Getting through:

Communicating complex central bank messages

Michael McMahon ${ }^{1,2}$ Matthew Naylor ${ }^{1}$
${ }^{1}$ University of Oxford
${ }^{2}$ Irish Fiscal Council
${ }^{3}$ Bank of England
August 2023 - EEA

Disclaimer: Preliminary. The views expressed in this paper are those of the authors and not necessarily of the Bank of England or of the Irish Fiscal Council.

Motivation

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)

Motivation

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex

Motivation

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex
- FOMC: 19 years of schooling

Motivation

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex
- FOMC: 19 years of schooling, ECB: 16 years

Motivation

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex
- FOMC: 19 years of schooling, ECB: 16 years, BoE MPR: 15 years (Hernandez-Murillo \& Shell 2014)

Motivation

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex
- FOMC: 19 years of schooling, ECB: 16 years, BoE MPR: 15 years (Hernandez-Murillo \& Shell 2014)
- "Twin deficits problem" (Haldane \& McMahon 2018)
- low levels of informedness
- low levels of trust

Motivation

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex
- FOMC: 19 years of schooling, ECB: 16 years, BoE MPR: 15 years (Hernandez-Murillo \& Shell 2014)
- "Twin deficits problem" (Haldane \& McMahon 2018)
- low levels of informedness
- low levels of trust
- Recent efforts to simplify language (Visual Summary, BoE)

Motivation

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex
- FOMC: 19 years of schooling, ECB: 16 years, BoE MPR: 15 years (Hernandez-Murillo \& Shell 2014) \quad FOMC
- "Twin deficits problem" (Haldane \& McMahon 2018)
- low levels of informedness
- low levels of trust
- Recent efforts to simplify language (Visual Summary, BoE)
- BUT narrow focus on Flesch-Kincaid (simple avg of word and sentence length).

This paper

Research questions

- How might complex language influence the formation of inflation expectations?

This paper

Research questions

- How might complex language influence the formation of inflation expectations?
- What actually is linguistic complexity and how can we measure it?

This paper

Research questions

- How might complex language influence the formation of inflation expectations?
- What actually is linguistic complexity and how can we measure it?
- Which dimensions of complexity matter most?

This paper

Research questions

- How might complex language influence the formation of inflation expectations?
- What actually is linguistic complexity and how can we measure it?
- Which dimensions of complexity matter most?

Approach

- Propose a simple theoretical argument for simplicity

This paper

Research questions

- How might complex language influence the formation of inflation expectations?
- What actually is linguistic complexity and how can we measure it?
- Which dimensions of complexity matter most?

Approach

- Propose a simple theoretical argument for simplicity
- Construct novel measures of complexity that capture broader dimensions

This paper

Research questions

- How might complex language influence the formation of inflation expectations?
- What actually is linguistic complexity and how can we measure it?
- Which dimensions of complexity matter most?

Approach

- Propose a simple theoretical argument for simplicity
- Construct novel measures of complexity that capture broader dimensions
- Test causal impact of complexity on informedness and trust, in an RCT

What we find

1. Complexity reduces attention paid to CB messages, reducing the accuracy of beliefs formed.

What we find

1. Complexity reduces attention paid to $C B$ messages, reducing the accuracy of beliefs formed.
2. Efforts by the BoE to simplify language have focused on semantic dimensions of complexity, with more mixed evidence across conceptual dimensions.

What we find

1. Complexity reduces attention paid to CB messages, reducing the accuracy of beliefs formed.
2. Efforts by the BoE to simplify language have focused on semantic dimensions of complexity, with more mixed evidence across conceptual dimensions.
3. Conceptual complexity matters more than semantic complexity

- For both informedness and trust

What we find

1. Complexity reduces attention paid to $C B$ messages, reducing the accuracy of beliefs formed.
2. Efforts by the BoE to simplify language have focused on semantic dimensions of complexity, with more mixed evidence across conceptual dimensions.
3. Conceptual complexity matters more than semantic complexity

- For both informedness and trust
- Explained exclusively by a novel measure we construct.

What we find

1. Complexity reduces attention paid to $C B$ messages, reducing the accuracy of beliefs formed.
2. Efforts by the BoE to simplify language have focused on semantic dimensions of complexity, with more mixed evidence across conceptual dimensions.
3. Conceptual complexity matters more than semantic complexity

- For both informedness and trust
- Explained exclusively by a novel measure we construct.

