmark~$ Indirect: waiting cost

Motivation

- \triangleright Window shopping/browsing
 - ✓ Not urgent
 - $\checkmark\,$ Attention may jump from item to item
 - $\checkmark~$ Not known what options are available
 - ✓ Multiple attributes
- \triangleright "Classical" search models: cost of the search
 - $\checkmark~$ Direct: information cost
 - $\checkmark~$ Indirect: waiting cost
- ▷ This paper: information processing constraints

Attributes

\triangleright Example—new TV

TV-set	technology	sound	brand	screen
а	OLED	excellent	S	50"
b	OLED	good	Р	50"
С	LED	excellent	Р	50"
d	LED	good	S	42"

Attributes

▷ Example—new TV

TV-set	technology	sound	brand	screen
а	OLED	excellent	S	50"
b	OLED	good	Р	50"
С	LED	excellent	Р	50"
d	LED	good	S	42''

▷ "Languages:"

 $\checkmark~$ Technology, sound quality

Attributes

\triangleright Example—new TV

TV-set	technology	sound	brand	screen
а	OLED	excellent	S	50"
b	OLED	good	Р	50"
С	LED	excellent	Р	50"
d	LED	good	S	42''

▷ "Languages:"

- $\checkmark~$ Technology, sound quality
- $\checkmark~$ Technology, brand

- \triangleright Objectives:
 - $\checkmark\,$ Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
 - $\checkmark\,$ Identify descriptions of items that make the search easy

- \triangleright Objectives:
 - $\checkmark\,$ Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
 - $\checkmark\,$ Identify descriptions of items that make the search easy
- \triangleright Approach:
 - ✓ Use Automata Theory—automaton strategy as a decision making procedure

- ▷ Objectives:
 - $\checkmark\,$ Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
 - $\checkmark\,$ Identify descriptions of items that make the search easy
- \triangleright Approach:
 - \checkmark Use Automata Theory—automaton strategy as a decision making procedure
 - \checkmark Consider zero waiting costs

- ▷ Objectives:
 - $\checkmark\,$ Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
 - $\checkmark\,$ Identify descriptions of items that make the search easy
- \triangleright Approach:
 - \checkmark Use Automata Theory—automaton strategy as a decision making procedure
 - \checkmark Consider zero waiting costs
- ▷ Main insights:

- ▷ Objectives:
 - $\checkmark\,$ Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
 - $\checkmark\,$ Identify descriptions of items that make the search easy
- \triangleright Approach:
 - \checkmark Use Automata Theory—automaton strategy as a decision making procedure
 - \checkmark Consider zero waiting costs
- ▷ Main insights:
 - ✓ Consumer choice is not hard if use randomization and sacrifice the speed: logarithmic/linear complexity

- ▷ Objectives:
 - $\checkmark\,$ Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
 - $\checkmark\,$ Identify descriptions of items that make the search easy
- ▷ Approach:
 - \checkmark Use Automata Theory—automaton strategy as a decision making procedure
 - \checkmark Consider zero waiting costs
- ▷ Main insights:
 - $\checkmark\,$ Consumer choice is not hard if use randomization and sacrifice the speed: logarithmic/linear complexity
 - $\checkmark\,$ System of attributes used to describe objects matters: languages that attain logarithmic/linear bounds in complexity

- ▷ Objectives:
 - $\checkmark\,$ Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
 - $\checkmark\,$ Identify descriptions of items that make the search easy
- ▷ Approach:
 - \checkmark Use Automata Theory—automaton strategy as a decision making procedure
 - \checkmark Consider zero waiting costs
- ▷ Main insights:
 - ✓ Consumer choice is not hard if use randomization and sacrifice the speed: logarithmic/linear complexity
 - $\checkmark\,$ System of attributes used to describe objects matters: languages that attain logarithmic/linear bounds in complexity
 - $\checkmark\,$ Simplest procedure: examine attributes sequentially, dismiss the item with positive probability if the attribute's value is bad

Model

- \triangleright Finite set of items A with generic element a
- \triangleright Complete and transitive non-trivial preference \succeq on A

- \triangleright Finite set of items A with generic element a
- \triangleright Complete and transitive non-trivial preference \succeq on A
- \triangleright Nature chooses a non-empty menu $B \subseteq A$, unknown to the agent

 \triangleright In period t = 1, a random item is drawn from the menu

Search

- \triangleright In period t = 1, a random item is drawn from the menu
- $\triangleright\,$ Agent investigates the item by examining its attributes:
 - \checkmark One attribute (agent's choice) in a period
 - $\checkmark~$ Can choose the item and stop the search
 - $\checkmark~$ Can continue to investigate the item
 - $\checkmark~$ Can dismiss the item and draw a new one

Search

- \triangleright In period t = 1, a random item is drawn from the menu
- $\triangleright\,$ Agent investigates the item by examining its attributes:
 - \checkmark One attribute (agent's choice) in a period
 - $\checkmark\,$ Can choose the item and stop the search
 - $\checkmark~$ Can continue to investigate the item
 - $\checkmark~$ Can dismiss the item and draw a new one
- ▷ Each period during the search:
 - $\checkmark\,$ With probability $\eta\in(0,1),$ a new item catches the agent's attention
 - \checkmark With probability $1-\eta,$ the item remains the same

