Slow and Easy: a Theory of Browsing

EEA-ESEM, Barcelona, 2023

Evgenii Safonov, Queen Mary University of London

> Window shopping/browsing
v" Not urgent
v Attention may jump from item to item
v" Not known what options are available

v' Multiple attributes

> Window shopping/browsing
v" Not urgent
v Attention may jump from item to item
v" Not known what options are available
v' Multiple attributes
> "Classical” search models: cost of the search

V' Direct: information cost

v Indirect: waiting cost

> Window shopping/browsing
v" Not urgent
v Attention may jump from item to item
v" Not known what options are available
v' Multiple attributes
> "Classical” search models: cost of the search

V' Direct: information cost

v Indirect: waiting cost

> This paper: information processing constraints

Attributes

> Example—new TV

TV-set | technology sound brand screen
a OLED excellent S 50"
b OLED good P 50"
c LED excellent P 50"
d LED good S 42"

Attributes

> Example—new TV

TV-set | technology sound brand screen
a OLED excellent S 50"
b OLED good P 50"
c LED excellent P 50"
d LED good S 42"

> “Languages:”

V' Technology, sound quality

Attributes

> Example—new TV

TV-set | technology sound brand screen
a OLED excellent S 50"
b OLED good P 50"
c LED excellent P 50"
d LED good S 42"

> “Languages:”
V' Technology, sound quality

V' Technology, brand

This Paper

> Objectives:

v Find when the consumer can overcome the information processing
constraints and achieve optimality if she takes her time

v’ ldentify descriptions of items that make the search easy

This Paper

> Objectives:

v Find when the consumer can overcome the information processing
constraints and achieve optimality if she takes her time

v’ ldentify descriptions of items that make the search easy

> Approach:

V' Use Automata Theory—automaton strategy as a decision making procedure

This Paper

> Objectives:

v Find when the consumer can overcome the information processing
constraints and achieve optimality if she takes her time

v’ ldentify descriptions of items that make the search easy

> Approach:

V' Use Automata Theory—automaton strategy as a decision making procedure

v' Consider zero waiting costs

This Paper

> Objectives:

v Find when the consumer can overcome the information processing
constraints and achieve optimality if she takes her time

v’ ldentify descriptions of items that make the search easy

> Approach:

V' Use Automata Theory—automaton strategy as a decision making procedure

v' Consider zero waiting costs

> Main insights:

This Paper

> Objectives:

v Find when the consumer can overcome the information processing
constraints and achieve optimality if she takes her time

v’ ldentify descriptions of items that make the search easy

> Approach:
V' Use Automata Theory—automaton strategy as a decision making procedure
v' Consider zero waiting costs

> Main insights:

v Consumer choice is not hard if use randomization and sacrifice the speed:
logarithmic/linear complexity

This Paper

> Objectives:

v Find when the consumer can overcome the information processing
constraints and achieve optimality if she takes her time

v’ ldentify descriptions of items that make the search easy

> Approach:
V' Use Automata Theory—automaton strategy as a decision making procedure
v' Consider zero waiting costs

> Main insights:

v Consumer choice is not hard if use randomization and sacrifice the speed:
logarithmic/linear complexity

V' System of attributes used to describe objects matters: languages that attain
logarithmic/linear bounds in complexity

This Paper

> Objectives:

v Find when the consumer can overcome the information processing
constraints and achieve optimality if she takes her time

v’ ldentify descriptions of items that make the search easy

> Approach:
V' Use Automata Theory—automaton strategy as a decision making procedure

v' Consider zero waiting costs
> Main insights:

v Consumer choice is not hard if use randomization and sacrifice the speed:
logarithmic/linear complexity

V' System of attributes used to describe objects matters: languages that attain
logarithmic/linear bounds in complexity

v' Simplest procedure: examine attributes sequentially, dismiss the item with
positive probability if the attribute's value is bad

Model

Alternatives, Preference, and Menu

> Finite set of items A with generic element a

> Complete and transitive non-trivial preference > on A

Alternatives, Preference, and Menu

> Finite set of items A with generic element a
> Complete and transitive non-trivial preference > on A

> Nature chooses a non-empty menu B C A, unknown to the agent

> In period t = 1, a random item is drawn from the menu

> In period t = 1, a random item is drawn from the menu
> Agent investigates the item by examining its attributes:
V' One attribute (agent’s choice) in a period
v Can choose the item and stop the search
v Can continue to investigate the item

V' Can dismiss the item and draw a new one

> In period t = 1, a random item is drawn from the menu
> Agent investigates the item by examining its attributes:

V' One attribute (agent’s choice) in a period
v Can choose the item and stop the search
v Can continue to investigate the item

v Can dismiss the item and draw a new one
> Each period during the search:

v With probability n € (0,1), a new item catches the agent’s attention

v' With probability 1 — 7, the item remains the same

> In period t = 1, a random item is drawn from the menu
> Agent investigates the item by examining its attributes:

V' One attribute (agent’s choice) in a period
v Can choose the item and stop the search
v Can continue to investigate the item

v Can dismiss the item and draw a new one
> Each period during the search:

v With probability n € (0,1), a new item catches the agent’s attention

v' With probability 1 — 7, the item remains the same
> Each time a random item is drawn according to the same distribution

v Can encounter the same (or identical) item multiple times

Information Structures

> Language Q@ = {Qi}icn is a collection of non-trivial binary partitions of A
v' Each partition maps to a binary property (attribute) of items
v' N—index set of partitions (attributes)

v a;j € {0,1} is the value of attribute i € N

Information Structures

> Language Q@ = {Qi}icn is a collection of non-trivial binary partitions of A
v' Each partition maps to a binary property (attribute) of items
v' N—index set of partitions (attributes)

v a;j € {0,1} is the value of attribute i € N

TV-set ‘ technology sound brand screen
a OLED excellent S 50"
b OLED good P 50"
c LED excellent P 50"
d LED good S 42"

> Example: {Qi, @}, where Q1 = {{a, b}, {c,d}}, Q ={{a,c},{b,d}}

V' Language includes “technology” and “sound” attributes

An Automaton Strategy

> Strategy (S,¢,7)

An Automaton Strategy

> Strategy (S,¢,7)

> State space S = S° U {choose} U {dismiss}
v 5§° ={1,..., m}—memory states

v {choose, dismiss }—special states

An Automaton Strategy

> Strategy (S,¢,7)

> State space S = S° U {choose} U {dismiss}
v §° ={1,..., m}—memory states
v {choose, dismiss }—special states

> Interrogation rule ¢ : S° — N

v’ 1(s)—attribute of the item investigated in state s

An Automaton Strategy

> Strategy (S,¢,7)

> State space S = S° U {choose} U {dismiss}
v §° ={1,..., m}—memory states
v {choose, dismiss }—special states

> Interrogation rule ¢ : S° — N

v’ 1(s)—attribute of the item investigated in state s

> Stochastic transition rule 7 : S° x {0,1} — A(S)

v 7(s, v,j)—probability to transition from s to v if attribute ¢(s) has value j

An Automaton Strategy

> Strategy (S, ¢, 7)

> State space S = 5° U {choose} U {dismiss}
v §° ={1,..., m}—memory states
v {choose, dismiss }—special states

> Interrogation rule ¢ : S° — N

v’ 1(s)—attribute of the item investigated in state s

> Stochastic transition rule 7: 5% x {0,1} — A(S)

v 7(s, v,j)—probability to transition from s to v if attribute ¢(s) has value j

> Each time a new alternative is drawn, state initializes at s = 1
v Agent focuses on the current item, no recall of the past investigations

v In the paper, we relax this assumption for part of the analysis

» Formal Dynamics

> TV-set example, language: {technology, sound}

> Utility: u(tech, sound) = 2 - 1{tech = OLED} + 1 - 1{sound = excellent}

> TV-set example, language: {technology, sound}

> Utility: u(tech, sound) = 2 - 1{tech = OLED} + 1 - 1{sound = excellent}

> TV-set example, language: {technology, sound}

> Utility: u(tech, sound) = 2 - 1{tech = OLED} + 1 - 1{sound = excellent}

Pr=1-¢€

> Probability of choosing an item during an investigation:

q(OLED, excellent) = 1-—n q(OLED,good) = (1—mn)-¢
q(LED, excellent) = (1—1n)-¢ q(LED,good) = (1—1n)-é

> TV-set example, language: {technology, sound}

> Utility: u(tech, sound) = 2 - 1{tech = OLED} + 1 - 1{sound = excellent}

Pr=1-¢€

\
LED ' |
'

. |
@ ‘ excellent .

> Probability of choosing an item during an investigation:
q(OLED, excellent) = 1-—n q(OLED,good) = (1—n)-€
q(LED, excellent) = (1—1n)-¢ q(LED,good) = (1—1n)-é

> TV-set example, language: {technology, sound}

> Utility: u(tech, sound) = 2 - 1{tech = OLED} + 1 - 1{sound = excellent}

Pr=1-¢€

> Probability of choosing an item during an investigation:

q(OLED, excellent) = 1-—n q(OLED,good) = (1—mn)-¢
q(LED, excellent) = (1—n)-€ q(LED,good) = (1—1n)-é

> TV-set example, language: {technology, sound}

> Utility: u(tech, sound) = 2 - 1{tech = OLED} + 1 - 1{sound = excellent}

Pr=1-¢€

@ OLED @ excellent @

> Probability of choosing an item during an investigation:

q(OLED, excellent) = 1-—n q(OLED,good) = (1—mn)-¢
q(LED, excellent) = (1—1n)-¢ q(LED,good) = (1—1n)-¢

> TV-set example, language: {technology, sound}

> Utility: u(tech, sound) = 2 - 1{tech = OLED} + 1 - 1{sound = excellent}

> Probability of choosing an item during an investigation:

q(OLED, excellent) = 1-—n q(OLED,good) = (1—mn)-¢
q(LED, excellent) = (1-n)-¢ q(LED, good) = (1-n)-é&