4. This result holds among people who have studied economics at university.

Related Literature

CB Comms

1st Revolution (1990s): Financial markets

- CBs have largely been successful in shaping exps Coibion et al., 2019; Swanson 2018

2nd Revolution (2010s): General public

- "It may be time to pay attention to communication with the public" Blinder (2008)
- HHs and firms form exps in similar ways Coibion \& Gorodnichenko, 2015; Nalewaik, 2016
- HH exps matter for activity and financial choices Reis 2023; Bachmann, Berg \& Sims, 2015; Armantier et al., 2015; Malmendier \& Nagel, 2016
- "CBs will keep trying but, for the most part, they will fail" Blinder (2018), Binder (2017)
- Exciting open area of research D'Acunto et al., 2022

Linguistic Complexity

- Simplified communication can help achieve this Haldane \& McMahon, 2018; Coibion et al., 2020
- But focus to date on Flesch-Kincaid score Mumtaz et al., 2023; Ferrara \& Angino 2022; Hernandez-Murillo \& Shell 2014; Bulir et al., 2012

A theoretical argument for simplicity

Simple Rational Inattention Model

Summary

Two agents

Simple Rational Inattention Model

Summary

Two agents
(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.

Simple Rational Inattention Model

Two agents

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
(ii) Household h. Imperfectly informed: rationally inattentive.

Simple Rational Inattention Model

Two agents

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
(ii) Household h. Imperfectly informed: rationally inattentive.

Setup

CB transmits a message revealing the true state of the economy.

Simple Rational Inattention Model

Two agents

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
(ii) Household h. Imperfectly informed: rationally inattentive.

Setup

CB transmits a message revealing the true state of the economy.
h chooses how much attention to pay to it based on u_{h} (informed) and c_{h} (complexity).

Simple Rational Inattention Model

Summary

Two agents

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
(ii) Household h. Imperfectly informed: rationally inattentive.

Setup

CB transmits a message revealing the true state of the economy.
h chooses how much attention to pay to it based on u_{h} (informed) and c_{h} (complexity).

Result

Optimal attention: $\frac{\partial(\text { attention })}{\partial(\text { complexity })}<0$, and inaccuracy of updated belief: $\frac{\partial(\text { accuracy })}{\partial c o m p l e x i t y}<0$.

Linguistic Complexity of CB Communications

Traditional measures: Semantic Complexity

- Word Count
- Flesch-Kincaid

Flesch Kincaid Score $=0.39 \frac{n(\text { Words })}{n(\text { Sentences })}+11.8 \frac{n(\text { Syllables })}{n(\text { Words })}-15.59$

Traditional measures: Semantic Complexity

BoE efforts to simplify language have focused on 'semantic' dimensions of complexity...

[^0]
Traditional measures: Semantic Complexity

BoE efforts to simplify language have focused on 'semantic' dimensions of complexity...

BoE Publication - MP Report - MP Summary - Visual Summary

Novel measures: Conceptual Complexity

- Proportion of Jargon

$$
\operatorname{PoJ}=\frac{\sum_{j=1}^{J} w_{j}}{\sum_{i=1}^{N} w_{i}} \equiv \frac{W_{j}}{W_{i}}
$$

w_{j} : number of instances jargon term $j \in\{1, \ldots, J\}$ is mentioned.
w_{i} : number of instances any word $i \in\{1, \ldots, N\}$ is mentioned.

Novel measures：Conceptual Complexity

Wordcloud：Monetary Policy Report

Novel measures: Conceptual Complexity

... but we do not observe the same trend-decline along dimensions of 'conceptual' complexity.

BoE Publication - MP Report — MP Summary - Visual Summary

Novel measures: Conceptual Complexity

- Proportion of Jargon

$$
\operatorname{PoJ}=\frac{W_{j}}{W_{i}}
$$

Novel measures: Conceptual Complexity

- Proportion of Jargon

$$
\operatorname{PoJ}=\frac{W_{j}}{W_{i}}
$$

- McMahon-Naylor Conceptual Complexity (MNCC) Index

$$
\mathrm{MNCC}=\frac{\sum_{t=1}^{T} W_{j, t}^{*} \times \Phi}{W_{i}}
$$

Novel measures: Conceptual Complexity

- Proportion of Jargon

$$
\operatorname{PoJ}=\frac{W_{j}}{W_{i}}
$$

- McMahon-Naylor Conceptual Complexity (MNCC) Index

$$
\mathrm{MNCC}=\frac{\sum_{t=1}^{T} W_{j, t}^{*} \times \Phi}{W_{i}}
$$

We categorise jargon into 10 topics (MP, inflation, output, etc.) and make two adjustments:

Novel measures: Conceptual Complexity

- Proportion of Jargon

$$
\operatorname{PoJ}=\frac{W_{j}}{W_{i}}
$$

- McMahon-Naylor Conceptual Complexity (MNCC) Index

$$
\mathrm{MNCC}=\frac{\sum_{t=1}^{T} W_{j, t}^{*} \times \Phi}{W_{i}}
$$

We categorise jargon into 10 topics (MP, inflation, output, etc.) and make two adjustments:
i $\sum_{t=1}^{T} W_{j, t}^{*} \equiv \frac{W_{j, t}}{\Psi_{t}}$: breadth and dispersion of distinct jargon terms used within topic t.

Novel measures: Conceptual Complexity

- Proportion of Jargon

$$
\operatorname{PoJ}=\frac{W_{j}}{W_{i}}
$$

- McMahon-Naylor Conceptual Complexity (MNCC) Index

$$
\mathrm{MNCC}=\frac{\sum_{t=1}^{T} W_{j, t}^{*} \times \Phi}{W_{i}}
$$

We categorise jargon into 10 topics (MP, inflation, output, etc.) and make two adjustments:
i $\sum_{t=1}^{T} W_{j, t}^{*} \equiv \frac{W_{j, t}}{\Psi_{t}}$: breadth and dispersion of distinct jargon terms used within topic t.
ii $\stackrel{t=1}{\Phi}$ adjusts for the range of topics, T, discussed.

Novel measures: Conceptual Complexity

The MP Summary uses a broader range of technical terms and concepts.

[^1]
Novel measures: Conceptual Complexity

The MP Summary uses a broader range of technical terms and concepts.

McMahon-Naylor Conceptual Complexity (MNCC) Index

BoE Publication - MP Report - MP Summary - Visual Summary

Novel measures: Conceptual Complexity

The MP Summary uses a broader range of technical terms and concepts.

MP Summary 2015-2023
Visual Summary 2017-2023

Empirical Strategy: RCT

Survey Design

- Respondents: 2000 representative members of the public
- Pre-treatment questions: Demographics, interests, state of UK economy
- Treatment: Read a CB report. Texts vary in complexity across dimensions
- Post-treatment questions: Capture levels of informedness and trust

Treatment

Texts vary across different dimensions of complexity

		Semantic		
	Low	Medium	High	
Conceptual	Low	Text 1	Text 2	
	Medium High	Text 3	Text 4	
		Text 5	Text 6	

- Text $1=2018$ Q1 VS
- Text $3=2019$ Q4 VS
- Text $6=2018$ Q1 MPS

Post-Treatment Questions

i Understanding

- Perceived
- Actual
ii Attitude towards CB (such as trust)
iii What matters most?

Results

Results

```
i Understanding
－Perceived
－Actual
ii Attitude towards CB（such as trust）
iii What matters most？
```


Results: Perceived Understanding

Complexity reduces perceived understanding

Q: To what extent are you able to understand the content and messages of the material you just read?

Results: Perceived Understanding

High conceptual complexity drives this

Q: To what extent are you able to understand the content and messages of the material you just read?

Results: Perceived Understanding

High conceptual complexity drives this, explained exclusively by the MNCC index

Q: To what extent are you able to understand the content and messages of the material you just read?

Results

i Understanding

- Perceived
- Actual
ii Attitude towards CB (such as trust)
iii What matters most?

Results: Actual Understanding

Conceptual complexity reduces accuracy of beliefs formed

What is the current inflation rate in the economy described?
What is the interest rate in the economy described?
What do you expect to happen to pay (adjusting for price changes) in the coming years?

