Slow and Easy: a Theory of Browsing
EEA-ESEM, Barcelona, 2023

Evgenii Safonov, Queen Mary University of London

Motivation

\triangleright Window shopping/browsing
\checkmark Not urgent
\checkmark Attention may jump from item to item
\checkmark Not known what options are available
\checkmark Multiple attributes

Motivation

\triangleright Window shopping/browsing
\checkmark Not urgent
\checkmark Attention may jump from item to item
\checkmark Not known what options are available
\checkmark Multiple attributes
\triangleright "Classical" search models: cost of the search
\checkmark Direct: information cost
\checkmark Indirect: waiting cost

Motivation

\triangleright Window shopping/browsing
\checkmark Not urgent
\checkmark Attention may jump from item to item
\checkmark Not known what options are available
\checkmark Multiple attributes
\triangleright "Classical" search models: cost of the search
\checkmark Direct: information cost
\checkmark Indirect: waiting cost
\triangleright This paper: information processing constraints

Attributes

\triangleright Example—new TV

TV-set	technology	sound	brand	screen
a	OLED	excellent	S	$50^{\prime \prime}$
b	OLED	good	P	$50^{\prime \prime}$
c	LED	excellent	P	$50^{\prime \prime}$
d	LED	good	S	$42^{\prime \prime}$

Attributes

\triangleright Example—new TV

TV-set	technology	sound	brand	screen
a	OLED	excellent	S	$50^{\prime \prime}$
b	OLED	good	P	$50^{\prime \prime}$
c	LED	excellent	P	$50^{\prime \prime}$
d	LED	good	S	$42^{\prime \prime}$

■ "Languages:"
\checkmark Technology, sound quality

Attributes

\triangleright Example—new TV

TV-set	technology	sound	brand	screen
a	OLED	excellent	S	$50^{\prime \prime}$
b	OLED	good	P	$50^{\prime \prime}$
c	LED	excellent	P	$50^{\prime \prime}$
d	LED	good	S	$42^{\prime \prime}$

■ "Languages:"
\checkmark Technology, sound quality
\checkmark Technology, brand

This Paper

\triangleright Objectives:
\checkmark Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
\checkmark Identify descriptions of items that make the search easy

This Paper

\triangleright Objectives:
\checkmark Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
\checkmark Identify descriptions of items that make the search easy
\triangleright Approach:
\checkmark Use Automata Theory-automaton strategy as a decision making procedure

This Paper

\triangleright Objectives:
\checkmark Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
\checkmark Identify descriptions of items that make the search easy
\triangleright Approach:
\checkmark Use Automata Theory-automaton strategy as a decision making procedure
\checkmark Consider zero waiting costs

This Paper

\triangleright Objectives:
\checkmark Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
\checkmark Identify descriptions of items that make the search easy
\triangleright Approach:
\checkmark Use Automata Theory-automaton strategy as a decision making procedure
\checkmark Consider zero waiting costs
\triangleright Main insights:

This Paper

\triangleright Objectives:
\checkmark Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
\checkmark Identify descriptions of items that make the search easy
\triangleright Approach:
\checkmark Use Automata Theory-automaton strategy as a decision making procedure
\checkmark Consider zero waiting costs
\triangleright Main insights:
\checkmark Consumer choice is not hard if use randomization and sacrifice the speed: logarithmic/linear complexity

This Paper

\triangleright Objectives:
\checkmark Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
\checkmark Identify descriptions of items that make the search easy
\triangleright Approach:
\checkmark Use Automata Theory-automaton strategy as a decision making procedure
\checkmark Consider zero waiting costs
\triangleright Main insights:
\checkmark Consumer choice is not hard if use randomization and sacrifice the speed: logarithmic/linear complexity
\checkmark System of attributes used to describe objects matters: languages that attain logarithmic/linear bounds in complexity

This Paper

\triangleright Objectives:
\checkmark Find when the consumer can overcome the information processing constraints and achieve optimality if she takes her time
\checkmark Identify descriptions of items that make the search easy
\triangleright Approach:
\checkmark Use Automata Theory-automaton strategy as a decision making procedure
\checkmark Consider zero waiting costs
\triangleright Main insights:
\checkmark Consumer choice is not hard if use randomization and sacrifice the speed: logarithmic/linear complexity
\checkmark System of attributes used to describe objects matters: languages that attain logarithmic/linear bounds in complexity
\checkmark Simplest procedure: examine attributes sequentially, dismiss the item with positive probability if the attribute's value is bad

Model

Alternatives, Preference, and Menu

\triangleright Finite set of items A with generic element a
\triangleright Complete and transitive non-trivial preference \succeq on A

Alternatives, Preference, and Menu

\triangleright Finite set of items A with generic element a
\triangleright Complete and transitive non-trivial preference \succeq on A
\triangleright Nature chooses a non-empty menu $B \subseteq A$, unknown to the agent

Search

$\triangleright \ln$ period $t=1$, a random item is drawn from the menu

Search

$\triangleright \ln$ period $t=1$, a random item is drawn from the menu
\triangleright Agent investigates the item by examining its attributes:
\checkmark One attribute (agent's choice) in a period
\checkmark Can choose the item and stop the search
\checkmark Can continue to investigate the item
\checkmark Can dismiss the item and draw a new one

Search

\triangleright In period $t=1$, a random item is drawn from the menu
\triangleright Agent investigates the item by examining its attributes:
\checkmark One attribute (agent's choice) in a period
\checkmark Can choose the item and stop the search
\checkmark Can continue to investigate the item
\checkmark Can dismiss the item and draw a new one
\triangleright Each period during the search:
\checkmark With probability $\eta \in(0,1)$, a new item catches the agent's attention
\checkmark With probability $1-\eta$, the item remains the same

Search

\triangleright In period $t=1$, a random item is drawn from the menu
\triangleright Agent investigates the item by examining its attributes:
\checkmark One attribute (agent's choice) in a period
\checkmark Can choose the item and stop the search
\checkmark Can continue to investigate the item
\checkmark Can dismiss the item and draw a new one
\triangleright Each period during the search:
\checkmark With probability $\eta \in(0,1)$, a new item catches the agent's attention
\checkmark With probability $1-\eta$, the item remains the same
\triangleright Each time a random item is drawn according to the same distribution
\checkmark Can encounter the same (or identical) item multiple times