> Imagine, the realized menu includes all but the best TV-set

> TV-set example, language: {technology, sound}

> Utility: u(tech, sound) = 2 - 1{tech = OLED} + 1 - 1{sound = excellent}

> Probability of choosing an item during an investigation:
q(OLED, excellent) = 1-—n q(OLED,good) = (1—mn)-¢
q(LED, excellent) = (1—1n)-¢ q(LED,good) = (1—1n)-é

> € —> 0, optimal choice from any menu with probability 1

» Formal Stochastic Choice

Solution Concept

> Choice problem (Q, =)

Solution Concept

> Choice problem (Q, =)

> Transitions of the automaton: 7 = {(S, v, Jj) ‘ 7(s,v,j) > 0}

Solution Concept

> Choice problem (Q, =)

> Transitions of the automaton: 7 = {(s,v,j) | 7(s,v,j) > 0}
> Decision rule ¥ = {(S,¢,7) }r=1,2,...
v’ Fixed state space S

v Fixed interrogation rule ¢

v Fixed transitions 7, =7, r=1,2, ...

Solution Concept

> Choice problem (Q, =)
> Transitions of the automaton: 7 = {(s,v,j) | 7(s,v,j) > 0}
> Decision rule ¥ = {(S,¢,7) }r=1,2,...

v’ Fixed state space S

v Fixed interrogation rule ¢

v Fixed transitions 7, =7, r=1,2, ...

Definition. A decision rule 1) solves the choice problem (Q, =) if

lim Pr(choose > -best item from menu B) =} VB
r—oo

Existence of a Solution

Proposition. There exists a decision rule that solves the agent’s choice
problem if and only for any a,b € A, if a = b, then a; # b; for some i € N.

10

Existence of a Solution

Proposition. There exists a decision rule that solves the agent’s choice
problem if and only for any a,b € A, if a = b, then a; # b; for some i € N.

> We consider languages that allow the agent to solve her choice problem

10

Existence of a Solution

Proposition. There exists a decision rule that solves the agent’s choice
problem if and only for any a,b € A, if a = b, then a; # b; for some i € N.

> We consider languages that allow the agent to solve her choice problem

> Given the agent's language, what is the minimum amount of cognitive
resources required to solve the choice problem?

10

Complexity Measures

In the paper:
> Memory load of a decision rule: M(v) = |S°|

V" Represents an “operational” memory required to implement the procedure

> Memory load of a language (given >*):

M»-(Q) = min M(¥)

1 solves (Q,>)

11

Complexity Measures

In the paper:
> Memory load of a decision rule: M(v) = |S°|

V" Represents an “operational” memory required to implement the procedure

> Memory load of a language (given >*):

M»-(Q) = min M(¥)

1 solves (Q,>)

This talk:
> Complexity of a decision rule: x(¢)) = |[{(s,v,j) | 7(s, v,j) > 0}|

11

Complexity Measures

In the paper:
> Memory load of a decision rule: M(v) = |S°|

V" Represents an “operational” memory required to implement the procedure

> Memory load of a language (given >*):

M»-(Q) = min M(¥)

1 solves (Q,>)

This talk:
> Complexity of a decision rule: x(¢)) = |[{(s,v,j) | 7(s, v,j) > 0}|

v Represents “length of instructions” of the procedure

11

Complexity Measures

In the paper:
> Memory load of a decision rule: M(v) = |S°|

V" Represents an “operational” memory required to implement the procedure

> Memory load of a language (given >*):

M P= i M
Q)= i A
This talk:
> Complexity of a decision rule: x(¢)) = |[{(s,v,j) | 7(s, v,j) > 0}|
v Represents “length of instructions” of the procedure

v Considered for repeated games in Banks and Sundaram (1990)

11

Complexity Measures

In the paper:
> Memory load of a decision rule: M(v) = |S°|

V" Represents an “operational” memory required to implement the procedure

> Memory load of a language (given >*):

M@= o)
This talk:
> Complexity of a decision rule: x(¢)) = |[{(s,v,j) | 7(s, v,j) > 0}|
v Represents “length of instructions” of the procedure
v Considered for repeated games in Banks and Sundaram (1990)
V' Experimentally in Oprea (2020)

11

Complexity Measures

In the paper:
> Memory load of a decision rule: M(v) = |S°|

V" Represents an “operational” memory required to implement the procedure

> Memory load of a language (given >*):

M@= o)
This talk:
> Complexity of a decision rule: x(¢)) = |[{(s,v,j) | 7(s, v,j) > 0}|
v Represents “length of instructions” of the procedure
v Considered for repeated games in Banks and Sundaram (1990)
V' Experimentally in Oprea (2020)

> Complexity (transitional) of a language (given *):

£o(Q) = min k(¥)

1 solves (Q,>)

11

Complexity of Languages for 4 Items and Strict Preference

Consider A= {a,b,c,d},anda> b > c > d

Language Preference M K

Q | {{a, b} {c,d}}, {{a,c},{b,d}} 11 =103+ 01 = 00 2 6
R | {{a,b},{c,d}}, {{a,d},{b,c}} 11 =10 00 = 01 2 7
S | {{a ¢}, {b,d}}, {{a,d},{b,c}} 11=00> 10> 01 39

T | {{a},{b,c,d}}, {{b},{a,c,d}}, 100> 010001000 3 9
{{c}.{a, b, d}}

» Some details

12

Maximum Complexity

Theorem (Upper Bound). If there are k = |A| items, then for any = :
(i) For any language Q, k+(Q) < 3k — 3;
(ii) There exists a language Q such that k- (Q) > k — 2.