Search

- \triangleright In period t = 1, a random item is drawn from the menu
- $\triangleright\,$ Agent investigates the item by examining its attributes:
 - \checkmark One attribute (agent's choice) in a period
 - $\checkmark~$ Can choose the item and stop the search
 - $\checkmark~$ Can continue to investigate the item
 - $\checkmark~$ Can dismiss the item and draw a new one
- ▷ Each period during the search:
 - $\checkmark\,$ With probability $\eta\in(0,1),$ a new item catches the agent's attention
 - \checkmark With probability 1η , the item remains the same
- > Each time a random item is drawn according to the same distribution
 - \checkmark Can encounter the same (or identical) item multiple times

Information Structures

- $\triangleright~\mathsf{Language}~Q = \{Q_i\}_{i\in N}$ is a collection of non-trivial binary partitions of A
 - $\checkmark\,$ Each partition maps to a binary property (attribute) of items
 - \checkmark *N*—index set of partitions (attributes)
 - $\checkmark a_i \in \{0,1\}$ is the value of attribute $i \in N$

Information Structures

- $\triangleright~\mathsf{Language}~Q = \{Q_i\}_{i\in N}$ is a collection of non-trivial binary partitions of A
 - \checkmark Each partition maps to a binary property (attribute) of items
 - \checkmark *N*—index set of partitions (attributes)
 - $\checkmark a_i \in \{0,1\}$ is the value of attribute $i \in N$

TV-set	technology	sound	brand	screen
а	OLED	excellent	S	50"
b	OLED	good	Р	50"
с	LED	excellent	Р	50"
d	LED	good	S	42"

 \triangleright Example: $\{Q_1, Q_2\}$, where $Q_1 = \{\{a, b\}, \{c, d\}\}$, $Q_2 = \{\{a, c\}, \{b, d\}\}$

 \checkmark Language includes "technology" and "sound" attributes

$$\triangleright$$
 Strategy (*S*, ι , τ)

- \triangleright Strategy (*S*, ι , τ)
- ▷ State space $S = S^{\circ} \cup \{choose\} \cup \{dismiss\}$
 - $\checkmark S^o = \{1, ..., m\}$ —memory states
 - $\checkmark \ \{ choose, dismiss \} \\ -- special \ states \\$

- \triangleright Strategy (*S*, ι , τ)
- ▷ State space $S = S^{\circ} \cup \{choose\} \cup \{dismiss\}$
 - $\checkmark S^o = \{1, ..., m\}$ —memory states
 - $\checkmark \ \{ choose, dismiss \} \\ -- special states$
- \triangleright Interrogation rule $\iota: S^o \to N$
 - $\checkmark \iota(s)$ —attribute of the item investigated in state s

- \triangleright Strategy (*S*, ι , τ)
- ▷ State space $S = S^{\circ} \cup \{choose\} \cup \{dismiss\}$
 - $\checkmark S^o = \{1, ..., m\}$ —memory states
 - $\checkmark \ \{ choose, dismiss \} \\ -- special states$
- \triangleright Interrogation rule $\iota: S^o \to N$
 - $\checkmark \iota(s)$ —attribute of the item investigated in state s
- \triangleright Stochastic transition rule $au: S^o imes \{0,1\} o riangle (S)$
 - $\checkmark \tau(s,v,j)$ —probability to transition from s to v if attribute $\iota(s)$ has value j

- \triangleright Strategy (S, ι, τ)
- \triangleright State space $S = S^{\circ} \cup \{choose\} \cup \{dismiss\}$
 - $\checkmark S^o = \{1, ..., m\}$ —memory states
 - ✓ {*choose*, *dismiss*}—special states
- \triangleright Interrogation rule $\iota: S^o \to N$
 - $\checkmark \iota(s)$ —attribute of the item investigated in state s
- \triangleright Stochastic transition rule $au: S^o imes \{0,1\} o riangle (S)$
 - $\checkmark \tau(s, v, j)$ —probability to transition from s to v if attribute $\iota(s)$ has value j
- $\triangleright\,$ Each time a new alternative is drawn, state initializes at s=1
 - $\checkmark\,$ Agent focuses on the current item, no recall of the past investigations
 - $\checkmark~$ In the paper, we relax this assumption for part of the analysis

▷ TV-set example, language: {*technology*, *sound*}

 $\triangleright \text{ Utility: } u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$

▷ TV-set example, language: {*technology*, *sound*}

 \triangleright Utility: $u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$

▷ TV-set example, language: {*technology*, *sound*}

 $\triangleright \text{ Utility: } u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$

> Probability of choosing an item during an investigation:

▷ TV-set example, language: {*technology*, *sound*}

 $\triangleright \text{ Utility: } u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$

> Probability of choosing an item during an investigation:

▷ TV-set example, language: {*technology*, *sound*}

 $\triangleright \text{ Utility: } u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$

> Probability of choosing an item during an investigation:

▷ TV-set example, language: {*technology*, *sound*}

 $\triangleright \text{ Utility: } u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$

> Probability of choosing an item during an investigation:

- ▷ TV-set example, language: {*technology*, *sound*}
- $\triangleright \text{ Utility: } u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$

> Probability of choosing an item during an investigation:

> Imagine, the realized menu includes all but the best TV-set

- ▷ TV-set example, language: {*technology*, *sound*}
- $\triangleright \text{ Utility: } u(tech, sound) = 2 \cdot \mathbb{1}\{tech = OLED\} + 1 \cdot \mathbb{1}\{sound = excellent\}$

> Probability of choosing an item during an investigation:

 $\triangleright~\epsilon \longrightarrow$ 0, optimal choice from any menu with probability 1

▷ Choice problem (Q, \succeq)

- ▷ Choice problem (Q, \succeq)
- \triangleright Transitions of the automaton: $\mathcal{T} = \{(s, v, j) \mid \tau(s, v, j) > 0\}$

- ▷ Choice problem (Q, \succeq)
- \triangleright Transitions of the automaton: $\mathcal{T} = \{(s, v, j) \mid \tau(s, v, j) > 0\}$
- ▷ Decision rule $\psi = \{(S, \iota, \tau_r)\}_{r=1,2,...}$
 - ✓ Fixed state space S
 - \checkmark Fixed interrogation rule ι
 - $\checkmark~$ Fixed transitions $\mathcal{T}_r=\mathcal{T},~r=1,2,...$

- ▷ Choice problem (Q, \succeq)
- \triangleright Transitions of the automaton: $\mathcal{T} = \{(s, v, j) \mid \tau(s, v, j) > 0\}$
- ▷ Decision rule $\psi = \{(S, \iota, \tau_r)\}_{r=1,2,...}$
 - \checkmark Fixed state space S
 - \checkmark Fixed interrogation rule ι
 - ✓ Fixed transitions $T_r = T$, r = 1, 2, ...

Definition. A decision rule ψ solves the choice problem (Q, \succeq) if

$$\lim_{r \to \infty} \Pr(\text{choose} \succeq \text{-best item from menu } B) = 1 \qquad \forall B$$

Proposition. There exists a decision rule that solves the agent's choice problem if and only for any $a, b \in A$, if $a \succ b$, then $a_i \neq b_i$ for some $i \in N$.

Proposition. There exists a decision rule that solves the agent's choice problem if and only for any $a, b \in A$, if $a \succ b$, then $a_i \neq b_i$ for some $i \in N$.

> We consider languages that allow the agent to solve her choice problem

Proposition. There exists a decision rule that solves the agent's choice problem if and only for any $a, b \in A$, if $a \succ b$, then $a_i \neq b_i$ for some $i \in N$.

- > We consider languages that allow the agent to solve her choice problem
- ▷ Given the agent's language, what is the minimum amount of cognitive resources required to solve the choice problem?

In the paper:

 $\triangleright\,$ Memory load of a decision rule: $\mathcal{M}(\psi) = |\mathcal{S}^{\circ}|$

 $\checkmark\,$ Represents an "operational" memory required to implement the procedure

 \triangleright Memory load of a language (given \succeq):

$$\mathcal{M}_{\succeq}(\mathcal{Q}) := \min_{\psi ext{ solves } (\mathcal{Q}, \succeq)} \mathcal{M}(\psi)$$

In the paper:

 $\triangleright\,$ Memory load of a decision rule: $\mathcal{M}(\psi) = |\mathcal{S}^o|$

 $\checkmark\,$ Represents an "operational" memory required to implement the procedure

 \triangleright Memory load of a language (given \succeq):

$$\mathcal{M}_{\succeq}(\mathcal{Q}) := \min_{\psi ext{ solves } (\mathcal{Q}, \succeq)} \mathcal{M}(\psi)$$

This talk:

 \triangleright Complexity of a decision rule: $\kappa(\psi) = |\{(s, v, j) \mid \tau(s, v, j) > 0\}|$

In the paper:

 $\triangleright\,$ Memory load of a decision rule: $\mathcal{M}(\psi) = |\mathcal{S}^o|$

 $\checkmark\,$ Represents an "operational" memory required to implement the procedure

 \triangleright Memory load of a language (given \succeq):

$$\mathcal{M}_{\succeq}(\mathcal{Q}) := \min_{\psi ext{ solves } (\mathcal{Q}, \succeq)} \mathcal{M}(\psi)$$

- \triangleright Complexity of a decision rule: $\kappa(\psi) = |\{(s, v, j) \mid \tau(s, v, j) > 0\}|$
 - $\checkmark\,$ Represents "length of instructions" of the procedure

In the paper:

 $\triangleright\,$ Memory load of a decision rule: $\mathcal{M}(\psi) = |\mathcal{S}^o|$

 $\checkmark\,$ Represents an "operational" memory required to implement the procedure

 \triangleright Memory load of a language (given \succeq):

$$\mathcal{M}_{\succeq}(\mathcal{Q}) := \min_{\psi ext{ solves } (\mathcal{Q}, \succeq)} \mathcal{M}(\psi)$$

- \triangleright Complexity of a decision rule: $\kappa(\psi) = |\{(s, v, j) \mid \tau(s, v, j) > 0\}|$
 - $\checkmark\,$ Represents "length of instructions" of the procedure
 - \checkmark Considered for repeated games in Banks and Sundaram (1990)

In the paper:

 $\triangleright\,$ Memory load of a decision rule: $\mathcal{M}(\psi) = |\mathcal{S}^o|$

 $\checkmark\,$ Represents an "operational" memory required to implement the procedure