Results: Empirical Specification

We test these observations conditioning on demographic factors

$$
\begin{aligned}
& \mathrm{Y}_{i}=\beta_{1} \text { Conceptual Medium }_{i}+\beta_{2}{\text { Conceptual } \text { High }_{i}, ~}_{\text {M }} \\
& +\gamma_{1} \text { Semantic Medium }{ }_{i}+\gamma_{2} \text { Semantic } \text { High }_{i} \\
& +\delta X_{i}+\epsilon_{i}
\end{aligned}
$$

Results: Understanding

And these results hold when we condition on demographic factors

	Perceived	Actual Understanding		
	Understanding (1)	Inflation(t) (2)	Interest Rate(t) (3)	Pay (4)
Conceptual				
Medium	$\begin{aligned} & -0.039 \\ & (0.060) \end{aligned}$	$\begin{aligned} & -0.011 \\ & (0.031) \end{aligned}$	$\begin{gathered} 0.048 \\ (0.031) \end{gathered}$	$\begin{gathered} 0.015 \\ (0.030) \end{gathered}$
High	$\begin{gathered} -\mathbf{0 . 7 9 1} \\ (0.084) \\ \hline \end{gathered}$	$\begin{gathered} -0.079^{*} \\ (0.043) \end{gathered}$	$\begin{gathered} -\mathbf{0 . 1 8 6}{ }^{* * *} \\ \mathbf{(0 . 0 4 3)} \end{gathered}$	$\begin{gathered} -\mathbf{0 . 1 3 0} \\ (0.042) \end{gathered}$
Medium	$\begin{gathered} 0.029 \\ (0.061) \end{gathered}$	$\begin{aligned} & -0.041 \\ & (0.031) \end{aligned}$	$\begin{gathered} 0.016 \\ (0.031) \end{gathered}$	$\begin{aligned} & -0.040 \\ & (0.031) \end{aligned}$
High	$\begin{gathered} 0.005 \\ (0.108) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.056) \end{aligned}$	$\begin{gathered} 0.019 \\ (0.056) \end{gathered}$	$\begin{gathered} -0.115^{* *} \\ (0.055) \end{gathered}$
	$\begin{gathered} 0 . \overline{4} 50^{* * * *} \\ (0.051) \\ \hline \end{gathered}$	$\begin{aligned} & -0.0 \overline{3} 2 \\ & (0.026) \\ & \hline \end{aligned}$	$\begin{gathered} 0.02 \overline{2} \\ (0.026) \\ \hline \end{gathered}$	$\begin{gathered} -\overline{0}-\overline{0} \overline{4} \overline{8^{*}} \\ (0.026) \\ \hline \end{gathered}$
Demographic Controls	Yes	Yes	Yes	Yes
Observations	1,745	1,745	1,745	1,745
R^{2}	0.267	0.063	0.090	0.050
Note:			${ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.0$; ${ }^{* * *} \mathrm{p}<0.01$

Results

i Understanding

- Perceived
- Actual
ii Attitude towards CB (such as trust)
iii What matters most?

Results: Attitudes towards CB

Conceptual complexity also drives the degrading of attitudes towards the CB

Q: To what extent do you agree with each of the following statements:

- I now have a better understanding of the role of the Bank of England
- I am now more likely to pay attention to future documents published by the Bank of England

I now have more trust in the Bank of England as an institution

Results: Attitudes towards CB

And these results also hold when we condition on demographic factors

	Trust (1)	Attention (2)	Role of BoE (3)
Conceptual			
Medium Conceptual	$\begin{aligned} & -0.009 \\ & (0.058) \end{aligned}$	$\begin{aligned} & -0.025 \\ & (0.071) \end{aligned}$	$\begin{aligned} & -0.099 \\ & (0.067) \end{aligned}$
High Conceptual	$\begin{gathered} -0.185^{* *} \\ (0.081) \end{gathered}$	$\begin{gathered} -0.313^{* * *} \\ (0.098) \end{gathered}$	$\begin{gathered} -0.546^{* * *} \\ (0.093) \end{gathered}$
Medium Semantic	$\begin{gathered} 0.057 \\ (0.058) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.071) \end{gathered}$	$\begin{gathered} 0.053 \\ (0.067) \end{gathered}$
High Semantic	$\begin{gathered} 0.009 \\ (0.104) \end{gathered}$	$\begin{aligned} & -0.115 \\ & (0.127) \end{aligned}$	$\begin{gathered} 0.043 \\ (0.120) \end{gathered}$
	$\begin{aligned} & 0 . \overline{1} 18^{* *} \\ & (0.049) \end{aligned}$	$\begin{aligned} & -0.2 \overline{2} \overline{4} * * *^{*} \\ & (0.059) \end{aligned}$	$\begin{gathered} 0.2 \overline{5} \overline{2}^{* \bar{x}-} \\ (0.056) \\ \hline \end{gathered}$
Demographic Controls	Yes	Yes	Yes
Observations	1,742	1,743	1,745
R^{2}	0.047	0.051	0.090
Note:		$\mathrm{p}<0.1$; ** p	05; ${ }^{* * *} \mathrm{p}<0.01$

Results

i Understanding

- Perceived
- Actual
ii Attitude towards CB (such as trust)
iii What matters most?

