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Motivation

◁ Window shopping/browsing

✓ Not urgent

✓ Attention may jump from item to item

✓ Not known what options are available

✓ Multiple attributes

◁ ”Classical” search models: cost of the search

✓ Direct: information cost

✓ Indirect: waiting cost

◁ This paper: information processing constraints
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Attributes

◁ Example—new TV

TV-set technology sound brand screen

a OLED excellent S 50”

b OLED good P 50”

c LED excellent P 50”

d LED good S 42”

◁ “Languages:”

✓ Technology, sound quality

✓ Technology, brand
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This Paper

◁ Objectives:

✓ Find when the consumer can overcome the information processing

constraints and achieve optimality if she takes her time

✓ Identify descriptions of items that make the search easy

◁ Approach:

✓ Use Automata Theory—automaton strategy as a decision making procedure

✓ Consider zero waiting costs

◁ Main insights:

✓ Consumer choice is not hard if use randomization and sacrifice the speed:

logarithmic/linear complexity

✓ System of attributes used to describe objects matters: languages that attain

logarithmic/linear bounds in complexity

✓ Simplest procedure: examine attributes sequentially, dismiss the item with

positive probability if the attribute’s value is bad
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Model



Alternatives, Preference, and Menu

◁ Finite set of items A with generic element a

◁ Complete and transitive non-trivial preference ⪰ on A

◁ Nature chooses a non-empty menu B ⊆ A, unknown to the agent
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Search

◁ In period t = 1, a random item is drawn from the menu

◁ Agent investigates the item by examining its attributes:

✓ One attribute (agent’s choice) in a period

✓ Can choose the item and stop the search

✓ Can continue to investigate the item

✓ Can dismiss the item and draw a new one

◁ Each period during the search:

✓ With probability 𝜂 ∈ (0, 1), a new item catches the agent’s attention

✓ With probability 1− 𝜂, the item remains the same

◁ Each time a random item is drawn according to the same distribution

✓ Can encounter the same (or identical) item multiple times
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Information Structures

◁ Language Q = {Qi}i∈N is a collection of non-trivial binary partitions of A

✓ Each partition maps to a binary property (attribute) of items

✓ N—index set of partitions (attributes)

✓ ai ∈ {0, 1} is the value of attribute i ∈ N

TV-set technology sound brand screen

a OLED excellent S 50”

b OLED good P 50”

c LED excellent P 50”

d LED good S 42”

◁ Example: {Q1,Q2}, where Q1 = {{a, b}, {c, d}}, Q2 = {{a, c}, {b, d}}

✓ Language includes “technology” and “sound” attributes
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An Automaton Strategy

◁ Strategy (S , 𝜄, 𝜏)

◁ State space S = So ∪ {choose} ∪ {dismiss}
✓ So = {1, ...,m}—memory states

✓ {choose, dismiss}—special states

◁ Interrogation rule 𝜄 : So → N

✓ 𝜄(s)—attribute of the item investigated in state s

◁ Stochastic transition rule 𝜏 : So × {0, 1} → △(S)

✓ 𝜏(s, v , j)—probability to transition from s to v if attribute 𝜄(s) has value j

◁ Each time a new alternative is drawn, state initializes at s = 1

✓ Agent focuses on the current item, no recall of the past investigations

✓ In the paper, we relax this assumption for part of the analysis

Formal Dynamics
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Example

◁ TV-set example, language: {technology , sound}

◁ Utility: u(tech, sound) = 2 · 1{tech = OLED}+ 1 · 1{sound = excellent}
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Example

◁ TV-set example, language: {technology , sound}

◁ Utility: u(tech, sound) = 2 · 1{tech = OLED}+ 1 · 1{sound = excellent}

◁ Probability of choosing an item during an investigation:

q(OLED, excellent) = 1− 𝜂 q(OLED, good) = (1− 𝜂) · 𝜖
q(LED, excellent) = (1− 𝜂) · 𝜖2 q(LED, good) = (1− 𝜂) · 𝜖3

◁ 𝜖 −→ 0, optimal choice from any menu with probability 1

Formal Stochastic Choice
8



Solution Concept

◁ Choice problem (Q,⪰)

◁ Transitions of the automaton: 𝒯 =
{︀
(s, v , j)

⃒⃒
𝜏(s, v , j) > 0

}︀
◁ Decision rule 𝜓 = {(S , 𝜄, 𝜏r )}r=1,2,...