 \triangleright Memory load of a language (given \succeq):

$$\mathcal{M}_{\succeq}(\mathcal{Q}) := \min_{\psi ext{ solves } (\mathcal{Q}, \succeq)} \mathcal{M}(\psi)$$

- \triangleright Complexity of a decision rule: $\kappa(\psi) = |\{(s, v, j) \mid \tau(s, v, j) > 0\}|$
 - $\checkmark\,$ Represents "length of instructions" of the procedure
 - \checkmark Considered for repeated games in Banks and Sundaram (1990)
 - ✓ Experimentally in Oprea (2020)

In the paper:

 $\triangleright\,$ Memory load of a decision rule: $\mathcal{M}(\psi) = |\mathcal{S}^{\circ}|$

 $\checkmark\,$ Represents an "operational" memory required to implement the procedure

 \triangleright Memory load of a language (given \succeq):

$$\mathcal{M}_{\succeq}(\mathcal{Q}) := \min_{\psi ext{ solves } (\mathcal{Q}, \succeq)} \mathcal{M}(\psi)$$

- \triangleright Complexity of a decision rule: $\kappa(\psi) = |\{(s, v, j) \mid \tau(s, v, j) > 0\}|$
 - $\checkmark\,$ Represents "length of instructions" of the procedure
 - \checkmark Considered for repeated games in Banks and Sundaram (1990)
 - ✓ Experimentally in Oprea (2020)
- \triangleright Complexity (transitional) of a language (given \succeq):

$$\kappa_{\succeq}(Q) := \min_{\psi ext{ solves } (Q, \succeq)} \kappa(\psi)$$

Consider
$$A = \{a, b, c, d\}$$
, and $a \succ b \succ c \succ d$

	Language	Preference	\mathcal{M}	κ
Q	$\{\{a,b\},\{c,d\}\}, \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	2	6
R	$\{\{a,b\},\{c,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	2	7
S	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	3	9
Т	$ \{\{a\}, \{b, c, d\}\}, \ \{\{b\}, \{a, c, d\}\}, \\ \{\{c\}, \{a, b, d\}\} $	$100 \succ 010 \succ 001 \succ 000$	3	9

Some details

Theorem (Upper Bound). If there are k = |A| items, then for any \succeq :

- (i) For any language Q, $\kappa_{\succeq}(Q) \leq 3k 3$;
- (ii) There exists a language Q such that $\kappa_{\succeq}(Q) \ge k-2$.

Proof Idea for (i)

Theorem (Lower Bound). Let \succeq have m indifference classes, then:

(i) For any language Q, $\kappa_{\succeq}(Q) \ge 3\lceil \log_2 m \rceil$;

(ii) There exists a language Q such that $\kappa_{\succeq}(Q) = 3\lceil \log_2 m \rceil$;

(iii) If ψ solves (Q, \succeq) , and $\kappa(\psi) = 3\lceil \log_2 m \rceil$, then $\mathcal{M}(\psi)$ is minimum among the rules that solve the choice problem (\widetilde{Q}, \succeq) for any language \widetilde{Q} ,

where $\lceil x \rceil$ denotes the smallest natural number weakly greater than x.

Proof Idea for (i)

Simplest Languages and Decision Rules

 \triangleright Consider the following decision rules with $\{\epsilon_i\}_{r=1,2,\ldots} \in (0,1)$

 \triangleright Consider the following decision rules with $\{\epsilon_i\}_{r=1,2,\ldots} \in (0,1)$

> Can enumerate attributes and attributes' values arbitrarily

 \triangleright Consider the following decision rules with $\{\epsilon_i\}_{r=1,2,\ldots} \in (0,1)$

> Can enumerate attributes and attributes' values arbitrarily

 \triangleright Call Ψ_n^+ the set of such rules with *n* memory states

$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

 $\triangleright\,$ Suppose the agent's language facilitates usage of an additive utility:

$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i, \quad (WLOG) \ \lambda_i \ge 0$$

 \triangleright Pr(choose item *a* during single investigation)= $(1 - \eta)^{m-1} \cdot e^{\sum \lambda_i (1 - a_i)}$

Definition. Let \succeq have m indifference classes. Language Q is adapted for \succeq if there exists $\lambda \in \mathbb{R}^N$ such that:

$$\begin{array}{ll} (i) & a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i \\ (ii) & \left| \{i \in N | \lambda_i \neq 0\} \right| = \left\lceil \log_2 m \right\rceil \end{array}$$

Definition. Let \succeq have m indifference classes. Language Q is adapted for \succeq if there exists $\lambda \in \mathbb{R}^N$ such that:

(i)
$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i$$

(ii) $|\{i \in N | \lambda_i \neq 0\}| = \lceil \log_2 m \rceil$

Proposition. There exists an adapted language.

▶ Proof

Definition. Let \succeq have m indifference classes. Language Q is adapted for \succeq if there exists $\lambda \in \mathbb{R}^N$ such that:

$$\begin{array}{ll} (i) & a \succ b & \Longrightarrow & \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i \\ (ii) & \left| \{i \in N | \lambda_i \neq 0\} \right| &= \lceil \log_2 m \rceil \end{array}$$

Proposition. There exists an adapted language.

Proof

Remark. The utility function $u(a) = \sum_{i \in N} \lambda_i a_i$ induces a preference that might break ties in the original preference \succeq .