Information Structures

\triangleright Language $Q=\left\{Q_{i}\right\}_{i \in N}$ is a collection of non-trivial binary partitions of A
\checkmark Each partition maps to a binary property (attribute) of items
$\checkmark N$-index set of partitions (attributes)
$\checkmark a_{i} \in\{0,1\}$ is the value of attribute $i \in N$

Information Structures

\triangleright Language $Q=\left\{Q_{i}\right\}_{i \in N}$ is a collection of non-trivial binary partitions of A
\checkmark Each partition maps to a binary property (attribute) of items
$\checkmark N$-index set of partitions (attributes)
$\checkmark a_{i} \in\{0,1\}$ is the value of attribute $i \in N$

TV-set	technology	sound	brand	screen
a	OLED	excellent	S	$50 \prime \prime$
b	OLED	good	P	$50^{\prime \prime}$
c	LED	excellent	P	$50^{\prime \prime}$
d	LED	good	S	$42^{\prime \prime}$

\triangleright Example: $\left\{Q_{1}, Q_{2}\right\}$, where $Q_{1}=\{\{a, b\},\{c, d\}\}, Q_{2}=\{\{a, c\},\{b, d\}\}$ \checkmark Language includes "technology" and "sound" attributes

An Automaton Strategy

\triangleright Strategy (S, ι, τ)

An Automaton Strategy

\triangleright Strategy (S, ι, τ)
\triangleright State space $S=S^{\circ} \cup\{$ choose $\} \cup\{$ dismiss $\}$
$\checkmark S^{\circ}=\{1, \ldots, m\}$-memory states
\checkmark \{choose, dismiss\}—special states

An Automaton Strategy

\triangleright Strategy (S, ι, τ)
\triangleright State space $S=S^{\circ} \cup\{$ choose $\} \cup\{$ dismiss $\}$
$\checkmark S^{\circ}=\{1, \ldots, m\}$-memory states
\checkmark \{choose, dismiss\}—special states
\triangleright Interrogation rule $\iota: S^{\circ} \rightarrow N$
$\checkmark \iota(s)$ —attribute of the item investigated in state s

An Automaton Strategy

\triangleright Strategy (S, ι, τ)
\triangleright State space $S=S^{\circ} \cup\{$ choose $\} \cup\{$ dismiss $\}$
$\checkmark S^{\circ}=\{1, \ldots, m\}$-memory states
\checkmark \{choose, dismiss\}—special states
\triangleright Interrogation rule $\iota: S^{\circ} \rightarrow N$
$\checkmark \iota(s)$ —attribute of the item investigated in state s
\triangleright Stochastic transition rule $\tau: S^{\circ} \times\{0,1\} \rightarrow \triangle(S)$
$\checkmark \tau(s, v, j)$ —probability to transition from s to v if attribute $\iota(s)$ has value j

An Automaton Strategy

\triangleright Strategy (S, ι, τ)
\triangleright State space $S=S^{\circ} \cup\{$ choose $\} \cup\{$ dismiss $\}$
$\checkmark S^{\circ}=\{1, \ldots, m\}$-memory states
\checkmark \{choose, dismiss\}—special states
\triangleright Interrogation rule $\iota: S^{\circ} \rightarrow N$
$\checkmark \iota(s)$ —attribute of the item investigated in state s
\triangleright Stochastic transition rule $\tau: S^{\circ} \times\{0,1\} \rightarrow \triangle(S)$
$\checkmark \tau(s, v, j)$ —probability to transition from s to v if attribute $\iota(s)$ has value j
\triangleright Each time a new alternative is drawn, state initializes at $s=1$
\checkmark Agent focuses on the current item, no recall of the past investigations
\checkmark In the paper, we relax this assumption for part of the analysis

Example

\triangleright TV-set example, language: \{technology, sound \}
\triangleright Utility: $u($ tech, sound $)=2 \cdot \mathbb{1}\{$ tech $=O L E D\}+1 \cdot \mathbb{1}\{$ sound $=$ excellent $\}$

Example

\triangleright TV-set example, language: $\{$ technology, sound $\}$
\triangleright Utility: $u($ tech, sound $)=2 \cdot \mathbb{1}\{$ tech $=O L E D\}+1 \cdot \mathbb{1}\{$ sound $=$ excellent $\}$

Example

\triangleright TV-set example, language: $\{$ technology, sound $\}$
\triangleright Utility: $u($ tech, sound $)=2 \cdot \mathbb{1}\{$ tech $=O L E D\}+1 \cdot \mathbb{1}\{$ sound $=$ excellent $\}$

\triangleright Probability of choosing an item during an investigation:

$$
\begin{array}{llll}
q(O L E D, \text { excellent }) & =1-\eta & q(O L E D, \text { good }) & =(1-\eta) \cdot \epsilon \\
q(L E D, \text { excellent }) & =(1-\eta) \cdot \epsilon^{2} & q(L E D, \text { good }) & =(1-\eta) \cdot \epsilon^{3}
\end{array}
$$

Example

\triangleright TV-set example, language: $\{$ technology, sound $\}$
\triangleright Utility: $u($ tech, sound $)=2 \cdot \mathbb{1}\{$ tech $=O L E D\}+1 \cdot \mathbb{1}\{$ sound $=$ excellent $\}$

\triangleright Probability of choosing an item during an investigation:

$$
\begin{array}{lllll}
q(O L E D, \text { excellent }) & =1-\eta & & q(O L E D, \text { good }) & =(1-\eta) \cdot \epsilon \\
q(L E D, \text { excellent }) & =(1-\eta) \cdot \epsilon^{2} & q(L E D, \text { good }) & =(1-\eta) \cdot \epsilon^{3}
\end{array}
$$

Example

\triangleright TV-set example, language: $\{$ technology, sound $\}$
\triangleright Utility: $u($ tech, sound $)=2 \cdot \mathbb{1}\{$ tech $=O L E D\}+1 \cdot \mathbb{1}\{$ sound $=$ excellent $\}$

\triangleright Probability of choosing an item during an investigation:

$$
\begin{array}{lllll}
q(O L E D, \text { excellent }) & =1-\eta & q(O L E D, \text { good }) & =(1-\eta) \cdot \epsilon \\
q(L E D, \text { excellent }) & =(1-\eta) \cdot \epsilon^{2} & q(L E D, \text { good }) & =(1-\eta) \cdot \epsilon^{3}
\end{array}
$$