» Proof Idea for (i)

13

Minimum Complexity

Theorem (Lower Bound). Let = have m indifference classes, then:
(i) For any language Q, k= (Q) > 3[log, m];
(ii) There exists a language Q such that k- (Q) = 3[log, m|;

(iii) If ¢ solves (Q,>), and k() = 3[log, m|, then M(%)) is minimum
among the rules that solve the choice problem (Q, =) for any language Q,

where [x| denotes the smallest natural number weakly greater than x.

» Proof Idea for (i)

14

Simplest Languages and Decision Rules

Separable Decision Rules

> Consider the following decision rules with {¢;},=12,... € (0,1)

go to a dismissal or previously visited memory state

€----=--

15

Separable Decision Rules

> Consider the following decision rules with {¢;},=12,... € (0,1)

go to a dismissal or previously visited memory state

€----=--

> Can enumerate attributes and attributes’ values arbitrarily

15

Separable Decision Rules

> Consider the following decision rules with {¢;},=12,... € (0,1)

go to a dismissal or previously visited memory state

€----=--

> Can enumerate attributes and attributes’ values arbitrarily

> Call W} the set of such rules with n memory states

15

Additive Utility

> Suppose the agent’s language facilitates usage of an additive utility:

a-b = > XNa>>» Ab, (WLOG) X >0
ieN ieN

16

Additive Utility

> Suppose the agent’s language facilitates usage of an additive utility:

a-b = > XNa>>» Ab, (WLOG) X >0
ieN ieN

16

Additive Utility

> Suppose the agent’s language facilitates usage of an additive utility:

a-b = > XNa>>» Ab, (WLOG) X >0
ieN ieN

al_l

16

Additive Utility

> Suppose the agent’s language facilitates usage of an additive utility:

a-b = > XNa>>» Ab, (WLOG) X >0
ieN ieN

2
Il
o

16

Additive Utility

> Suppose the agent’s language facilitates usage of an additive utility:

a-b = > XNa>>» Ab, (WLOG) X >0

ieN ieN

16

Additive Utility

> Suppose the agent’s language facilitates usage of an additive utility:

a-b = > XNa>>» Ab, (WLOG) X >0

ieN ieN

16

Additive Utility

> Suppose the agent’s language facilitates usage of an additive utility:

a-b = > XNa>>» Ab, (WLOG) X >0
ieN ieN

;@

16

Additive Utility

> Suppose the agent’s language facilitates usage of an additive utility:

a-b = > XNa>>» Ab, (WLOG) X >0
ieN ieN

;@

16

Additive Utility

> Suppose the agent’s language facilitates usage of an additive utility:

a-b = > XNa>>» Ab, (WLOG) X >0
ieN ieN

» dismiss

16

Additive Utility

> Suppose the agent’s language facilitates usage of an additive utility:

a-b = > XNa>>» Ab, (WLOG) X >0
ieN ieN

» dismiss

> Pr(choose item a during single investigation)= (1 —)™ ~1. ¢ Ail=a)

16

Adapted Languages

Definition. Let > have m indifference classes. Language Q is adapted for = if
there exists A € R" such that:

(i) a=b = > Xai>> \b

ieN ieN
(i) |{i € N|]Xi # 0} = [log, m]

17

Adapted Languages

Definition. Let > have m indifference classes. Language Q is adapted for = if
there exists A\ € R" such that:

(I') a=b — Z)\,-a,- > Z)\,‘b,‘

ieN ieN
(i) |{i € N|]Xi # 0} = [log, m]

Proposition. There exists an adapted language.

17

Adapted Languages

Definition. Let > have m indifference classes. Language Q is adapted for = if
there exists A\ € R" such that:

(I') a=b — Z)\,-a,- > Z)\,‘b,‘

ieN ieN
(i) |{i € N|]Xi # 0} = [log, m]

Proposition. There exists an adapted language.

Remark. The utility function u(a) = >, Aia; induces a preference that

might break ties in the original preference >.

17

Simplest Decision Rules and Adapted Languages

Proposition. Let > have m indifference classes, then Q is adapted for > if
and only if there exists ¢ € W | that solves (Q,»).