Proposition. Let \succeq have m indifference classes, then Q is adapted for \succeq if and only if there exists $\psi \in \Psi^+_{\lceil \log_2 m \rceil}$ that solves (Q, \succeq) .

Theorem (Simplest Languages). Let \succeq have m indifference classes, then:

(i) If Q is adapted for \succeq , then $\kappa_{\succeq}(Q) = 3\lceil \log_2 m \rceil$;

(ii) If $(3/4) \cdot 2^n < m \le 2^n$ for a natural n, then:

(a) $\kappa_{\succeq}(Q) = 3\lceil \log_2 m \rceil$ if and only if Q is adapted for \succeq ;

(b) If ψ solves (Q, \succeq) , and $\kappa(\psi) = 3\lceil \log_2 m \rceil$, then $\psi \in \Psi^+_{\lceil \log_2 m \rceil}$.

Proof Sketch

Literature Review and Conclusion

- Optimal search: Kohn and Shavell (1974); Weitzman (1979); Morgan and Manning (1985); Klabjan, Olszewski, and Wolinsky (2014); Sanjurjo (2017)
- ▷ Memory-constrained search: Dow (1991); Sanjurjo (2015), (2019)
- Stochastic Browsing: Cerreia-Vioglio, Maccheroni, Marinacci, Rustichini (2020), Rustichini (2020)
- Hypothesis testing and learning with finite memory: Cover (1969);
 Cover and Hellman (1970); Hellman and Cover (1970), (1971)
- Automata and simple algorithms in Economics: Abreu and Rubinstein (1988); Kalai and Stanford (1988); Banks and Sundaram (1990); Kalai and Solan (2003); Börgers and Morales (2004); Kocer (2010); Salant (2011); Mandler, Manzini, Mariotti (2012); Wilson (2014); Oprea (2020)

- Simple stochastic strategies achieve near optimality when time is not of the essence
- Descriptions that facilitate additive utility with few attributes are key for simplicity
- ▷ In the simplest procedures, "higher" memory state indicate higher quality of the item relative to the menu

Supplementary Slides

Theorem (Upper Bound). If there are k = |A| items, then for any \succeq :

(i) For any language Q, $\kappa_{\succeq}(Q) \leq k-1$;

(ii) There exists a language Q such that $\kappa_{\succeq}(Q) \ge k/2 - 1$.

Theorem (Lower Bound). Let \succ have m indifference classes, then:

(i) For any language Q, $\kappa_{\succeq}(Q) \geq \lceil \log_2 m \rceil$;

(ii) There exists a language Q such that $\kappa_{\succeq}(Q) = \lceil \log_2 m \rceil$;

where $\lceil x \rceil$ denotes the smallest natural number weakly greater than x.

Extension: Relaxing Memory Initialization Assumption

 \triangleright Baseline model: a state initializes at s = 1 with each new item

- $\triangleright\,$ Baseline model: a state initializes at s=1 with each new item
- General model: when a new item is drawn, the automaton transitions to a new state conditional on the previous state

- \triangleright Baseline model: a state initializes at s = 1 with each new item
- General model: when a new item is drawn, the automaton transitions to a new state conditional on the previous state
- ▷ State space $S = S^o \cup \{choose\}$

- \triangleright Baseline model: a state initializes at s=1 with each new item
- General model: when a new item is drawn, the automaton transitions to a new state conditional on the previous state
- \triangleright State space $S = S^o \cup \{choose\}$
- ▷ Specify probabilities:
 - $\checkmark\,$ To choose the current item, conditional on the current state and the learned attribute's value
 - $\checkmark\,$ To continue the investigation of the item and move to a memory state, conditional on the current state and the learned attribute's value
 - $\checkmark\,$ To dismiss the item, pick a new random item, and move to a memory state, conditional on the current state and the learned attribute's value
 - $\checkmark\,$ To move to a memory state, conditional on the current state and the event that a new item catches the agent's attention

Theorem (Upper Bound). Consider a general model. Let k be the total number of items, then for any non-trivial \succeq :

(i) For any language Q, $\mathcal{M}(Q) \leq k-1$;

(ii) There exists a language Q such that $\mathcal{M}(Q) = k/2 - 1$.

Theorem (Lower Bound). Consider a general model. Let $m \ge 2$ be the total number of indifference classes of \succeq , then:

- (i) For any language Q, $\mathcal{M}(Q) \geq \lceil \log_2 m \rceil$;
- (ii) There exists a language Q such that $\mathcal{M}(Q) = \lceil \log_2 m \rceil$.

- \triangleright Let $A = \{a^1, ..., a^k\}$, $a^1 \succ ... \succ a^k$
- $\triangleright \text{ Consider } Q = \{Q_1, ..., Q_{k-1}\} \text{ with } Q_l = \{\{a'\}, \{a^1, ..., a'^{l-1}, a'^{l+1}, ..., a'^k\}\}$
- \triangleright Need at least k-1 attributes to differentiate any pair of items

Proof Ideas

Lower Bound in Transitional Complexity—Simple Paths

 \triangleright Focus on simple paths from s = 1 to s = choose

Item-dependent probability that the path occurs

 \triangleright For $a \in A$, $\omega(a)$ — the highest probability among all simple paths

Lemma. A decision rule solves the choice problem if and only if:
(i) a ≻ b implies ω(b)/ω(a) → 0 for all a, b ∈ A;
(ii) ω(a) > 0 for all a ∈ A.

