

Covid-19 and urban exodus: did urban dwellers contaminate rural dwellers?

Guillaume Bérard¹

¹Luxembourg Institute of Socio-Economic Research (LISER)

August, 2023

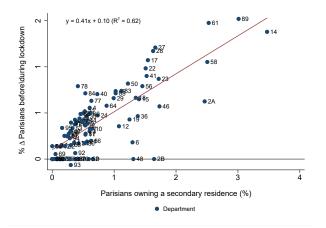
guillaume.berard@liser.lu

Motivation

- ► Following the announcements of lockdown measures by governments to prevent the spread of the Covid-19 epidemic:
 - millions of urban dwellers anticipated these lockdowns
 - they escaped from the major cities for the duration of the lockdown: urban exodus
- ➤ Since the major cities were the first and most affected by the epidemics, these "Covid-19 immigrants" could have spread it to rural areas
- ► Economically and politically interesting

What is the causal impact of the urban exodus on Covid-19 deaths and hospitalizations?

Contextual background


- I distinguish between:
 - 1. those returning to their main residences: the residents
 - 2. those leaving their main residences: the non-residents
- Among the non-residents leaving their main residences there are:
 - 1. persons owning a secondary residence
 - students/young workers living in a densely populated municipality who moved back to their family residences

This study

- I use a difference-in-differences strategy and new data on users' mobile phone location from the French mobile operators
- ▶ On March 14, 2020, Edouard Philippe the French Prime Minister – announced that all non-essential public spaces will be closed from March 17
- According to the French national statistical institute (INSEE):
 - 1.5 million inhabitants went back to their department of residence
 - ▶ at least 218,000 Parisians left (i.e. 10% of Paris' population and 71% of Parisians owning a secondary residences in another department)

Stylized fact: Parisians' urban exodus and secondary residence

Figure 1: Urban exodus of the Parisians according to the share of Parisians owning a secondary residence by departments

The French case: a quasi-natural experiment

- ► Most of these "Covid-19 immigrants" went to the department where they have a secondary residence
- ► As-if random distribution of these immigrants among the departments during the lockdown
 - some departments have a very large share of secondary residences among the total of housing, while others have almost no secondary residences
 - the treatment intensity is very different across departments
- Starting point for a quasi-natural experiment
- ▶ Allows to estimate the possible spread of Covid-19 from urban to rural population (causal impact of the urban exodus)

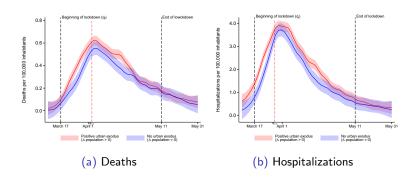
Main result

Urban exodus led to an increase in the number of hospitalizations

Related literature

- Many papers have already examined the relationship between population density and mobility restrictions on Covid-19 incidence, but none have specifically examined the impact of a large population shift from cities to rural areas
- ▶ Before the Covid-19 epidemic, there were economic and health studies on the 1918 influenza pandemic, aiming to estimate the causes of the spread
 - ► Garrett (2007); Mills et al. (2004); Chowell et al. (2008); Chapelle (2022)
- Significant and positive correlation between population density and/or poverty on Covid-19 incidence
 - ► Wheaton and Kinsella Thompson (2020); Almagro and Orane-Hutchinson (2020); Carozzi et al. (2020); Brandily et al. (2020)

Related literature


- Previous economic literature on Covid-19 has focused also on the effect of social distancing measures or to the compliance to such measures
 - ► A 10% decrease in mobility is associated with a 14.6% decrease in the average daily cases growth rate Soucy et al. (2020); Yilmazkuday (2020)
 - ► The degree of work mobility reduction is driven by the intensity of poverty
 - Bargain and Aminjonov (2020a)
 - Compliance is significantly higher in high-trust in government regions
 - Bargain and Aminjonov (2020b); Brodeur et al. (2021)
- Negative (positive) effect of mobility (restrictions) on the spread of the epidemics
 - ► Glaeser et al. (2022); Couture et al. (2022); Coven et al. (2022); d'Halbis et al. (2023);