Mlog, m

18

Simplest Languages

Theorem (Simplest Languages). Let = have m indifference classes, then:
(i) If Q is adapted for =, then k~(Q) = 3[log, m];
(ii) If (3/4) - 2" < m < 2" for a natural n, then:
(a) k= (Q) = 3[log, m| if and only if Q is adapted for =;
(b) If ¢ solves (@, =), and k(v)) = 3[log, m], then 1) € W}

[logy m1~

» Proof Sketch

19

Literature Review and Conclusion

Literature Review

> Optimal search: Kohn and Shavell (1974); Weitzman (1979); Morgan
and Manning (1985); Klabjan, Olszewski, and Wolinsky (2014); Sanjurjo
(2017)

> Memory-constrained search: Dow (1991); Sanjurjo (2015), (2019)

> Stochastic Browsing: Cerreia-Vioglio, Maccheroni, Marinacci, Rustichini
(2020), Rustichini (2020)

> Hypothesis testing and learning with finite memory: Cover (1969);
Cover and Hellman (1970); Hellman and Cover (1970), (1971)

> Automata and simple algorithms in Economics: Abreu and Rubinstein
(1988); Kalai and Stanford (1988); Banks and Sundaram (1990); Kalai
and Solan (2003); Borgers and Morales (2004); Kocer (2010); Salant
(2011); Mandler, Manzini, Mariotti (2012); Wilson (2014); Oprea (2020)

20

Conclusion

> Simple stochastic strategies achieve near optimality when time is not of
the essence

> Descriptions that facilitate additive utility with few attributes are key for
simplicity

> In the simplest procedures, “higher” memory state indicate higher quality
of the item relative to the menu

21

Supplementary Slides

Maximum and Minimum Memory Load

Theorem (Upper Bound). If there are k = |A| items, then for any = :
(i) For any language Q, k=(Q) < k —1;
(ii) There exists a language Q such that ks (Q) > k/2 — 1.

Theorem (Lower Bound). Let > have m indifference classes, then:
(i) For any language Q, k=(Q) > [log, m];
(ii) There exists a language Q such that k= (Q) = [log, m];

where [x| denotes the smallest natural number weakly greater than x.

22

Extension: Relaxing Memory
Initialization Assumption

A General Framework

> Baseline model: a state initializes at s = 1 with each new item

23

A General Framework

> Baseline model: a state initializes at s = 1 with each new item

> General model: when a new item is drawn, the automaton transitions to a
new state conditional on the previous state

23

A General Framework

> Baseline model: a state initializes at s = 1 with each new item

> General model: when a new item is drawn, the automaton transitions to a

new state conditional on the previous state

> State space S = 5° U {choose}

23

A General Framework

> Baseline model: a state initializes at s = 1 with each new item

> General model: when a new item is drawn, the automaton transitions to a

new state conditional on the previous state

> State space S = 5° U {choose}

> Specify probabilities:

v

To choose the current item, conditional on the current state and the learned
attribute's value

To continue the investigation of the item and move to a memory state,
conditional on the current state and the learned attribute’s value

To dismiss the item, pick a new random item, and move to a memory state,
conditional on the current state and the learned attribute's value

To move to a memory state, conditional on the current state and the event
that a new item catches the agent’s attention

23

Maximal Memory Load

Theorem (Upper Bound). Consider a general model. Let k be the total
number of items, then for any non-trivial »:

(i) For any language Q, M(Q) < k — 1;
(ii) There exists a language Q such that M(Q) = k/2 — 1.

24

Minimal Memory Load

Theorem (Lower Bound). Consider a general model. Let m > 2 be the total
number of indifference classes of =, then:

(i) For any language Q, M(Q) > [log, m];
(ii) There exists a language Q such that M(Q) = [log, m].

25

If Preference is Strict, a Language May Require kK — 1 Memory States

> Let A= {a',...,a"}, a* >~ ... = &

> Consider Q = {Q, ..., Qc_1} with Q = {{a'},{a},...,a" %, a'"}, ..., a"}}

> Need at least kK — 1 attributes to differentiate any pair of items

26

Proof ldeas

Lower Bound in Transitional Complexity—Simple Paths

> Focus on simple paths from s = 1 to s = choose
> Item-dependent probability that the path occurs

> For a € A, w(a)— the highest probability among all simple paths

Lemma. A decision rule solves the choice problem if and only if:
(i) a = b implies w(b)/w(a) — O for all a,b € A;
(ii) w(a) > 0 for all a € A.

> Similar to “Z-tree” technique in Kandori, Mailath, Rob (1993)

27

Strong and Weak Transitions

> Strong link (s, v,j) € T if lim7(s,v,j) >0

> Weak link (s,v,j) € T if lim7(s,v,j) =0

Lemma. If the decision rule solves the choice problem, then highest-probability
paths for different alternatives use different sets of weak links.