✓ Fixed state space S

✓ Fixed interrogation rule 𝜄

✓ Fixed transitions 𝒯r = 𝒯 , r = 1, 2, ...

Definition. A decision rule 𝜓 solves the choice problem (Q,⪰) if

lim
r→∞

Pr
(︀
choose ⪰ -best item from menu B

)︀
= 1 ∀B
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Existence of a Solution

Proposition. There exists a decision rule that solves the agent’s choice

problem if and only for any a, b ∈ A, if a ≻ b, then ai ̸= bi for some i ∈ N.

◁ We consider languages that allow the agent to solve her choice problem

◁ Given the agent’s language, what is the minimum amount of cognitive

resources required to solve the choice problem?
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Complexity Measures

In the paper:

◁ Memory load of a decision rule: ℳ(𝜓) = |So |
✓ Represents an “operational” memory required to implement the procedure

◁ Memory load of a language (given ⪰):

ℳ⪰(Q) := min
𝜓 solves (Q,⪰)

ℳ(𝜓)

This talk:

◁ Complexity of a decision rule: 𝜅(𝜓) = |{(s, v , j)
⃒⃒
𝜏(s, v , j) > 0}|

✓ Represents “length of instructions” of the procedure

✓ Considered for repeated games in Banks and Sundaram (1990)

✓ Experimentally in Oprea (2020)

◁ Complexity (transitional) of a language (given ⪰):

𝜅⪰(Q) := min
𝜓 solves (Q,⪰)

𝜅(𝜓)
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Complexity of Languages for 4 Items and Strict Preference

Consider A = {a, b, c, d}, and a ≻ b ≻ c ≻ d

Language Preference ℳ 𝜅

Q {{a, b}, {c, d}}, {{a, c}, {b, d}} 11 ≻ 10 ≻ 01 ≻ 00 2 6

R {{a, b}, {c, d}}, {{a, d}, {b, c}} 11 ≻ 10 ≻ 00 ≻ 01 2 7

S {{a, c}, {b, d}}, {{a, d}, {b, c}} 11 ≻ 00 ≻ 10 ≻ 01 3 9

T {{a}, {b, c, d}}, {{b}, {a, c, d}}, 100 ≻ 010 ≻ 001 ≻ 000 3 9

{{c}, {a, b, d}}

Some details

12



Maximum Complexity

Theorem (Upper Bound). If there are k = |A| items, then for any ⪰:

(i) For any language Q, 𝜅⪰(Q) ≤ 3k − 3;

(ii) There exists a language Q such that 𝜅⪰(Q) ≥ k − 2.

Proof Idea for (i)

13



Minimum Complexity

Theorem (Lower Bound). Let ⪰ have m indifference classes, then:

(i) For any language Q, 𝜅⪰(Q) ≥ 3⌈log2 m⌉;

(ii) There exists a language Q such that 𝜅⪰(Q) = 3⌈log2 m⌉;

(iii) If 𝜓 solves (Q,⪰), and 𝜅(𝜓) = 3⌈log2 m⌉, then ℳ(𝜓) is minimum

among the rules that solve the choice problem ( ̃︀Q,⪰) for any language ̃︀Q,

where ⌈x⌉ denotes the smallest natural number weakly greater than x.