Similar to "Z-tree" technique in Kandori, Mailath, Rob (1993)

Back

- \triangleright Strong link $(s, v, j) \in \mathcal{T}$ if $\lim \tau(s, v, j) > 0$
- \triangleright Weak link $(s, v, j) \in \mathcal{T}$ if $\lim \tau(s, v, j) = 0$

Lemma. If the decision rule solves the choice problem, then highest-probability paths for different alternatives use different sets of weak links.

Back

▷ Let ψ solves (Q, \succeq) with k items, $n = \lceil \log_2 k \rceil$

 $\triangleright \ \psi$ should have at least 2n strong links

- \checkmark At least *n* attributes should be examined in *n* states
- $\checkmark\,$ Each state has at least 2 outgoing strong links
- $\triangleright \ \psi$ should have at least n weak links
 - $\checkmark\,$ Each item maps to a distinct set of weak links
 - ✓ Hence $2^{\#\text{weak links}} \ge k$
- \triangleright The total number of links in ψ is at least 2n + n, i.e. $\kappa(Q) \ge 3n$

▷ If $\kappa(\psi) = 3n$, there are exactly 2n strong and n weak links

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q) = 2$
Q^*	$\{\{a,b\},\{c,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
Q**	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**}) = 3$
			► Back

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\}, \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q) = 2$
Q^*	$\{\{a,b\},\{c,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$		

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
	$\{\{a,b\},\{c,d\}\},\{\{a,d\},\{b,c\}\}$		
Q^{**}	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**}) = 3$
	$Pr-1-\epsilon$		

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q) = 2$
Q*	$\{\{a,b\},\{c,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
Q**	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**}) = 3$

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q) = 2$
	$\{\{a,b\},\{c,d\}\},\{\{a,d\},\{b,c\}\}$		
Q^{**}	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**}) = 3$
	$P_n = 1$		

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^*	$\{\{a,b\},\{c,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
Q^{**}	$\{\{a,c\},\{b,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**}) = 3$

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\}, \{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q) = 2$
Q^*	$\{\{a,b\},\{c,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$		

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q) = 2$
Q^*	$\{\{a,b\},\{c,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$		

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q) = 2$
Q^*	$\{\{a,b\},\{c,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
Q**	$\{\{a,c\},\{b,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**}) = 3$
	$Pr = \epsilon^{2}$ $Pr = \epsilon$	$Pr = 1 - \epsilon^{3}$ $Pr = \epsilon^{3}$ $a_{1} = 0$ $choose$	

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q) = 2$
Q^*	$\{\{a,b\},\{c,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ \textbf{10} \succ \textbf{00} \succ \textbf{01}$	$\mathcal{M}(Q^*)=2$
Q**	$\{\{a,c\},\{b,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**}) = 3$
	$Pr = 1 - \epsilon - \epsilon^{2}$ $Pr = \epsilon^{2}$ $a_{2} = 0$ $a_{2} = 1$ $a_{3} k Q2$ $Pr = \epsilon^{2}$ $a_{2} = 1$ $a_{3} k Q1$	$Pr = 1 - \epsilon^{3}$ $Pr = \epsilon^{3}$ $a_{1} = 0$ $a_{1} = 1$ (choose)	

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q) = 2$
Q^*	$\{\{a,b\},\{c,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
Q^{**}	$\{\{a,c\},\{b,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**}) = 3$
	$Pr = 1 - \epsilon - \epsilon^2$		
	$Pr = \epsilon^2$	$Pr = 1 - \epsilon^3$ dismiss	

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q) = 2$
Q^*	$\{\{a,b\},\{c,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
Q**	$\{\{a,c\},\{b,d\}\},\{\{a,d\},\{b,c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}(Q^{**}) = 3$
	$Pr = \epsilon^{2}$ $Pr = \epsilon$	$Pr = 1 - \epsilon^{3}$ dismiss $Pr = \epsilon^{3}$ $a_{1} = 0$ $a_{1} = 1$ choose	

	Language	Preference	Memory load
Q	$\{\{a,b\},\{c,d\}\},\{\{a,c\},\{b,d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q) = 2$
Q^*	$\{\{a,b\},\{c,d\}\}, \{\{a,d\},\{b,c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}(Q^*)=2$
	$\{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\}$		

Dynamics (Baseline Model)

- ▷ Markov Chain $\mathbf{Y} = (Y_1, Y_2, ...)$ with realizations $(y_1, y_2, ...)$
- $\triangleright \text{ Interpretation: } y_t = (a, s) \in A \times \left(S^o \cup \{choose\}\right)$
- \triangleright Starting state: $Pr(Y_1 = (a, s)) =
 ho^B(a) \cdot \delta_1^s$
- ▷ Transitional probabilities

$$Pr(Y_{t} = (a, s) \mid Y_{t-1} = (b, v)) = (1 - \eta) \cdot \delta_{b}^{a} \cdot \tau(v, s, b_{\iota(v)}) + (1 - \eta) \cdot \tau(v, \text{dismiss}, b_{\iota(v)}) \cdot \rho^{B}(a) \cdot \delta_{1}^{s} + [1 - \tau(v, \text{choose}, b_{\iota(v)})] \cdot \eta \cdot \rho^{B}(a) \cdot \delta_{1}^{s}$$

$$Pr(Y_{t} = (a, choose) \mid Y_{t-1} = (b, v)) = \tau(v, choose, b_{\iota(v)}) \cdot \delta_{b}^{a}$$
$$Pr(Y_{t} = (a, s) \mid Y_{t-1} = (b, choose)) = \delta_{b}^{a} \cdot \delta_{choose}^{s}$$