Example

\triangleright TV-set example, language: $\{$ technology, sound $\}$
\triangleright Utility: $u($ tech, sound $)=2 \cdot \mathbb{1}\{$ tech $=O L E D\}+1 \cdot \mathbb{1}\{$ sound $=$ excellent $\}$

\triangleright Probability of choosing an item during an investigation:

$$
\begin{array}{lllll}
q(O L E D, \text { excellent }) & =1-\eta & q(O L E D, \text { good }) & =(1-\eta) \cdot \epsilon \\
q(L E D, \text { excellent }) & =(1-\eta) \cdot \epsilon^{2} & q(L E D, \text { good }) & =(1-\eta) \cdot \epsilon^{3}
\end{array}
$$

Example

\triangleright TV-set example, language: $\{$ technology, sound $\}$
\triangleright Utility: $u($ tech, sound $)=2 \cdot \mathbb{1}\{$ tech $=O L E D\}+1 \cdot \mathbb{1}\{$ sound $=$ excellent $\}$

\triangleright Probability of choosing an item during an investigation:

$$
\begin{array}{lllll}
q(O L E D, \text { excellent }) & =1-\eta & q(O L E D, \text { good }) & =(1-\eta) \cdot \epsilon \\
q(L E D, \text { excellent }) & =(1-\eta) \cdot \epsilon^{2} & q(L E D, \text { good }) & =(1-\eta) \cdot \epsilon^{3}
\end{array}
$$

\triangleright Imagine, the realized menu includes all but the best TV-set

Example

\triangleright TV-set example, language: $\{$ technology, sound $\}$
\triangleright Utility: $u($ tech, sound $)=2 \cdot \mathbb{1}\{$ tech $=O L E D\}+1 \cdot \mathbb{1}\{$ sound $=$ excellent $\}$

\triangleright Probability of choosing an item during an investigation:

$$
\begin{array}{lllll}
q(O L E D, \text { excellent }) & =1-\eta & q(O L E D, \text { good }) & =(1-\eta) \cdot \epsilon \\
q(L E D, \text { excellent }) & =(1-\eta) \cdot \epsilon^{2} & q(L E D, \text { good }) & =(1-\eta) \cdot \epsilon^{3}
\end{array}
$$

$\triangleright \epsilon \longrightarrow 0$, optimal choice from any menu with probability 1

Solution Concept

\triangleright Choice problem (Q, \succeq)

Solution Concept

\triangleright Choice problem (Q, \succeq)
\triangleright Transitions of the automaton: $\mathcal{T}=\{(s, v, j) \mid \tau(s, v, j)>0\}$

Solution Concept

\triangleright Choice problem (Q, \succeq)
\triangleright Transitions of the automaton: $\mathcal{T}=\{(s, v, j) \mid \tau(s, v, j)>0\}$
\triangleright Decision rule $\psi=\left\{\left(S, \iota, \tau_{r}\right)\right\}_{r=1,2, \ldots}$
\checkmark Fixed state space S
\checkmark Fixed interrogation rule ι
\checkmark Fixed transitions $\mathcal{T}_{r}=\mathcal{T}, r=1,2, \ldots$

Solution Concept

\triangleright Choice problem (Q, \succeq)
\triangleright Transitions of the automaton: $\mathcal{T}=\{(s, v, j) \mid \tau(s, v, j)>0\}$
\triangleright Decision rule $\psi=\left\{\left(S, \iota, \tau_{r}\right)\right\}_{r=1,2, \ldots}$
\checkmark Fixed state space S
\checkmark Fixed interrogation rule ι
\checkmark Fixed transitions $\mathcal{T}_{r}=\mathcal{T}, r=1,2, \ldots$

Definition. A decision rule ψ solves the choice problem (Q, \succeq) if

$$
\lim _{r \rightarrow \infty} \operatorname{Pr}(\text { choose } \succeq \text {-best item from menu } B)=1 \quad \forall B
$$

Existence of a Solution

Proposition. There exists a decision rule that solves the agent's choice problem if and only for any $a, b \in A$, if $a \succ b$, then $a_{i} \neq b_{i}$ for some $i \in N$.

Existence of a Solution

Proposition. There exists a decision rule that solves the agent's choice problem if and only for any $a, b \in A$, if $a \succ b$, then $a_{i} \neq b_{i}$ for some $i \in N$.
\triangleright We consider languages that allow the agent to solve her choice problem

Existence of a Solution

Proposition. There exists a decision rule that solves the agent's choice problem if and only for any $a, b \in A$, if $a \succ b$, then $a_{i} \neq b_{i}$ for some $i \in N$.
\triangleright We consider languages that allow the agent to solve her choice problem
\triangleright Given the agent's language, what is the minimum amount of cognitive resources required to solve the choice problem?

Complexity Measures

In the paper:

\triangleright Memory load of a decision rule: $\mathcal{M}(\psi)=\left|S^{\circ}\right|$
\checkmark Represents an "operational" memory required to implement the procedure
\triangleright Memory load of a language (given \succeq):

$$
\mathcal{M}_{\succeq}(Q):=\min _{\psi \text { solves }(Q, \succeq)} \mathcal{M}(\psi)
$$

Complexity Measures

In the paper:

\triangleright Memory load of a decision rule: $\mathcal{M}(\psi)=\left|S^{\circ}\right|$
\checkmark Represents an "operational" memory required to implement the procedure
\triangleright Memory load of a language (given \succeq):

$$
\mathcal{M}_{\succeq}(Q):=\min _{\psi \text { solves }(Q, \succeq)} \mathcal{M}(\psi)
$$

This talk:
\triangleright Complexity of a decision rule: $\kappa(\psi)=|\{(s, v, j) \mid \tau(s, v, j)>0\}|$

Complexity Measures

In the paper:

\triangleright Memory load of a decision rule: $\mathcal{M}(\psi)=\left|S^{\circ}\right|$
\checkmark Represents an "operational" memory required to implement the procedure
\triangleright Memory load of a language (given \succeq):

$$
\mathcal{M}_{\succeq}(Q):=\min _{\psi \text { solves }(Q, \succeq)} \mathcal{M}(\psi)
$$

This talk:
\triangleright Complexity of a decision rule: $\kappa(\psi)=|\{(s, v, j) \mid \tau(s, v, j)>0\}|$
\checkmark Represents "length of instructions" of the procedure