Proof Idea for (i)

14



Simplest Languages and Decision Rules



Separable Decision Rules

◁ Consider the following decision rules with {𝜖i}r=1,2,... ∈ (0, 1)

◁ Can enumerate attributes and attributes’ values arbitrarily

◁ Call Ψ+
n the set of such rules with n memory states
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Additive Utility

◁ Suppose the agent’s language facilitates usage of an additive utility:

a ≻ b =⇒
∑︁
i∈N

𝜆iai >
∑︁
i∈N

𝜆ibi , (WLOG) 𝜆i ≥ 0
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Additive Utility

◁ Suppose the agent’s language facilitates usage of an additive utility:

a ≻ b =⇒
∑︁
i∈N

𝜆iai >
∑︁
i∈N

𝜆ibi , (WLOG) 𝜆i ≥ 0

◁ Pr(choose item a during single investigation)= (1− 𝜂)m−1 · 𝜖
∑︀
𝜆i (1−ai )

16



Adapted Languages

Definition. Let ⪰ have m indifference classes. Language Q is adapted for ⪰ if

there exists 𝜆 ∈ RN such that:

(i) a ≻ b =⇒
∑︁
i∈N

𝜆iai >
∑︁
i∈N

𝜆ibi

(ii)
⃒⃒
{i ∈ N|𝜆i ̸= 0}

⃒⃒
= ⌈log2 m⌉

Proposition. There exists an adapted language.

Proof

Remark. The utility function u(a) =
∑︀

i∈N 𝜆iai induces a preference that

might break ties in the original preference ⪰.
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Simplest Decision Rules and Adapted Languages

Proposition. Let ⪰ have m indifference classes, then Q is adapted for ⪰ if

and only if there exists 𝜓 ∈ Ψ+
⌈log2 m⌉ that solves (Q,⪰).

18



Simplest Languages

Theorem (Simplest Languages). Let ⪰ have m indifference classes, then:

(i) If Q is adapted for ⪰, then 𝜅⪰(Q) = 3⌈log2 m⌉;

(ii) If (3/4) · 2n < m ≤ 2n for a natural n, then:

(a) 𝜅⪰(Q) = 3⌈log2 m⌉ if and only if Q is adapted for ⪰;

(b) If 𝜓 solves (Q,⪰), and 𝜅(𝜓) = 3⌈log2 m⌉, then 𝜓 ∈ Ψ+
⌈log2 m⌉.

Proof Sketch
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Literature Review and Conclusion



Literature Review

◁ Optimal search: Kohn and Shavell (1974); Weitzman (1979); Morgan

and Manning (1985); Klabjan, Olszewski, and Wolinsky (2014); Sanjurjo

(2017)

◁ Memory-constrained search: Dow (1991); Sanjurjo (2015), (2019)

◁ Stochastic Browsing: Cerreia-Vioglio, Maccheroni, Marinacci, Rustichini

(2020), Rustichini (2020)

◁ Hypothesis testing and learning with finite memory: Cover (1969);

Cover and Hellman (1970); Hellman and Cover (1970), (1971)

◁ Automata and simple algorithms in Economics: Abreu and Rubinstein

(1988); Kalai and Stanford (1988); Banks and Sundaram (1990); Kalai

and Solan (2003); Börgers and Morales (2004); Kocer (2010); Salant

(2011); Mandler, Manzini, Mariotti (2012); Wilson (2014); Oprea (2020)
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Conclusion

◁ Simple stochastic strategies achieve near optimality when time is not of

the essence

◁ Descriptions that facilitate additive utility with few attributes are key for

simplicity

◁ In the simplest procedures, “higher” memory state indicate higher quality

of the item relative to the menu
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Supplementary Slides



Maximum and Minimum Memory Load

Theorem (Upper Bound). If there are k = |A| items, then for any ⪰:

(i) For any language Q, 𝜅⪰(Q) ≤ k − 1;

(ii) There exists a language Q such that 𝜅⪰(Q) ≥ k/2− 1.