Data

- 1. Deaths and hospitalizations
 - Official data from Public Health France (Santé Publique France)
- 2. Variation of population before and after the beginning of the lockdown
 - Based on user's mobile phone location aggregated by French mobile operators and compiled by the INSEE for each department
 - Split in residents of the department, non-residents of the department, foreigners, and Parisians
- 3. Population mobility
 - ► Google Covid-19 mobility reports
 - Aggregated data from users' mobile phone location (Google maps)

Differences-in-differences

Figure 2: Common trend between departments with positive and zero urban exodus

Empirical strategy: DiD

- Difference-in-differences
- ► Identification strategy:
 - 1. uses the Covid-19 incubation period as a pivot for a pre- and post-period
 - 2. takes advantage of the differences in treatment intensity of the urban exodus (positive, negative or zero)
 - captures heterogeneous effects of urban exodus in the departments with advanced epidemic stages before lockdown
- Disentangling the effect for different type of "migrants"
 - ► Total urban exodus (residents + non-residents + Parisians + foreigners)
 - Non-residents urban exodus (excluding the Parisians)
 - Parisians urban exodus

Period of treatment

- ► Two different periods of treatment (Post period)
 - 1. **12 days** after the first day of lockdown (i.e. March 28) For the hospitalizations per 100,000 inhabitants
 - 2. **18 days** after the first day of lockdown (i.e. April 3) For the deaths per 100,000 inhabitants
- ► Come from the mean days estimated by clinical studies literature between infection and hospitalization then death
 - ▶ Mean duration of incubation of 5 days, followed by a 7 days elapsed between the onset of the first symptoms and hospitalization
 Wang et al. (2020); Guan et al. (2020); Zhou et al. (2020);
 Nie et al. (2020)
 - Median and mean time to death of 18.5 and 18.8 days respectively
 Zhou et al. (2020); Verity et al. (2020)

Causal impact of urban exodus: DiD model

Covid-19 cases_{dt} =
$$\beta_0 + (\delta + \gamma \times \text{Advanced epidemics}_d)$$

 $\times \text{Post}_t \times \text{Urban exodus}_d + \alpha_d + \alpha_t + \epsilon_{dt}$ (1)

- ► Covid 19 cases_{dt} is either the daily number of Covid-19 deaths or hospitalizations per 100,000 inhabitants
- Urban exodus_d is a continuous treatment variable which corresponds to the variation of population before and after the beginning of the lockdown in department d.
- Post_t is a dummy variable defining the treatment period
- Advanced epidemics_d is a dummy variable defining whether a department had advanced Covid-19 epidemics cases before lockdown
- $ightharpoonup \alpha_d$ department fixed effects and α_t day fixed effects

Threat to identification

- ► Endogeneity issue: did urban dwellers left for rural areas not or less affected by Covid-19?
- Such behavior would lead to a simultaneity bias
- But urban dwellers who left their main residence for another department are two types of people:
 - 1. People owning a secondary residence
 - 2. Students/young workers living in a densely populated municipality
- ► Those "Covid-19 immigrants" did not take into account the previous Covid-19's cases when choosing their place of departure
 - They left depending on the location of their secondary or family residence
- Nonetheless, one could still argue that people who moved were people with secondary or family residence not in departments with advanced epidemics stage
 - No evidence of such a correlation between the level of variation of population and the level of Covid-19 cases before lockdown

Main results

- The urban exodus led to a significant increase in the number of hospitalizations
 - between 1,850 and 13,500 excess hospitalizations in France
 Computation
 - corresponds to 1.65% and 12% of the cumulated hospitalizations for the period respectively
- ► Additional evidence that most if this excess Covid-19 cases come from the Parisians "immigrants"
 - They represent an important share of the people who left their main residence to join another department (around 218,000)
 - Paris region was one of the most impacted place by the epidemic before the lockdown