Complexity Measures

In the paper:

\triangleright Memory load of a decision rule: $\mathcal{M}(\psi)=\left|S^{\circ}\right|$
\checkmark Represents an "operational" memory required to implement the procedure
\triangleright Memory load of a language (given \succeq):

$$
\mathcal{M}_{\succeq}(Q):=\min _{\psi \text { solves }(Q, \succeq)} \mathcal{M}(\psi)
$$

This talk:
\triangleright Complexity of a decision rule: $\kappa(\psi)=|\{(s, v, j) \mid \tau(s, v, j)>0\}|$
\checkmark Represents "length of instructions" of the procedure
\checkmark Considered for repeated games in Banks and Sundaram (1990)

Complexity Measures

In the paper:

\triangleright Memory load of a decision rule: $\mathcal{M}(\psi)=\left|S^{\circ}\right|$
\checkmark Represents an "operational" memory required to implement the procedure
\triangleright Memory load of a language (given \succeq):

$$
\mathcal{M}_{\succeq}(Q):=\min _{\psi \text { solves }(Q, \succeq)} \mathcal{M}(\psi)
$$

This talk:
\triangleright Complexity of a decision rule: $\kappa(\psi)=|\{(s, v, j) \mid \tau(s, v, j)>0\}|$
\checkmark Represents "length of instructions" of the procedure
\checkmark Considered for repeated games in Banks and Sundaram (1990)
\checkmark Experimentally in Oprea (2020)

Complexity Measures

In the paper:

\triangleright Memory load of a decision rule: $\mathcal{M}(\psi)=\left|S^{\circ}\right|$
\checkmark Represents an "operational" memory required to implement the procedure
\triangleright Memory load of a language (given \succeq):

$$
\mathcal{M}_{\succeq}(Q):=\min _{\psi \text { solves }(Q, \succeq)} \mathcal{M}(\psi)
$$

This talk:

\triangleright Complexity of a decision rule: $\kappa(\psi)=|\{(s, v, j) \mid \tau(s, v, j)>0\}|$
\checkmark Represents "length of instructions" of the procedure
\checkmark Considered for repeated games in Banks and Sundaram (1990)
\checkmark Experimentally in Oprea (2020)
\triangleright Complexity (transitional) of a language (given \succeq):

$$
\kappa \succeq(Q):=\min _{\psi \text { solves }(Q, \succeq)} \kappa(\psi)
$$

Complexity of Languages for 4 Items and Strict Preference

Consider $A=\{a, b, c, d\}$, and $a \succ b \succ c \succ d$

	Language	Preference	\mathcal{M}	κ
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	2	6
R	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	2	7
S	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	3	9
T	$\{\{a\},\{b, c, d\}\},\{\{b\},\{a, c, d\}\}$,	$100 \succ 010 \succ 001 \succ 000$	3	9
$\{\{c\},\{a, b, d\}\}$				

Maximum Complexity

Theorem (Upper Bound). If there are $k=|A|$ items, then for any \succeq :
(i) For any language $Q, \kappa_{\succeq}(Q) \leq 3 k-3$;
(ii) There exists a language Q such that $\kappa \succeq(Q) \geq k-2$.

Minimum Complexity

Theorem (Lower Bound). Let \succeq have m indifference classes, then:
(i) For any language $Q, \kappa \succeq(Q) \geq 3\left\lceil\log _{2} m\right\rceil$;
(ii) There exists a language Q such that $\kappa_{\succeq}(Q)=3\left\lceil\log _{2} m\right\rceil$;
(iii) If ψ solves (Q, \succeq), and $\kappa(\psi)=3\left\lceil\log _{2} m\right\rceil$, then $\mathcal{M}(\psi)$ is minimum among the rules that solve the choice problem (\widetilde{Q}, \succeq) for any language \widetilde{Q},
where $\lceil x\rceil$ denotes the smallest natural number weakly greater than x.

Simplest Languages and Decision Rules

Separable Decision Rules

\triangleright Consider the following decision rules with $\left\{\epsilon_{i}\right\}_{r=1,2, \ldots} \in(0,1)$
go to a dismissal or previously visited memory state

Separable Decision Rules

\triangleright Consider the following decision rules with $\left\{\epsilon_{i}\right\}_{r=1,2, \ldots} \in(0,1)$

\triangleright Can enumerate attributes and attributes' values arbitrarily

Separable Decision Rules

\triangleright Consider the following decision rules with $\left\{\epsilon_{i}\right\}_{r=1,2, \ldots} \in(0,1)$
go to a dismissal or previously visited memory state

\triangleright Can enumerate attributes and attributes' values arbitrarily
\triangleright Call Ψ_{n}^{+}the set of such rules with n memory states

Additive Utility

\triangleright Suppose the agent's language facilitates usage of an additive utility:

$$
a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i}, \quad(\text { WLOG }) \lambda_{i} \geq 0
$$

Additive Utility

\triangleright Suppose the agent's language facilitates usage of an additive utility:

$$
a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i}, \quad(W L O G) \lambda_{i} \geq 0
$$

Additive Utility

\triangleright Suppose the agent's language facilitates usage of an additive utility:

$$
a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i}, \quad(W L O G) \lambda_{i} \geq 0
$$

Additive Utility

\triangleright Suppose the agent's language facilitates usage of an additive utility:

$$
a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i}, \quad(W L O G) \lambda_{i} \geq 0
$$

Additive Utility

\triangleright Suppose the agent's language facilitates usage of an additive utility:

$$
a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i}, \quad(W L O G) \lambda_{i} \geq 0
$$

Additive Utility

\triangleright Suppose the agent's language facilitates usage of an additive utility:

$$
a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i}, \quad(W L O G) \lambda_{i} \geq 0
$$

Additive Utility

\triangleright Suppose the agent's language facilitates usage of an additive utility:

$$
a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i}, \quad(W L O G) \lambda_{i} \geq 0
$$

Additive Utility

\triangleright Suppose the agent's language facilitates usage of an additive utility:

$$
a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i}, \quad(W L O G) \lambda_{i} \geq 0
$$

Additive Utility

\triangleright Suppose the agent's language facilitates usage of an additive utility:

$$
a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i}, \quad(W L O G) \lambda_{i} \geq 0
$$

Additive Utility

\triangleright Suppose the agent's language facilitates usage of an additive utility:

$$
a \succ b \quad \Longrightarrow \quad \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i}, \quad(W L O G) \lambda_{i} \geq 0
$$