Theorem (Lower Bound). Let ⪰ have m indifference classes, then:

(i) For any language Q, 𝜅⪰(Q) ≥ ⌈log2 m⌉;

(ii) There exists a language Q such that 𝜅⪰(Q) = ⌈log2 m⌉;

where ⌈x⌉ denotes the smallest natural number weakly greater than x.
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Extension: Relaxing Memory

Initialization Assumption



A General Framework

◁ Baseline model: a state initializes at s = 1 with each new item

◁ General model: when a new item is drawn, the automaton transitions to a

new state conditional on the previous state

◁ State space S = So ∪ {choose}

◁ Specify probabilities:

✓ To choose the current item, conditional on the current state and the learned

attribute’s value

✓ To continue the investigation of the item and move to a memory state,

conditional on the current state and the learned attribute’s value

✓ To dismiss the item, pick a new random item, and move to a memory state,

conditional on the current state and the learned attribute’s value

✓ To move to a memory state, conditional on the current state and the event

that a new item catches the agent’s attention
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Maximal Memory Load

Theorem (Upper Bound). Consider a general model. Let k be the total

number of items, then for any non-trivial ⪰:

(i) For any language Q, ℳ(Q) ≤ k − 1;

(ii) There exists a language Q such that ℳ(Q) = k/2− 1.

24



Minimal Memory Load

Theorem (Lower Bound). Consider a general model. Let m ≥ 2 be the total

number of indifference classes of ⪰, then:

(i) For any language Q, ℳ(Q) ≥ ⌈log2 m⌉;

(ii) There exists a language Q such that ℳ(Q) = ⌈log2 m⌉.

25



If Preference is Strict, a Language May Require k − 1 Memory States

◁ Let A = {a1, ..., ak}, a1 ≻ ... ≻ ak

◁ Consider Q = {Q1, ...,Qk−1} with Ql = {{al}, {a1, ..., al−1, al+1, ..., ak}}

◁ Need at least k − 1 attributes to differentiate any pair of items

26



Proof Ideas



Lower Bound in Transitional Complexity—Simple Paths

◁ Focus on simple paths from s = 1 to s = choose

◁ Item-dependent probability that the path occurs

◁ For a ∈ A, 𝜔(a)— the highest probability among all simple paths

Lemma. A decision rule solves the choice problem if and only if:

(i) a ≻ b implies 𝜔(b)/𝜔(a) −→ 0 for all a, b ∈ A;

(ii) 𝜔(a) > 0 for all a ∈ A.

◁ Similar to “Z-tree” technique in Kandori, Mailath, Rob (1993)

Back
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Strong and Weak Transitions

◁ Strong link (s, v , j) ∈ 𝒯 if lim 𝜏(s, v , j) > 0

◁ Weak link (s, v , j) ∈ 𝒯 if lim 𝜏(s, v , j) = 0

Lemma. If the decision rule solves the choice problem, then highest-probability

paths for different alternatives use different sets of weak links.

Back
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Lower Bound in Transitional Complexity—Proof Idea

◁ Let 𝜓 solves (Q,⪰) with k items, n = ⌈log2 k⌉

◁ 𝜓 should have at least 2n strong links

✓ At least n attributes should be examined in n states

✓ Each state has at least 2 outgoing strong links

◁ 𝜓 should have at least n weak links

✓ Each item maps to a distinct set of weak links

✓ Hence 2#weak links ≥ k

◁ The total number of links in 𝜓 is at least 2n + n, i.e. 𝜅(Q) ≥ 3n

◁ If 𝜅(𝜓) = 3n, there are exactly 2n strong and n weak links

Back
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Memory Load—a Rough Complexity Measure

Language Preference Memory load

Q {{a, b}, {c, d}}, {{a, c}, {b, d}} 11 ≻ 10 ≻ 01 ≻ 00 ℳ(Q) = 2

Q* {{a, b}, {c, d}}, {{a, d}, {b, c}} 11 ≻ 10 ≻ 00 ≻ 01 ℳ(Q*) = 2

Q** {{a, c}, {b, d}}, {{a, d}, {b, c}} 11 ≻ 00 ≻ 10 ≻ 01 ℳ(Q**) = 3

Back
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Dynamics (Baseline Model)

◁ Markov Chain Y = (Y1,Y2, ...) with realizations (y1, y2, ...)