 \triangleright Where $\rho^{B}(a)$ is the probability to draw item *a* from menu *B*

Back

 $\triangleright \rho^{B}(b)$ —probability to draw item b from menu B

 $\triangleright q(b)$ —probability to choose item b during a single investigation

 $\triangleright p^{B}(b)$ —probability to choose item b from menu B

Lemma (Generalized Luce Rule).

$$p^{\scriptscriptstyle B}(a) \;=\; rac{
ho^{\scriptscriptstyle B}(a) \cdot q(a)}{\sum_{b \in B}
ho^{\scriptscriptstyle B}(b) \cdot q(b)}$$

with the convention that $p^{B}(a) = 0$ if the denominator assumes value zero.

Back

▷ Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation

- ▷ Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation
- \triangleright Show by induction that f(k) = k 1 states are sufficient

- ▷ Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation
- \triangleright Show by induction that f(k) = k 1 states are sufficient

- ▷ Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation
- \triangleright Show by induction that f(k) = k 1 states are sufficient
- ▷ f(k+1) = 1 + f(k) = 1 + k 1 = k

- ▷ Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation
- \triangleright Show by induction that f(k) = k 1 states are sufficient

▷
$$f(k+1) = 1 + f(k) = 1 + k - 1 = k$$

33

Intuition for the Upper Bound

- ▷ Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation
- \triangleright Show by induction that f(k) = k 1 states are sufficient
- $\triangleright f(k_1 + k_2) = 1 + f(k_1) + f(k_2) = k_1 + k_2 1$

Intuition for the Upper Bound

- ▷ Design an automaton that maps each item $a \in A$ to a unique probability ϵ_a of choosing this item during a single investigation
- \triangleright Show by induction that f(k) = k 1 states are sufficient
- ▷ Pick sequences $\{\epsilon_a\}_{r=1,2,..}$ for $a \in A$ that solve the choice problem

Existence of Adapted Languages

 \triangleright WLOG, \succeq is strict:

 \triangleright Adapted language for k items:

(i)
$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i$$

(ii) $|\{i \in N | \lambda_i \neq 0\}| = \lceil \log_2 k \rceil$

Proof 1:

- ▷ Augment the set of items to make $|A| = 2^n$, where $n = \lceil \log_2 k \rceil$
- ▷ Consider some collection $\lambda_i > 0$, $i \in \{1, ..., n\}$
- ▷ Utility $u(a) = \sum_i \lambda_i a_i$ induces a (strict) preference on vectors of attributes
- \triangleright Label items in set A accordingly, get an adapted language

Existence of Adapted Languages

 \triangleright WLOG, \succeq is strict:

 \triangleright Adapted language for k items:

(i)
$$a \succ b \implies \sum_{i \in N} \lambda_i a_i > \sum_{i \in N} \lambda_i b_i$$

(ii) $|\{i \in N | \lambda_i \neq 0\}| = \lceil \log_2 k \rceil$

Proof 2:

 \triangleright Example: consider $a \succ b \succ c \succ d \succ e \succ f \succ g \succ h$

▷ Language
$$Q = \{Q_1, Q_2, Q_3\}$$

- $\checkmark Q_1: \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}$
- $\checkmark Q_2$: $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}$
- $\checkmark Q_3$: $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}$

▷ Linear utility: $u(x) = 2^2 \cdot x_1 + 2^1 \cdot x_2 + 2^0 \cdot x_3 = 4x_1 + 2x_2 + x_3$

Theorem (Simplest Languages). Let \succeq have m indifference classes, then:

Recall **Proposition:** Let \succeq have m indifference classes, then Q is adapted for \succeq if and only if there exists $\psi \in \Psi^+_{\lceil \log_2 m \rceil}$ that solves (Q, \succeq) .

Want to prove that when $(3/4) \cdot 2^n < k \le 2^n$, if ψ solves the choice problem and $\kappa(\psi) \le 3\lceil \log_2 m \rceil$, then $\psi \in \Psi^+_{3\lceil \log_2 m \rceil}$

- \triangleright For each item *a*, consider a highest-probability path from s = 1 to s = choose
- ▷ Say that $(s, v, j) \in \mathcal{T}$ is a weak link, if $\lim \tau_r(s, v, j) \longrightarrow 0$, otherwise it is a strong link

Lemma. If the decision rule solves the choice problem, then highest-probability paths for different alternatives use different sets of weak links.

Lemma. If ψ solves choice problem with m items, and $\kappa(\psi) = 3\lceil \log_2 k \rceil$, then ψ has n states, 2n strong, and n weak links, where $n = \lceil \log_2 k \rceil$.

 $\triangleright\,$ A simple path contains at most 1 link outgoing from a given state

Lemma. Let the total number of items be k, $n = \lceil \log_2 k \rceil$, and $k > (3/4) \cdot 2^n$. If ψ solves the choice problem and $\kappa(\psi) = 3n$, then for each pair of weak links there is a highest-probability path that use both these links.