28

Lower Bound in Transitional Complexity—Proof Idea

> Let ¢ solves (Q, =) with k items, n = [log, k]

> 1) should have at least 2n strong links

V' At least n attributes should be examined in n states

V' Each state has at least 2 outgoing strong links
> 1) should have at least n weak links

v' Each item maps to a distinct set of weak links

v Hence 2#weak links > k

> The total number of links in 1) is at least 2n+ n, i.e. kK(Q) > 3n

> If k(¢) = 3n, there are exactly 2n strong and n weak links

29

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q {{a, b}, {c,d}}, {{a,c}, {b,d}} 11 >10> 01> 00 M(Q) =2
o {{a, b},{c,d}}, {{a,d},{b,c}} 11>=10>00>01 M(Q")=2
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11>00>10>01 M(Q™)=3

30

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q | ({a,b},{c,d}}, {{a,c},{b,d}} 11=10=01=00 M(Q)=2
Q* | {{a,b},{c,d}}, {{a,d},{b,c}} 11=10=00%=01 M(Q")=2
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11=00=10%=01 M(Q™)=3

Pr=1-¢

30

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q | ({a,b},{c,d}}, {{a,c},{b,d}} 11=10=01>00 M(Q)=2
Q* | {{a,b},{c,d}}, {{a,d},{b,c}} 11=10=00>01 M(Q")=2
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11=00=10>01 M(Q™)=3

Pr=1-¢

30

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q | {{ab},{c,d}}, {{ac},{b,d}} 11=10=01=00 M(Q)
Q" | {{ab},{c,d}}, {{a,d},{b,c}} 11=10=00>01 M(Q")
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11=00>10>01 M(Q™)

Pr=1-¢

2
S

30

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q | {{ab},{c,d}}, {{ac}.{b,d}} 11-=10=01%00 M(Q)
Q" | {{ab},{c,d}}, {{a,d},{b,c}} 11=10=00>01 M(Q")
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11=00>10>01 M(Q™)

Pr=1-¢

2
S

30

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q | ({a,b},{c,d}}, {{a,c},{b,d}} 11=10=01=00 M(Q)=2
Q* | {{a,b},{c,d}}, {{a,d},{b,c}} 11=10=00>01 M(Q")=2
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11=00=10>01 M(Q™)=3

Pr=1-¢

|

30

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q | ({a,b},{c,d}}, {{a,c},{b,d}} 11=10=01=00 M(Q)=2
Q* | {{a,b},{c,d}}, {{a,d},{b,c}} 11=10=00%=01 M(Q")=2
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11=00=10%=01 M(Q™)=3

Pr=1-¢

30

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q {{a, b}, {c,d}}, {{a,c}, {b,d}} 11 >10> 01> 00 M(Q) =2
Q" {{a, b}, {c,d}}, {{a,d},{b,c}} 11>10>00>01 M(Q")=2
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11>00>10>01 M(Q™)=3

Pr 1l —€—¢€

30

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q {{a, b}, {c,d}}, {{a,c},{b,d}} 1110 01> 00 M(Q) =2
Q" {{a, b}, {c,d}}, {{a,d},{b,c}} 11>10>00>01 M(Q")=2
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11>00>10>01 M(Q™)=3

Pr=1—-e—¢€

Pr=¢

30

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q {{a, b},{c,d}}, {{a,c},{b,d}} 11> 10> 01> 00 M(Q)
Q" {{a, b}, {c,d}}, {{a,d},{b,c}} 11>10>00>01 M(Q")
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11>00>10>01 M(Q™)

2
S

Pr=1—-e—¢€

30

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q {{a,b},{c,d}}, {{a,c},{b,d}} 11> 10> 01> 00 M(Q)
Q* {{a,b},{c,d}}, {{a,d},{b,c}} 11>=10>=00>01 M(Q")
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11 >=00>10>01 M(Q™)

2
S

Pr=1—-e—¢€

30

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q {{a, b}, {c,d}}, {{a,c},{b,d}} 1110 01> 00 M(Q) =2
Q" {{a, b}, {c,d}}, {{a,d},{b,c}} 11>10>00> 01 M(Q")=2
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11>00>10>01 M(Q™)=3

Pr=1—-e—¢€

Pr=¢

30

Memory Load—a Rough Complexity Measure

‘ Language Preference Memory load

Q {{a, b}, {c,d}}, {{a,c}, {b,d}} 11 >10> 01> 00 M(Q) =2
Q" {{a, b}, {c,d}}, {{a,d},{b,c}} 11>10>00>01 M(Q")=2
Q™ | {{a,c},{b,d}}, {{a,d},{b,c}} 11>00>10>01 M(Q™)=3

Pr 1l —€—¢€

30

Dynamics (Baseline Model)

> Markov Chain Y = (Y1, Y,...) with realizations (y1, 2, ...)
> Interpretation: y; = (a,s) € A X (5" U {choose})
> Starting state: Pr(Y; = (a,s)) = p®(a) - 6;
> Transitional probabilities
Pr(Yt = (a,s) ‘ Yi—1 = (b, v)) = (1—n)-6- T(v,s7 bL(v))Jr
(1 —mn) - 7(v, dismiss, b,(.)) - p?(a) - 65+

[1— 7(v, choose, b,))] -n - p®(a) - 65
Pr(Yt = (a, choose) ! Yi—1 = (b, v)) = 7(v, choose, b)) - 03

Pr(Yt = (a,s) ‘ Yi—1 = (b, choose)) = 0p Ohoose

> Where p®(a) is the probability to draw item a from menu B

31

Stochastic Choice

> pB(b)—probability to draw item b from menu B
> g(b)—probability to choose item b during a single investigation

> p®(b)—probability to choose item b from menu B

Lemma (Generalized Luce Rule).