Results: What would make the text easier?

Respondents identified conceptual complexity as the greatest barrier

[^2]
Results: Sub-Sample of Economics graduates

Our results hold when we focus on a sub-sample of respondents who studied Economics at university

	Perceived Understanding (1)	Actual Understanding			Sentiments towards CB		
		$\begin{gathered} \operatorname{Inf}(\mathrm{t}) \\ (2) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{i}(\mathrm{t}) \\ & (3) \\ & \hline \end{aligned}$	Exp Pay (4)	Trust (5)	Attention (6)	BoE Role (7)
High Conceptual	$\begin{gathered} -0.784^{* * *} \\ (0.189) \end{gathered}$	$\begin{aligned} & -0.053 \\ & (0.092) \end{aligned}$	$\begin{gathered} -0.195^{* *} \\ (0.089) \end{gathered}$	$\begin{gathered} -0.206^{* *} \\ (0.089) \end{gathered}$	$\begin{gathered} -0.339^{* *} \\ (0.150) \end{gathered}$	$\begin{gathered} -0.406^{* *} \\ (0.179) \end{gathered}$	$\begin{gathered} -0.462^{* * *} \\ (0.170) \end{gathered}$
High 'Semantic	$\begin{gathered} -0.22 \overline{5} \\ (0.246) \end{gathered}$	$\begin{gathered} -\overline{0} \overline{0} \overline{0} \overline{6}- \\ (0.119) \end{gathered}$	$\begin{gathered} -0.052 \\ (0.115) \end{gathered}$	$\begin{gathered} 0.00 \overline{4} \\ (0.116) \end{gathered}$	$\begin{gathered} 0.248 \\ (0.195) \end{gathered}$	$\begin{array}{r} -0.00 \overline{9} \\ (0.233) \end{array}$	$\begin{gathered} -\overline{0} \overline{2} \overline{07}-\overline{-} \\ (0.221) \end{gathered}$
Demographic Controls	Yes						
Sample	Econ						
Observations	288	288	288	288	288	288	288
R^{2}	0.129	0.018	0.093	0.051	0.044	0.036	0.038

Conclusions

Conclusions

1. If agents are rationally inattentive, complexity reduces the accuracy of beliefs formed
2. Efforts by the BoE to reduce complexity have focused on semantic dimensions, while evidence across conceptual dimensions is more mixed
3. Conceptual complexity matters more than semantic complexity. It reduces:

- perceived understanding
- actual understanding
- attitudes towards the central bank

4. This remains the case among people who have studied economics at university.

Policy Implications

- Targeting a broader range of dimensions of complexity could enable more effective communications ...
- ... potentially with all economic agents, not just the general public.

Appendix

Motivation

Financial market participants have well anchored 5-year ahead inflation expectations

Euro Area

United States

[^3]
Motivation

Household long-run expectations are poorly anchored

Source: Binder 2017 (US Michigan Survey of Consumers)