Additional results

- 1. Examine the local determinants of the spread of Covid-19
- 2. Estimate the effect of mobility on reducing the spread of the epidemic in France, i.e. the effectiveness of the lockdown
- Local determinants of Covid-19 spread are:
 - population density (inhabitants/km²): + effect
 - the share of social housing: + effect
- People living in poor and densely populated areas are more likely to be contaminated

Additional results

- ► Elasticity estimates of Covid-19 cases growth rate with respect to different mobility indices shows:
 - ➤ a 10% reduction in retail and recreation mobility leads to a relative decrease in the average daily deaths growth rate of 17%
 - ▶ 35.4% of decrease for workplaces mobility
 - ▶ 12.2% of decrease for parks mobility
- Lockdown and stay-at-home measures implemented by the French government were truly effective in reducing the spread of the epidemic

Robustness checks: spatial correlation

- ► I test for a possible bias from the spatial correlation of the Covid-19 cases using two methods
- 1. Performing an ordinary least squares (OLS) with a standard errors adjustment for spatial (across nearby units) autocorrelation (spatial HAC)
 - ► Method pioneered by Conley (1999, 2008), and further developed by Hsiang (2010), to deal with the potential spatial correlation in the error term
- 2. Using a spatial error model (SEM) Econometric model
- Estimates show similar significance levels and magnitudes

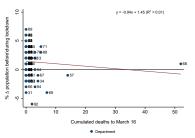
Discussion

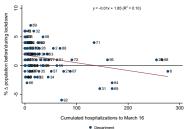
- ► Effect was less significant in the departments with advanced epidemics stage prior the lockdown
 - Social distancing measures were taken before the lockdown
 - People who immigrated to these departments were probably more vigilant
- Evidence in favor of a higher or single causal impact of urban exodus on hospitalizations
 - Before the lockdown, the Prime Minister announced that all non-essential public spaces will be closed and that person-at-risk will have to stay-at-home
 - Non-residents met mostly non-at-risk person
 - ► Those contaminated and hospitalized were less likely to die from Covid-19 (e.g. young and healthy)

Conclusion

- ► "Covid-19 immigrants" or non-residents of the departments increased the number of Covid-19 cases
- ▶ At this stage, it is impossible to disentangle whether this excess number of hospitalizations is the result of contamination by these "Covid-19 immigrants", or whether it comes from these non-residents solely
 - Non-residents arriving in the department were young and healthy
- Difficult to assert that the urban exodus effect was negative, even if it increased the number of Covid-19 cases
 - e.g. by auto-allocating the patients between departments, it released patients congestion from the most crowded hospitals
 - ▶ if such, the urban exodus led to decrease the total (aggregated) number of Covid-19 deaths in France

Outline


Appendix


Related literature

- Some quasi-natural experiments studies estimate the effect of the 2020 French municipal election, due to possible contamination in the polling places
 - Contradictory results
 - No impact of the municipal elections on the spread of the epidemic
 - Zeitoun et al. (2020); Bach et al. (2020)
 - Excess hospitalizations and deaths due to the elections Cassan and Sangnier (2020); Bertoli et al. (2020)

Threat to identification

Figure 3: Urban exodus in function of the Covid-19's cases before lockdown

(a) △ population before\during lockdown (%) in function of the cumulated deaths before lockdown

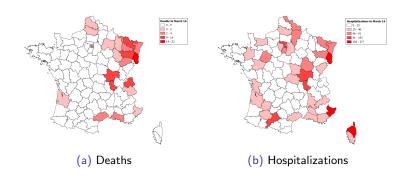
(b) △ population before\during lockdown (%) in function of the cumulated hospitalizations before lockdown