_ _r°@))
> bes PE(D) - q(b)

with the convention that p?(a) = 0 if the denominator assumes value zero.

p°(a)

32

Intuition for the Upper Bound

> Design an automaton that maps each item a € A to a unique probability
€, of choosing this item during a single investigation

33

Intuition for the Upper Bound

> Design an automaton that maps each item a € A to a unique probability
€, of choosing this item during a single investigation

> Show by induction that f(k) = k — 1 states are sufficient

33

Intuition for the Upper Bound

> Design an automaton that maps each item a € A to a unique probability
€, of choosing this item during a single investigation

> Show by induction that f(k) = k — 1 states are sufficient

> f(2)=1
with
complementary
probabilities
Pr=ce¢,
a, :
a’b @ @
b Pr=¢

ad -

Intuition for the Upper Bound

> Design an automaton that maps each item a € A to a unique probability
€, of choosing this item during a single investigation

> Show by induction that f(k) = k — 1 states are sufficient

with
complementary
probabilities

b Fk+1)=1+F(k)=1+k—-1=k

Pr=ce¢,
: Pr=ce¢, E
c! a! v
b Pr=¢

..............

Intuition for the Upper Bound

> Design an automaton that maps each item a € A to a unique probability
€, of choosing this item during a single investigation

> Show by induction that f(k) = k — 1 states are sufficient

b Fk+1)=1+F(k)=1+k—-1=k

with
complementary
probabilities
Pr = €4

v Pr=e. \
; : Pr=e, po
d! c! a PR
@ . @ = @ @
b Pr=¢

..............

Intuition for the Upper Bound

> Design an automaton that maps each item a € A to a unique probability
€, of choosing this item during a single investigation

> Show by induction that f(k) = k — 1 states are sufficient
> f(kl - k2) =1+ f(kl) - f(kz) =ki+k —1
with

complementary
probabilities

®

.................................

ad -

Intuition for the Upper Bound

> Design an automaton that maps each item a € A to a unique probability
€, of choosing this item during a single investigation

> Show by induction that f(k) = k — 1 states are sufficient
> Pick sequences {e,},—1,2,.. for a € A that solve the choice problem
with

complementary
probabilities

ad -

Existence of Adapted Languages

> WLOG, > is strict:

> Adapted language for k items:

(I') a=b — Z)\;a,- > Z)\,‘b,‘

ieEN ieN
(i) |{i € NIXi #0}| = T[log, k]

Proof 1:
> Augment the set of items to make |A| = 2", where n = [log, k]
> Consider some collection \; >0, i € {1, ..., n}
> Utility u(a) = >, \ja; induces a (strict) preference on vectors of attributes
> Label items in set A accordingly, get an adapted language

34

Existence of Adapted Languages

> WLOG, > is strict:
> Adapted language for k items:

(I') a-b — Z)\;a; > Z)\,‘b/

ieN ieN
(i) |{i € NJXi #0}| = [log, k]
Proof 2:

> Example: consider a = b>=c>=d=e=f =g~ h
> Language Q = {Q1, @2, @3}

v Qi: a,b,c,d,e f,g,h

v @Q: a,b,c,d,e f, g h

v Q3: a,b,c,d,e, f,g,h

> Linear utility: u(x) = 224 +2 x0+2% x5 =4x1 + 2% + x3

35

Lower Bound Characterization Theorem-proof idea for (ii.a)

Theorem (Simplest Languages). Let = have m indifference classes, then:
(i) If Q is adapted for =, then k= (Q) = 3[log, m];
(ii) If (3/4) - 2" < m < 2" for a natural n, then:
(a) k=(Q) = 3[log, m| if and only if Q is adapted for ;

(b) If ¢ solves (Q, =), and x(1)) = 3[logy m], then ¢ € Wy ..

Recall Proposition: Let > have m indifference classes, then Q is adapted for

> if and only if there exists 1 € ‘~|1Jﬁ0g2 m that solves (Q,).

Want to prove that when (3/4) - 2" < k < 2", if 1) solves the choice problem

and r(1) < 3[log, m], then ¢ € W3, .

» Back to the Theorem

36

Lower Bound Characterization Theorem: Proof Sketch (1)

> For each item a, consider a highest-probability path from s =1 to
s = choose

> Say that (s,v,j) € T is a weak link, if lim7,(s, v, j) — 0, otherwise it is
a strong link

Lemma. [If the decision rule solves the choice problem, then highest-probability
paths for different alternatives use different sets of weak links.