$\triangleright \operatorname{Pr}($ choose item a during single investigation $)=(1-\eta)^{m-1} \cdot \epsilon^{\sum \lambda_{i}\left(1-a_{i}\right)}$

Adapted Languages

Definition. Let \succeq have m indifference classes. Language Q is adapted for $\succeq i f$ there exists $\lambda \in \mathbb{R}^{N}$ such that:

$$
\begin{aligned}
& \text { (i) } a \succ b \Longrightarrow \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i} \\
& \text { (ii) }\left|\left\{i \in N \mid \lambda_{i} \neq 0\right\}\right|=\left\lceil\log _{2} m\right\rceil
\end{aligned}
$$

Adapted Languages

Definition. Let \succeq have m indifference classes. Language Q is adapted for \succeq if there exists $\lambda \in \mathbb{R}^{N}$ such that:

$$
\begin{aligned}
& \text { (i) } a \succ b \Longrightarrow \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i} \\
& \text { (ii) }\left|\left\{i \in N \mid \lambda_{i} \neq 0\right\}\right|=\left\lceil\log _{2} m\right\rceil
\end{aligned}
$$

Proposition. There exists an adapted language.

Adapted Languages

Definition. Let \succeq have m indifference classes. Language Q is adapted for \succeq if there exists $\lambda \in \mathbb{R}^{N}$ such that:

$$
\begin{aligned}
& \text { (i) } a \succ b \Longrightarrow \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i} \\
& \text { (ii) }\left|\left\{i \in N \mid \lambda_{i} \neq 0\right\}\right|=\left\lceil\log _{2} m\right\rceil
\end{aligned}
$$

Proposition. There exists an adapted language.

Remark. The utility function $u(a)=\sum_{i \in N} \lambda_{i} a_{i}$ induces a preference that might break ties in the original preference \succeq.

Simplest Decision Rules and Adapted Languages

Proposition. Let \succeq have m indifference classes, then Q is adapted for \succeq if and only if there exists $\psi \in \Psi_{\left\lceil\log _{2} m\right\rceil}^{+}$that solves (Q, \succeq).

Simplest Languages

Theorem (Simplest Languages). Let \succeq have m indifference classes, then:
(i) If Q is adapted for \succeq, then $\kappa_{\succeq}(Q)=3\left\lceil\log _{2} m\right\rceil$;
(ii) If $(3 / 4) \cdot 2^{n}<m \leq 2^{n}$ for a natural n, then:
(a) $\kappa \succeq(Q)=3\left\lceil\log _{2} m\right\rceil$ if and only if Q is adapted for \succeq;
(b) If ψ solves (Q, \succeq), and $\kappa(\psi)=3\left\lceil\log _{2} m\right\rceil$, then $\psi \in \Psi_{\left\lceil\log _{2} m\right\rceil}^{+}$.

Literature Review and Conclusion

Literature Review

\triangleright Optimal search: Kohn and Shavell (1974); Weitzman (1979); Morgan and Manning (1985); Klabjan, Olszewski, and Wolinsky (2014); Sanjurjo (2017)
\triangleright Memory-constrained search: Dow (1991); Sanjurjo (2015), (2019)
\triangleright Stochastic Browsing: Cerreia-Vioglio, Maccheroni, Marinacci, Rustichini (2020), Rustichini (2020)
\triangleright Hypothesis testing and learning with finite memory: Cover (1969); Cover and Hellman (1970); Hellman and Cover (1970), (1971)
\triangleright Automata and simple algorithms in Economics: Abreu and Rubinstein (1988); Kalai and Stanford (1988); Banks and Sundaram (1990); Kalai and Solan (2003); Börgers and Morales (2004); Kocer (2010); Salant (2011); Mandler, Manzini, Mariotti (2012); Wilson (2014); Oprea (2020)

Conclusion

\triangleright Simple stochastic strategies achieve near optimality when time is not of the essence
\triangleright Descriptions that facilitate additive utility with few attributes are key for simplicity
\triangleright In the simplest procedures, "higher" memory state indicate higher quality of the item relative to the menu

Supplementary Slides

Maximum and Minimum Memory Load

Theorem (Upper Bound). If there are $k=|A|$ items, then for any \succeq :
(i) For any language $Q, \kappa_{\succeq}(Q) \leq k-1$;
(ii) There exists a language Q such that $\kappa_{\succeq}(Q) \geq k / 2-1$.

Theorem (Lower Bound). Let \succeq have m indifference classes, then:
(i) For any language $Q, \kappa_{\succeq}(Q) \geq\left\lceil\log _{2} m\right\rceil$;
(ii) There exists a language Q such that $\kappa_{\succeq}(Q)=\left\lceil\log _{2} m\right\rceil$;
where $\lceil x\rceil$ denotes the smallest natural number weakly greater than x.

Extension: Relaxing Memory Initialization Assumption

A General Framework

\triangleright Baseline model: a state initializes at $s=1$ with each new item

A General Framework

\triangleright Baseline model: a state initializes at $s=1$ with each new item
\triangleright General model: when a new item is drawn, the automaton transitions to a new state conditional on the previous state

A General Framework

\triangleright Baseline model: a state initializes at $s=1$ with each new item
\triangleright General model: when a new item is drawn, the automaton transitions to a new state conditional on the previous state
\triangleright State space $S=S^{\circ} \cup\{$ choose $\}$

A General Framework

\triangleright Baseline model: a state initializes at $s=1$ with each new item
\triangleright General model: when a new item is drawn, the automaton transitions to a new state conditional on the previous state
\triangleright State space $S=S^{\circ} \cup\{$ choose $\}$
\triangleright Specify probabilities:
\checkmark To choose the current item, conditional on the current state and the learned attribute's value
\checkmark To continue the investigation of the item and move to a memory state, conditional on the current state and the learned attribute's value
\checkmark To dismiss the item, pick a new random item, and move to a memory state, conditional on the current state and the learned attribute's value
\checkmark To move to a memory state, conditional on the current state and the event that a new item catches the agent's attention

Maximal Memory Load

Theorem (Upper Bound). Consider a general model. Let k be the total number of items, then for any non-trivial \succeq :
(i) For any language $Q, \mathcal{M}(Q) \leq k-1$;
(ii) There exists a language Q such that $\mathcal{M}(Q)=k / 2-1$.