Corollary. Let the total number of items be k, $n = \lceil \log_2 k \rceil$, and $k > (3/4) \cdot 2^n$. If ψ solves the choice problem and $\kappa(\psi) = 3n$, then in every state, ψ has exactly one outgoing weak link and exactly two outgoing strong links.

Characterization Theorem: Sketch of the Proof (3)

- \triangleright WLOG attribute $s \in \{1, ..., n\}$ is investigated in state s.
- \triangleright WLOG, for each state *s*:
 - $\checkmark \tau(s,v,1) = 1$ for some v
 - $\checkmark \ \tau(s,v',0) = \epsilon_s \text{ and } \tau(s,v'',0) = 1 \epsilon_s \text{ for some } v',v'', \text{ and } \epsilon_s \longrightarrow 0$
- \triangleright Recall: to show that $\psi \in \Psi_n^+$, we need to show additionally that there is a labeling of the states such that in the formula above:

 $\checkmark v = v' = s + 1$, where state n + 1 denotes *choose*

 $\checkmark v'' \in \{1, .., s\} \cup \{dismiss\}$

- ▷ Idea: use induction in *n*, where $n = \lceil \log_2 k \rceil$, *k* is the number of items, and condition $k > (3/4) \cdot 2^n$ holds
 - ✓ Induction base: n = 1, straightforward
 - ✓ Induction step?

Characterization Theorem: Sketch of the Proof (4)

- $\triangleright \text{ Consider } s = 1 \text{, have } \tau(1, \nu, 1) = 1 \text{, } \tau(1, \nu', 0) = \epsilon_1 \text{, } \tau(1, \nu'', 0) = 1 \epsilon_1$
- $\triangleright v \notin \{1, choose, dismiss\}$, since more than 1 item has $a_1 = 1$
- $\triangleright v' \notin \{1, choose, dismiss\}, v'' \neq choose; otherwise, no more than$ $<math>2^{n-1} + 1 \leq (3/4) \cdot 2^n$ different subsets of weak links used
- \triangleright Towards a contradiction, assume $v'' \not\in \{1, dismiss\}$

 \triangleright Highest-probability path cannot include both weak links l_1 and $l_{v^{\prime\prime}},$ in contradiction

Characterization Theorem: Sketch of the Proof (5)

 \triangleright We know: $\tau(1, v, 1) = 1$, $\tau(1, v', 0) = \epsilon_1$, $\tau(1, v'', 0) = 1 - \epsilon_1$

 $\checkmark \ v,v' \not\in \{1, \textit{choose}, \textit{dismiss}\}, \ v'' \in \{1, \textit{dismiss}\}$

 $\triangleright\,$ At least one of the two statements should hold:

$$\sqrt{ |\{a \in A | a_i = 1\}| > (3/4) \cdot 2^{n-1} }$$
$$\sqrt{ |\{a \in A | a_i = 0\}| > (3/4) \cdot 2^{n-1} }$$

 \triangleright Let $\left| \{ a \in A | a_i = 1 \} \right| > (3/4) \cdot 2^{n-1}$, consider rule ψ' :

 $\checkmark~$ Delete state s=1 in rule ψ and its outgoing links

 $\checkmark\,$ Redirect each link that ends at s=1 in ψ to $s={\it dismiss}$ in ψ'

 $\checkmark~$ Make state v the first state in ψ'

 $\triangleright \psi'$ solves the problem constrained to items $\{a \in A | a_i = 1\}$

$$\checkmark \kappa(\psi') \leq 3n-3$$

 $\checkmark\,$ Use induction assumption to find configuration of links outgoing from all other states except of s=1 in ψ

Characterization Theorem: Sketch of the Proof (6)

- \triangleright Last statement to prove: that v' = v.
- ▷ Assume $v' \neq v$, then weak link (1, v', 0) and weak link I_v , outgoing from state v, cannot be in the same highest-probability path, contradiction

- \triangleright Similar arguments work if $|\{a \in A | a_i = 0\}| > (3/4) \cdot 2^{n-1}$
 - \checkmark Note that $\left| \{ a \in A | a_i = 0 \} \right| \le (1/2) \cdot 2^n$
 - ✓ Hence $|\{a \in A | a_i = 0\}| > (1/4) \cdot 2^n$
 - ✓ If $v \neq v'$, a weak link outgoing from v' is not used in any highest-probability paths for items with $a_1 = 1$
 - ✓ Thus, no more than $(1/4) \cdot 2^n$ sets of weak links used in highest-probability paths for items with $a_1 = 1$, contradiction

▷
$$k = 5$$
, so $n = \lceil \log_2 5 \rceil = 3$, $k = 5 \le (3/4) \cdot 2^3 = 6$

 $\triangleright \ 111 \ \succ 110 \succ 011 \ \succ 000 \ \succ 100$

 $\triangleright \ 111 \succ \textbf{110} \succ \textbf{101} \succ \textbf{100} \succ \textbf{001} \succ \textbf{010} \succ \textbf{000}$

 $\triangleright \ \textbf{111} \succ \textbf{110} \succ \textbf{101} \succ \textbf{100} \succ \textbf{001} \succ \textbf{010} \succ \textbf{000}$