◁ Interpretation: yt = (a, s) ∈ A×
(︁
So ∪ {choose}

)︁
◁ Starting state: Pr

(︀
Y1 = (a, s)

)︀
= 𝜌B(a) · 𝛿s1

◁ Transitional probabilities

Pr
(︁
Yt = (a, s)

⃒⃒
Yt−1 = (b, v)

)︁
= (1− 𝜂) · 𝛿ab · 𝜏

(︀
v , s, b𝜄(v)

)︀
+

(1− 𝜂) · 𝜏
(︀
v , dismiss, b𝜄(v)

)︀
· 𝜌B(a) · 𝛿s1+[︀

1− 𝜏
(︀
v , choose, b𝜄(v)

)︀]︀
· 𝜂 · 𝜌B(a) · 𝛿s1

Pr
(︁
Yt = (a, choose)

⃒⃒
Yt−1 = (b, v)

)︁
= 𝜏

(︀
v , choose, b𝜄(v)

)︀
· 𝛿ab

Pr
(︁
Yt = (a, s)

⃒⃒
Yt−1 = (b, choose)

)︁
= 𝛿ab · 𝛿schoose

◁ Where 𝜌B(a) is the probability to draw item a from menu B
Back
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Stochastic Choice

◁ 𝜌B(b)—probability to draw item b from menu B

◁ q(b)—probability to choose item b during a single investigation

◁ pB(b)—probability to choose item b from menu B

Lemma (Generalized Luce Rule).

pB(a) =
𝜌B(a) · q(a)∑︀

b∈B 𝜌
B(b) · q(b)

with the convention that pB(a) = 0 if the denominator assumes value zero.

Back
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Intuition for the Upper Bound

◁ Design an automaton that maps each item a ∈ A to a unique probability

𝜖a of choosing this item during a single investigation

Back
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Intuition for the Upper Bound

◁ Design an automaton that maps each item a ∈ A to a unique probability

𝜖a of choosing this item during a single investigation

◁ Show by induction that f (k) = k − 1 states are sufficient
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Intuition for the Upper Bound

◁ Design an automaton that maps each item a ∈ A to a unique probability

𝜖a of choosing this item during a single investigation

◁ Show by induction that f (k) = k − 1 states are sufficient

◁ f (2) = 1
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Intuition for the Upper Bound

◁ Design an automaton that maps each item a ∈ A to a unique probability

𝜖a of choosing this item during a single investigation

◁ Show by induction that f (k) = k − 1 states are sufficient

◁ f (k1 + k2) = 1 + f (k1) + f (k2) = k1 + k2 − 1
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Intuition for the Upper Bound

◁ Design an automaton that maps each item a ∈ A to a unique probability

𝜖a of choosing this item during a single investigation

◁ Show by induction that f (k) = k − 1 states are sufficient

◁ Pick sequences {𝜖a}r=1,2,.. for a ∈ A that solve the choice problem

Back 33



Existence of Adapted Languages

◁ WLOG, ⪰ is strict:

◁ Adapted language for k items:

(i) a ≻ b =⇒
∑︁
i∈N

𝜆iai >
∑︁
i∈N

𝜆ibi

(ii)
⃒⃒
{i ∈ N|𝜆i ̸= 0}

⃒⃒
= ⌈log2 k⌉

Proof 1:

◁ Augment the set of items to make |A| = 2n, where n = ⌈log2 k⌉

◁ Consider some collection 𝜆i > 0, i ∈ {1, ..., n}

◁ Utility u(a) =
∑︀

i 𝜆iai induces a (strict) preference on vectors of attributes

◁ Label items in set A accordingly, get an adapted language

Back
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Existence of Adapted Languages

◁ WLOG, ⪰ is strict:

◁ Adapted language for k items:

(i) a ≻ b =⇒
∑︁
i∈N

𝜆iai >
∑︁
i∈N

𝜆ibi

(ii)
⃒⃒
{i ∈ N|𝜆i ̸= 0}

⃒⃒
= ⌈log2 k⌉

Proof 2:

◁ Example: consider a ≻ b ≻ c ≻ d ≻ e ≻ f ≻ g ≻ h

◁ Language Q = {Q1,Q2,Q3}
✓ Q1 : a, b, c, d , e, f , g , h

✓ Q2 : a, b, c, d , e, f , g , h

✓ Q3 : a, b, c, d , e, f , g , h

◁ Linear utility: u(x) = 22 · x1 + 21 · x2 + 20 · x3 = 4x1 + 2x2 + x3

Back
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Lower Bound Characterization Theorem-proof idea for (ii.a)

Theorem (Simplest Languages). Let ⪰ have m indifference classes, then:

(i) If Q is adapted for ⪰, then 𝜅⪰(Q) = 3⌈log2 m⌉;

(ii) If (3/4) · 2n < m ≤ 2n for a natural n, then:

(a) 𝜅⪰(Q) = 3⌈log2 m⌉ if and only if Q is adapted for ⪰;

(b) If 𝜓 solves (Q,⪰), and 𝜅(𝜓) = 3⌈log2 m⌉, then 𝜓 ∈ Ψ+
⌈log2 m⌉.

Recall Proposition: Let ⪰ have m indifference classes, then Q is adapted for

⪰ if and only if there exists 𝜓 ∈ Ψ+
⌈log2 m⌉ that solves (Q,⪰).

Want to prove that when (3/4) · 2n < k ≤ 2n, if 𝜓 solves the choice problem

and 𝜅(𝜓) ≤ 3⌈log2 m⌉, then 𝜓 ∈ Ψ+
3⌈log2 m⌉

Back to the Theorem
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Lower Bound Characterization Theorem: Proof Sketch (1)

◁ For each item a, consider a highest-probability path from s = 1 to

s = choose

◁ Say that (s, v , j) ∈ 𝒯 is a weak link, if lim 𝜏r (s, v , j) −→ 0, otherwise it is

a strong link

Lemma. If the decision rule solves the choice problem, then highest-probability

paths for different alternatives use different sets of weak links.

Lemma. If 𝜓 solves choice problem with m items, and 𝜅(𝜓) = 3⌈log2 k⌉, then
𝜓 has n states, 2n strong, and n weak links, where n = ⌈log2 k⌉.

Back to the Theorem
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Characterization Theorem: Sketch of the Proof (2)

◁ A simple path contains at most 1 link outgoing from a given state

Lemma. Let the total number of items be k, n = ⌈log2 k⌉, and k > (3/4) · 2n.
If 𝜓 solves the choice problem and 𝜅(𝜓) = 3n, then for each pair of weak links

there is a highest-probability path that use both these links.

Corollary. Let the total number of items be k, n = ⌈log2 k⌉, and k > (3/4) · 2n.
If 𝜓 solves the choice problem and 𝜅(𝜓) = 3n, then in every state, 𝜓 has

exactly one outgoing weak link and exactly two outgoing strong links.

Back to the Theorem
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Characterization Theorem: Sketch of the Proof (3)

◁ WLOG attribute s ∈ {1, ..., n} is investigated in state s.