Minimal Memory Load

Theorem (Lower Bound). Consider a general model. Let $m \geq 2$ be the total number of indifference classes of \succeq, then:
(i) For any language $Q, \mathcal{M}(Q) \geq\left\lceil\log _{2} m\right\rceil$;
(ii) There exists a language Q such that $\mathcal{M}(Q)=\left\lceil\log _{2} m\right\rceil$.

If Preference is Strict, a Language May Require $k-1$ Memory States

\triangleright Let $A=\left\{a^{1}, \ldots, a^{k}\right\}, a^{1} \succ \ldots \succ a^{k}$
\triangleright Consider $Q=\left\{Q_{1}, \ldots, Q_{k-1}\right\}$ with $Q_{I}=\left\{\left\{a^{\prime}\right\},\left\{a^{1}, \ldots, a^{I-1}, a^{\prime+1}, \ldots, a^{k}\right\}\right\}$
\triangleright Need at least $k-1$ attributes to differentiate any pair of items

Proof Ideas

Lower Bound in Transitional Complexity-Simple Paths

\triangleright Focus on simple paths from $s=1$ to $s=$ choose
\triangleright Item-dependent probability that the path occurs
\triangleright For $a \in A, \omega(a)$ - the highest probability among all simple paths

Lemma. A decision rule solves the choice problem if and only if:
(i) $a \succ b$ implies $\omega(b) / \omega(a) \longrightarrow 0$ for all $a, b \in A$;
(ii) $\omega(a)>0$ for all $a \in A$.
\triangleright Similar to "Z-tree" technique in Kandori, Mailath, Rob (1993)

Strong and Weak Transitions

\triangleright Strong link $(s, v, j) \in \mathcal{T}$ if $\lim \tau(s, v, j)>0$
\triangleright Weak link $(s, v, j) \in \mathcal{T}$ if $\lim \tau(s, v, j)=0$

Lemma. If the decision rule solves the choice problem, then highest-probability paths for different alternatives use different sets of weak links.

Lower Bound in Transitional Complexity—Proof Idea

\triangleright Let ψ solves (Q, \succeq) with k items, $n=\left\lceil\log _{2} k\right\rceil$
$\triangleright \psi$ should have at least $2 n$ strong links
\checkmark At least n attributes should be examined in n states
\checkmark Each state has at least 2 outgoing strong links
$\triangleright \psi$ should have at least n weak links
\checkmark Each item maps to a distinct set of weak links
\checkmark Hence $2^{\text {\#weak links }} \geq k$
\triangleright The total number of links in ψ is at least $2 n+n$, i.e. $\kappa(Q) \geq 3 n$
\triangleright If $\kappa(\psi)=3 n$, there are exactly $2 n$ strong and n weak links

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Memory Load—a Rough Complexity Measure

	Language	Preference	Memory load
Q	$\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\}$	$11 \succ 10 \succ 01 \succ 00$	$\mathcal{M}(Q)=2$
Q^{*}	$\{\{a, b\},\{c, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 10 \succ 00 \succ 01$	$\mathcal{M}\left(Q^{*}\right)=2$
$Q^{* *}$	$\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\}$	$11 \succ 00 \succ 10 \succ 01$	$\mathcal{M}\left(Q^{* *}\right)=3$

Dynamics (Baseline Model)

\triangleright Markov Chain $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, \ldots\right)$ with realizations $\left(y_{1}, y_{2}, \ldots\right)$
\triangleright Interpretation: $y_{t}=(a, s) \in A \times\left(S^{\circ} \cup\{\right.$ choose $\left.\}\right)$
\triangleright Starting state: $\operatorname{Pr}\left(Y_{1}=(a, s)\right)=\rho^{B}(a) \cdot \delta_{1}^{s}$
\triangleright Transitional probabilities

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{t}=(a, s) \mid Y_{t-1}=(b, v)\right)= & (1-\eta) \cdot \delta_{b}^{a} \cdot \tau\left(v, s, b_{\iota(v)}\right)+ \\
& (1-\eta) \cdot \tau\left(v, \text { dismiss, } b_{\iota(v)}\right) \cdot \rho^{B}(a) \cdot \delta_{1}^{s}+ \\
& {\left[1-\tau\left(v, \text { choose }, b_{\iota(v)}\right)\right] \cdot \eta \cdot \rho^{B}(a) \cdot \delta_{1}^{s} } \\
\operatorname{Pr}\left(Y_{t}=(a, \text { choose }) \mid Y_{t-1}=(b, v)\right)= & \tau\left(v, \text { choose }, b_{\iota(v)}\right) \cdot \delta_{b}^{a} \\
\operatorname{Pr}\left(Y_{t}=(a, s) \mid Y_{t-1}=(b, \text { choose })\right)= & \delta_{b}^{a} \cdot \delta_{\text {choose }}^{s}
\end{aligned}
$$

\triangleright Where $\rho^{B}(a)$ is the probability to draw item a from menu B

Stochastic Choice

$\triangleright \rho^{B}(b)$ —probability to draw item b from menu B
$\triangleright q(b)$ —probability to choose item b during a single investigation
$\triangleright p^{B}(b)$ —probability to choose item b from menu B

Lemma (Generalized Luce Rule).

$$
p^{B}(a)=\frac{\rho^{B}(a) \cdot q(a)}{\sum_{b \in B} \rho^{B}(b) \cdot q(b)}
$$

with the convention that $p^{B}(a)=0$ if the denominator assumes value zero.