Additional hospitalizations due to the urban exodus

► Computation is performed only for the departments with a positive variation of population (i.e. urban exodus > 0)

$$\mathsf{Additional\ hosp.}_d = (\widehat{\delta} + \widehat{\gamma} \times \mathsf{Advanced\ epidemics}_d) \times \mathsf{Post}_t \times \mathsf{Urban\ exodus}_d \quad \ \ \big(2\big)$$

- ► Then multiply the results by the department *d*'s population and the number of days in Post period
- Added up the additional hospitalizations of each department to obtain the total number of additional hospitalizations in France


∢ Return

Spatial model

- Transmission of the virus spreads spatially around clusters
- Spread of the disease depends a lot on social contacts
 - Varies according to the duration of contact, age, region, and date for instance, and can be modeled using a matrix of contacts
 - Mossong et al. (2008); Prem et al. (2017)
 - Covid-19 spread is correlated a lot with local culture: Platteau and Verardi (2020)
- Very difficult (and beyond the scope of this study) to compute a matrix of social contacts
- Such heterogeneous correlation would be part of the error term
 - Error terms would be spatially dependent and heteroskedastic

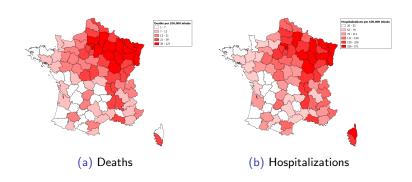

Spatial correlation

Figure 4: Covid-19's cases: cumulated at the beginning of the lockdown

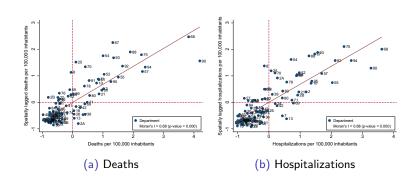

Spatial correlation

Figure 5: Covid-19's cases: cumulated at the end of the regressed period

Spatial correlation

Figure 6: Moran's I plots

The determinants of the spread of Covid-19

Covid-19 cases_d =
$$\beta_0 + X'\beta_1 + \epsilon_d$$
 (3)

- ➤ X is a vector of variables suspected to be correlated with the Covid-19 propagation
- I instrument the urban exodus variable with the share of secondary residences by department
- Is it a valid instrument?
 - The share of secondary residences is correlated with the urban exodus variable
 - ▶ The share of secondary residences is not directly correlated with Covid-19 cases, except through the non-residents of the department who went to their secondary residences (exclusion restriction)

Population's mobility

The log-log estimation model is:

$$\log(\text{Growth rate}_{rt}) = \beta_0 + \varepsilon \cdot \log(\text{Mobility}_{rt}^{j}) + \alpha_r + \alpha_t + \epsilon_{rt}$$
 (4)

- Growth rate_{rt} corresponds to the daily upcoming growth rate of deaths or hospitalizations per 100,000 inhabitants in region r at day t
- Mobility^j_{rt} corresponds to the daily percentage of variation in mobility index j (either retail and recreation, grocery and pharmacy, parks, transit stations or workplaces)
- \triangleright α_r region fixed effects and α_t day fixed effects

Return

DiD with spatial model

The spatial error model (SEM) is:

Covid-19 cases_{dt} =
$$\beta_0 + (\delta + \gamma \times \text{Advanced epidemics}_d)$$

 $\times \text{Post}_t \times \text{Urban exodus}_d + \alpha_d + \alpha_t$ (5)
 $+ u_{dt}, \quad u_{dt} = \lambda W u_{dt} + \epsilon_{dt}$

- \triangleright u_{dt} , the spatially lagged error term is composed of:
 - Wu_d which accounts for the spatial autocorrelation among the errors
 - $ightharpoonup \epsilon_d$ the error term
- W is a row-standardized contiguity spatial weighting matrix which gives a weight of 1 if two departments are neighbors, 0 otherwise

◆ Return