◁ WLOG, for each state s:

✓ 𝜏(s, v , 1) = 1 for some v

✓ 𝜏(s, v ′, 0) = 𝜖s and 𝜏(s, v ′′, 0) = 1− 𝜖s for some v ′, v ′′, and 𝜖s −→ 0

◁ Recall: to show that 𝜓 ∈ Ψ+
n , we need to show additionally that there is a

labeling of the states such that in the formula above:

✓ v = v ′ = s + 1, where state n + 1 denotes choose

✓ v ′′ ∈ {1, .., s} ∪ {dismiss}

◁ Idea: use induction in n, where n = ⌈log2 k⌉, k is the number of items,
and condition k > (3/4) · 2n holds

✓ Induction base: n = 1, straightforward

✓ Induction step?

Back to the Theorem

39



Characterization Theorem: Sketch of the Proof (4)

◁ Consider s = 1, have 𝜏(1, v , 1) = 1, 𝜏(1, v ′, 0) = 𝜖1, 𝜏(1, v
′′, 0) = 1− 𝜖1

◁ v ̸∈ {1, choose, dismiss}, since more than 1 item has a1 = 1

◁ v ′ ̸∈ {1, choose, dismiss}, v ′′ ̸= choose; otherwise, no more than

2n−1 + 1 ≤ (3/4) · 2n different subsets of weak links used

◁ Towards a contradiction, assume v ′′ ̸∈ {1, dismiss}

◁ Highest-probability path cannot include both weak links l1 and lv′′ , in

contradiction
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Characterization Theorem: Sketch of the Proof (5)

◁ We know: 𝜏(1, v , 1) = 1, 𝜏(1, v ′, 0) = 𝜖1, 𝜏(1, v
′′, 0) = 1− 𝜖1

✓ v , v ′ ̸∈ {1, choose, dismiss}, v ′′ ∈ {1, dismiss}

◁ At least one of the two statements should hold:

✓
⃒⃒
{a ∈ A|ai = 1}

⃒⃒
> (3/4) · 2n−1

✓
⃒⃒
{a ∈ A|ai = 0}

⃒⃒
> (3/4) · 2n−1

◁ Let
⃒⃒
{a ∈ A|ai = 1}

⃒⃒
> (3/4) · 2n−1, consider rule 𝜓′:

✓ Delete state s = 1 in rule 𝜓 and its outgoing links

✓ Redirect each link that ends at s = 1 in 𝜓 to s = dismiss in 𝜓′

✓ Make state v the first state in 𝜓′

◁ 𝜓′ solves the problem constrained to items {a ∈ A|ai = 1}

✓ 𝜅(𝜓′) ≤ 3n − 3

✓ Use induction assumption to find configuration of links outgoing from all

other states except of s = 1 in 𝜓

Back to the Theorem
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Characterization Theorem: Sketch of the Proof (6)

◁ Last statement to prove: that v ′ = v .

◁ Assume v ′ ̸= v , then weak link (1, v ′, 0) and weak link lv , outgoing from

state v , cannot be in the same highest-probability path, contradiction

◁ Similar arguments work if
⃒⃒
{a ∈ A|ai = 0}

⃒⃒
> (3/4) · 2n−1

✓ Note that
⃒⃒
{a ∈ A|ai = 0}

⃒⃒
≤ (1/2) · 2n

✓ Hence
⃒⃒
{a ∈ A|ai = 0}

⃒⃒
> (1/4) · 2n

✓ If v ̸= v ′, a weak link outgoing from v ′ is not used in any

highest-probability paths for items with a1 = 1

✓ Thus, no more than (1/4) · 2n sets of weak links used in highest-probability

paths for items with a1 = 1, contradiction

Back to the Theorem
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(Counter) Example

◁ k = 5, so n = ⌈log2 5⌉ = 3, k = 5 ≤ (3/4) · 23 = 6

◁ 111 ≻ 110 ≻ 011 ≻ 000 ≻ 100
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(Counter) Example 2

◁ 111 ≻ 110 ≻ 101 ≻ 100 ≻ 001 ≻ 010 ≻ 000
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