Intuition for the Upper Bound

\triangleright Design an automaton that maps each item $a \in A$ to a unique probability ϵ_{a} of choosing this item during a single investigation

Intuition for the Upper Bound

\triangleright Design an automaton that maps each item $a \in A$ to a unique probability ϵ_{a} of choosing this item during a single investigation
\triangleright Show by induction that $f(k)=k-1$ states are sufficient

Intuition for the Upper Bound

\triangleright Design an automaton that maps each item $a \in A$ to a unique probability ϵ_{a} of choosing this item during a single investigation
\triangleright Show by induction that $f(k)=k-1$ states are sufficient
$\triangleright f(2)=1$

Intuition for the Upper Bound

\triangleright Design an automaton that maps each item $a \in A$ to a unique probability ϵ_{a} of choosing this item during a single investigation
\triangleright Show by induction that $f(k)=k-1$ states are sufficient
$\triangleright f(k+1)=1+f(k)=1+k-1=k$

$$
P r=\epsilon_{c}
$$

Intuition for the Upper Bound

\triangleright Design an automaton that maps each item $a \in A$ to a unique probability ϵ_{a} of choosing this item during a single investigation
\triangleright Show by induction that $f(k)=k-1$ states are sufficient
$\triangleright f(k+1)=1+f(k)=1+k-1=k$

Intuition for the Upper Bound

\triangleright Design an automaton that maps each item $a \in A$ to a unique probability ϵ_{a} of choosing this item during a single investigation
\triangleright Show by induction that $f(k)=k-1$ states are sufficient
$\triangleright f\left(k_{1}+k_{2}\right)=1+f\left(k_{1}\right)+f\left(k_{2}\right)=k_{1}+k_{2}-1$

Intuition for the Upper Bound

\triangleright Design an automaton that maps each item $a \in A$ to a unique probability ϵ_{a} of choosing this item during a single investigation
\triangleright Show by induction that $f(k)=k-1$ states are sufficient
\triangleright Pick sequences $\left\{\epsilon_{a}\right\}_{r=1,2, . .}$ for $a \in A$ that solve the choice problem

Existence of Adapted Languages

\triangleright WLOG, \succeq is strict:
\triangleright Adapted language for k items:

$$
\begin{aligned}
& \text { (i) } \quad a \succ b \Longrightarrow \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i} \\
& \text { (ii) }\left|\left\{i \in N \mid \lambda_{i} \neq 0\right\}\right|=\left\lceil\log _{2} k\right\rceil
\end{aligned}
$$

Proof 1:

\triangleright Augment the set of items to make $|A|=2^{n}$, where $n=\left\lceil\log _{2} k\right\rceil$
\triangleright Consider some collection $\lambda_{i}>0, i \in\{1, \ldots, n\}$
\triangleright Utility $u(a)=\sum_{i} \lambda_{i} a_{i}$ induces a (strict) preference on vectors of attributes
\triangleright Label items in set A accordingly, get an adapted language

Existence of Adapted Languages

\triangleright WLOG, \succeq is strict:
\triangleright Adapted language for k items:

$$
\begin{aligned}
& \text { (i) } a \succ b \Longrightarrow \sum_{i \in N} \lambda_{i} a_{i}>\sum_{i \in N} \lambda_{i} b_{i} \\
& \text { (ii) }\left|\left\{i \in N \mid \lambda_{i} \neq 0\right\}\right|=\left\lceil\log _{2} k\right\rceil
\end{aligned}
$$

Proof 2:

D Example: consider $a \succ b \succ c \succ d \succ e \succ f \succ g \succ h$
\triangleright Language $Q=\left\{Q_{1}, Q_{2}, Q_{3}\right\}$

$$
\begin{aligned}
& \checkmark Q_{1}: \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, e, f, g, h \\
& \checkmark Q_{2}: \boldsymbol{a}, \boldsymbol{b}, c, d, \boldsymbol{e}, \boldsymbol{f}, g, h \\
& \checkmark Q_{3}: \boldsymbol{a}, b, \boldsymbol{c}, d, \boldsymbol{e}, f, \boldsymbol{g}, h
\end{aligned}
$$

\triangleright Linear utility: $u(x)=2^{2} \cdot x_{1}+2^{1} \cdot x_{2}+2^{0} \cdot x_{3}=4 x_{1}+2 x_{2}+x_{3}$

Lower Bound Characterization Theorem-proof idea for (ii.a)

Theorem (Simplest Languages). Let \succeq have m indifference classes, then:
(i) If Q is adapted for \succeq, then $\kappa_{\succeq}(Q)=3\left\lceil\log _{2} m\right\rceil$;
(ii) If $(3 / 4) \cdot 2^{n}<m \leq 2^{n}$ for a natural n, then:
(a) $\kappa_{\succeq}(Q)=3\left\lceil\log _{2} m\right\rceil$ if and only if Q is adapted for \succeq;
(b) If ψ solves (Q, \succeq), and $\kappa(\psi)=3\left\lceil\log _{2} m\right\rceil$, then $\psi \in \Psi_{\left\lceil\log _{2} m\right\rceil}^{+}$.

Recall Proposition: Let \succeq have m indifference classes, then Q is adapted for \succeq if and only if there exists $\psi \in \Psi_{\left\lceil\log _{2} m\right\rceil}^{+}$that solves (Q, \succeq).

Want to prove that when $(3 / 4) \cdot 2^{n}<k \leq 2^{n}$, if ψ solves the choice problem and $\kappa(\psi) \leq 3\left\lceil\log _{2} m\right\rceil$, then $\psi \in \Psi_{3\left\lceil\log _{2} m\right\rceil}^{+}$

Lower Bound Characterization Theorem: Proof Sketch (1)

\triangleright For each item a, consider a highest-probability path from $s=1$ to $s=$ choose
\triangleright Say that $(s, v, j) \in \mathcal{T}$ is a weak link, if $\lim \tau_{r}(s, v, j) \longrightarrow 0$, otherwise it is a strong link

Lemma. If the decision rule solves the choice problem, then highest-probability paths for different alternatives use different sets of weak links.

Lemma. If ψ solves choice problem with m items, and $\kappa(\psi)=3\left\lceil\log _{2} k\right\rceil$, then ψ has n states, $2 n$ strong, and n weak links, where $n=\left\lceil\log _{2} k\right\rceil$.

Characterization Theorem: Sketch of the Proof (2)

\triangleright A simple path contains at most 1 link outgoing from a given state

Lemma. Let the total number of items be $k, n=\left\lceil\log _{2} k\right\rceil$, and $k>(3 / 4) \cdot 2^{n}$. If ψ solves the choice problem and $\kappa(\psi)=3 n$, then for each pair of weak links there is a highest-probability path that use both these links.

Corollary. Let the total number of items be $k, n=\left\lceil\log _{2} k\right\rceil$, and $k>(3 / 4) \cdot 2^{n}$. If ψ solves the choice problem and $\kappa(\psi)=3 n$, then in every state, ψ has exactly one outgoing weak link and exactly two outgoing strong links.