Lemma. If v solves choice problem with m items, and x(¢)) = 3[log, k], then
1 has n states, 2n strong, and n weak links, where n = [log, k].

» Back to the Theorem

37

Characterization Theorem: Sketch of the Proof (2)

> A simple path contains at most 1 link outgoing from a given state

Lemma. Let the total number of items be k, n = [log, k|, and k > (3/4) - 2".
If ¢ solves the choice problem and k(1)) = 3n, then for each pair of weak links
there is a highest-probability path that use both these links.

Corollary. Let the total number of items be k, n = [log, k|, and k > (3/4)-2".
If 1) solves the choice problem and k(1)) = 3n, then in every state, 1) has
exactly one outgoing weak link and exactly two outgoing strong links.

» Back to the Theorem

38

Characterization Theorem: Sketch of the Proof (3)

> WLOG attribute s € {1, ..., n} is investigated in state s.
> WLOG, for each state s:
v 7(s,v,1) =1 for some v
v 7(s,v',0) = €& and 7(s,v”,0) = 1 — €5 for some v/, v/, and e, — 0
> Recall: to show that ¢ € W}, we need to show additionally that there is a
labeling of the states such that in the formula above:
v v =Vv'=s+1, where state n + 1 denotes choose
v V" e {1,..,s}U{dismiss}

> ldea: use induction in n, where n = [log, k], k is the number of items,
and condition k > (3/4) - 2" holds

v Induction base: n =1, straightforward

v Induction step?

» Back to the Theorem

39

Characterization Theorem: Sketch of the Proof (4)

> Consider s = 1, have 7(1,v,1) =1, 7(1,v',0) = €1, 7(1,v",0) =1 — &
> v & {1, choose, dismiss}, since more than 1 item has a1 =1

> v' & {1, choose, dismiss}, v'' # choose; otherwise, no more than
271 11 < (3/4) - 2" different subsets of weak links used

> Towards a contradiction, assume v & {1, dismiss}

> Highest-probability path cannot include both weak links /1 and /,/, in
contradiction

» Back to the Theorem 40

Characterization Theorem: Sketch of the Proof (5)

> We know: 7(1,v,1) =1, 7(1,v',0) = €1, 7(1,v",0) =1 — &
v v,V & {1, choose, dismiss}, v’ € {1, dismiss}
> At least one of the two statements should hold:
v |[{a€ Alaj =1} > (3/4)- 21
v |{a€Alaj =0} > (3/4)- 271
> Let [{a € Alai =1}| > (3/4) - 2"", consider rule ¢':
v Delete state s = 1 in rule ¥ and its outgoing links
V' Redirect each link that ends at s = 1 in ¥ to s = dismiss in v’
v Make state v the first state in v’
> 1)’ solves the problem constrained to items {a € Ala; = 1}
v k() <3n-3

V' Use induction assumption to find configuration of links outgoing from all
other states except of s =1 in

» Back to the Theorem

41

Characterization Theorem: Sketch of the Proof (6)

> Last statement to prove: that v/ = v.

> Assume v’ # v, then weak link (1,v’,0) and weak link /,, outgoing from
state v, cannot be in the same highest-probability path, contradiction

> Similar arguments work if [{a € Ala; = 0}| > (3/4) - 2"*

v
v

Note that |{a € Ala; = 0}] < (1/2) - 2"
Hence [{a € Ala; = 0}| > (1/4) - 2"

If v # v/, a weak link outgoing from v’ is not used in any
highest-probability paths for items with a; =1

Thus, no more than (1/4) - 2" sets of weak links used in highest-probability
paths for items with a; = 1, contradiction

» Back to the Theorem

42

(Counter) Example

> k=5 s0n=[log,5] =3, k=5<(3/4)-2°=6

> 111 > 110 > 011 > 000 > 100

with
complementary
probabilities

43

(Counter) Example 2

> 111 > 110 > 101 > 100 > 001 >~ 010 > 000

44

(Counter) Example 2

> 111 > 110 > 101 > 100 > 001 >~ 010 > 000

44

(Counter) Example 2

> 111 > 110 > 101 > 100 > 001 >~ 010 > 000

44

(Counter) Example 2

> 111 > 110 > 101 > 100 > 001 > 010 > 000

44

(Counter) Example 2

> 111 > 110 > 101 > 100 > 001 > 010 > 000

44

(Counter) Example 2

> 111 > 110 > 101 > 100 > 001 >~ 010 > 000

44

(Counter) Example 2

> 111 > 110 > 101 > 100 > 001 >~ 010 > 000

44

(Counter) Example 2

> 111 > 110 > 101 > 100 > 001 >~ 010 > 000

44

(Counter) Example 2

> 111 > 110 > 101 > 100 > 001 > 010 > 000

44

(Counter) Example 2

> 111 > 110 > 101 > 100 > 001 > 010 > 000

44

	Model
	Simplest Languages and Decision Rules
	Literature Review and Conclusion
	Supplementary Slides
	Extension: Relaxing Memory Initialization Assumption
	Proof Ideas