Characterization Theorem: Sketch of the Proof (3)

\triangleright WLOG attribute $s \in\{1, \ldots, n\}$ is investigated in state s.
\triangleright WLOG, for each state s :

$$
\begin{aligned}
& \checkmark \tau(s, v, 1)=1 \text { for some } v \\
& \checkmark \tau\left(s, v^{\prime}, 0\right)=\epsilon_{s} \text { and } \tau\left(s, v^{\prime \prime}, 0\right)=1-\epsilon_{s} \text { for some } v^{\prime}, v^{\prime \prime}, \text { and } \epsilon_{s} \longrightarrow 0
\end{aligned}
$$

\triangleright Recall: to show that $\psi \in \Psi_{n}^{+}$, we need to show additionally that there is a labeling of the states such that in the formula above:
$\checkmark v=v^{\prime}=s+1$, where state $n+1$ denotes choose
$\checkmark v^{\prime \prime} \in\{1, . ., s\} \cup\{$ dismiss $\}$
\triangleright Idea: use induction in n, where $n=\left\lceil\log _{2} k\right\rceil, k$ is the number of items, and condition $k>(3 / 4) \cdot 2^{n}$ holds
\checkmark Induction base: $n=1$, straightforward
\checkmark Induction step?

Characterization Theorem: Sketch of the Proof (4)

\triangleright Consider $s=1$, have $\tau(1, v, 1)=1, \tau\left(1, v^{\prime}, 0\right)=\epsilon_{1}, \tau\left(1, v^{\prime \prime}, 0\right)=1-\epsilon_{1}$
$\triangleright v \notin\{1$, choose, dismiss $\}$, since more than 1 item has $a_{1}=1$
$\triangleright v^{\prime} \notin\{1$, choose, dismiss $\}, v^{\prime \prime} \neq$ choose; otherwise, no more than $2^{n-1}+1 \leq(3 / 4) \cdot 2^{n}$ different subsets of weak links used
\triangleright Towards a contradiction, assume $v^{\prime \prime} \notin\{1$, dismiss $\}$

\triangleright Highest-probability path cannot include both weak links I_{1} and $I_{v^{\prime \prime}}$, in contradiction

Characterization Theorem: Sketch of the Proof (5)

\triangleright We know: $\tau(1, v, 1)=1, \tau\left(1, v^{\prime}, 0\right)=\epsilon_{1}, \tau\left(1, v^{\prime \prime}, 0\right)=1-\epsilon_{1}$
$\checkmark v, v^{\prime} \notin\{1$, choose, dismiss $\}, v^{\prime \prime} \in\{1$, dismiss $\}$
\triangleright At least one of the two statements should hold:
$\checkmark\left|\left\{a \in A \mid a_{i}=1\right\}\right|>(3 / 4) \cdot 2^{n-1}$
$\checkmark\left|\left\{a \in A \mid a_{i}=0\right\}\right|>(3 / 4) \cdot 2^{n-1}$
\triangleright Let $\left|\left\{a \in A \mid a_{i}=1\right\}\right|>(3 / 4) \cdot 2^{n-1}$, consider rule ψ^{\prime} :
\checkmark Delete state $s=1$ in rule ψ and its outgoing links
\checkmark Redirect each link that ends at $s=1$ in ψ to $s=$ dismiss in ψ^{\prime}
\checkmark Make state v the first state in ψ^{\prime}
$\triangleright \psi^{\prime}$ solves the problem constrained to items $\left\{a \in A \mid a_{i}=1\right\}$
$\checkmark \kappa\left(\psi^{\prime}\right) \leq 3 n-3$
\checkmark Use induction assumption to find configuration of links outgoing from all other states except of $s=1$ in ψ

Characterization Theorem: Sketch of the Proof (6)

\triangleright Last statement to prove: that $v^{\prime}=v$.
\triangleright Assume $v^{\prime} \neq v$, then weak link $\left(1, v^{\prime}, 0\right)$ and weak link I_{v}, outgoing from state v, cannot be in the same highest-probability path, contradiction
\triangleright Similar arguments work if $\left|\left\{a \in A \mid a_{i}=0\right\}\right|>(3 / 4) \cdot 2^{n-1}$
\checkmark Note that $\left|\left\{a \in A \mid a_{i}=0\right\}\right| \leq(1 / 2) \cdot 2^{n}$
\checkmark Hence $\left|\left\{a \in A \mid a_{i}=0\right\}\right|>(1 / 4) \cdot 2^{n}$
\checkmark If $v \neq v^{\prime}$, a weak link outgoing from v^{\prime} is not used in any highest-probability paths for items with $a_{1}=1$
\checkmark Thus, no more than $(1 / 4) \cdot 2^{n}$ sets of weak links used in highest-probability paths for items with $a_{1}=1$, contradiction

(Counter) Example

$\triangleright k=5$, so $n=\left\lceil\log _{2} 5\right\rceil=3, k=5 \leq(3 / 4) \cdot 2^{3}=6$
$\triangleright 111 \succ 110 \succ 011 \succ 000 \succ 100$
with
complementary probabilities

(Counter) Example 2

$\triangleright 111 \succ 110 \succ 101 \succ 100 \succ 001 \succ 010 \succ 000$

(Counter) Example 2

$\triangleright 111 \succ 110 \succ 101 \succ 100 \succ 001 \succ 010 \succ 000$

(Counter) Example 2

$$
\triangleright 111 \succ 110 \succ 101 \succ 100 \succ 001 \succ 010 \succ 000
$$

(Counter) Example 2

$$
\triangleright 111 \succ 110 \succ 101 \succ 100 \succ 001 \succ 010 \succ 000
$$

(Counter) Example 2

$$
\triangleright 111 \succ 110 \succ 101 \succ 100 \succ 001 \succ 010 \succ 000
$$

(Counter) Example 2

$$
\triangleright 111 \succ 110 \succ 101 \succ 100 \succ 001 \succ 010 \succ 000
$$

(Counter) Example 2

$\triangleright 111 \succ 110 \succ 101 \succ 100 \succ 001 \succ 010 \succ 000$

(Counter) Example 2

$$
\triangleright 111 \succ 110 \succ 101 \succ 100 \succ 001 \succ 010 \succ 000
$$

(Counter) Example 2

$$
\triangleright 111 \succ 110 \succ 101 \succ 100 \succ 001 \succ 010 \succ 000
$$

(Counter) Example 2

$\triangleright 111 \succ 110 \succ 101 \succ 100 \succ 001 \succ 010 \succ 000$