Motivation

Firms' are similarly poorly anchored

	Central bank (1)	$\begin{aligned} & \text { Professional } \\ & \text { forecasters } \\ & \hline \end{aligned}$		Houscholds		Firms	
		Mcan (2)	$\begin{aligned} & \mathrm{SD} \\ & (3) \end{aligned}$	Mean (4)	$\begin{aligned} & \mathrm{SD} \\ & (5) \end{aligned}$	Mean (6)	$\begin{aligned} & \mathrm{SD} \\ & (7) \end{aligned}$
Punel A. 2013:/V (wave 1, number of abiservarionce 3,144)							
Infation		2.0	0.2	3.6	2.4	5.3	3.2
Punel R. 2014:I (wave 2, mumber of obnenuaians: 7t2)							
Infation	1.9	2.0	0.3	3.7	2.1	6.1	2.7
Usemplogwent	4.9	5.3	0.3	NA	NA	5.2	0.7
GDP growih	3.5	3.4	0.5	NA	NA	3.1	0.7
Punel C. 2014:III (wave 3, number of absernurions: 1,60I)							
Infation	1.6	1.9	0.2	3.5	2.4	4.1	2.5
Punel D. 2014:NV (wave 4, number of absenutions: 1,257)							
Infation	1.1	1.7	0.3	3.1	2.0	45	2.8
Usemplogment	5.2	5.2	0.3	NA	NA	59	1.2
GDP growih	3.5	3.0	0.3	NA	NA	36	1.0
Punel E 2016.II (wave 5, number of diuervarions: 2,040)							
Infation	1.6	1.3	0.2	23	2.1	28	2.3
Usemplogment	5.2	55	0.2	NA	NA	55	0.6
GDP grewth	3.4	2.6	0.3	NA	NA	2.7	0.5
Punel F. 2016.IV (wave 6, number of obsprnatiove: 1,404)							
Inflation	1.7	1.6	0.2	2.8	2.6	2.7	2.4
Usemplogment	4.7	4.8	0.3	NA	NA	55	0.6
GDP grewth	3.4	3.0	0.4	NA	NA	2.4	0.6

Source: Coibion, Gorodnichenko and Kumar 2018 (New Zealand 5-year ahead expectations)

Motivation

FK score of FOMC statements has increased significantly since 1990s

Source: Hernandez-Murillo and Shell 2014

Jargon

Jargon	Relatable
inflation	prices
wages	pay
unemployment	jobs
firms	companies
agents	people
percentages	GBP values

- Motivated by study conducted by Bholat et al., 2018 in collaboration with Behavioural Insights Team

Topics discussed in BoE publications

(i) Topic 3

(iv) Topic 9

(ii) Topic 4

(v) Topic 15

(iii) Topic 7

(vi) Topic 20

Treatment

Texts vary across different dimensions of complexity

Degree of Complexity	Semantic	Conceptual	
	FK	PoJ	MNCC
Low	6.0	5	10
Medium	10.5	10	15
High	14.5	10	30

Results: Understanding (alternative)

And these results hold when we condition on demographic factors

Baseline	Dependent variable: Self-reported Understanding						
	SC low (1)	SC low (2)	SC med (3)	CC low (4)	CC low (5)	CC low (6)	CC med (7)
SC med	$\begin{aligned} & -0.050 \\ & (0.085) \end{aligned}$	$\begin{gathered} 0.084 \\ (0.088) \end{gathered}$					
SC high			$\begin{aligned} & -0.028 \\ & (0.088) \end{aligned}$				
$\mathrm{C}^{\text {C- }}$ - ${ }^{\text {med }}$				$\begin{aligned} & -\overline{0} . \overline{0} \overline{\bar{\sigma}} \overline{6} \\ & (0.081) \end{aligned}$	$\begin{gathered} -\overline{0.037} \\ (0.090) \end{gathered}$		
CC high						$\begin{gathered} -0.748^{* * *} \\ (0.087) \end{gathered}$	$\begin{gathered} -0.787^{* * *} \\ (0.093) \end{gathered}$
Sample	CC low	CC med	CC high	SC low	SC med	SC med	SC med
Demographic Controls	Yes						
Observations	482	470	432	505	447	439	410
R^{2}	0.180	0.188	0.169	0.254	0.139	0.233	0.251

Results: Understanding

And these results hold when we condition on demographic factors

	Perceived	Actual Understanding					
	Understanding (1)	GDP(t) (2)	Inflation(t) (3)	Interest Rate(t) (4)	Pay (5)	Interest Rate Response (6)	
Conceptual							
High Conceptual	$\begin{gathered} -0.791^{* * *} \\ (0.084) \end{gathered}$	$\begin{aligned} & -0.0004 \\ & (0.028) \end{aligned}$	$\begin{gathered} -0.079^{*} \\ (0.043) \end{gathered}$	$\begin{gathered} -0.186^{* * *} \\ (0.043) \end{gathered}$	$\begin{gathered} -0.130^{* * *} \\ (0.042) \end{gathered}$	$\begin{aligned} & -0.030 \\ & (0.039) \end{aligned}$	
age	$\begin{aligned} & \overline{0.00} \overline{4^{*}} \\ & (0.002) \end{aligned}$	$\begin{aligned} & \overline{0} . \overline{0} \overline{0} \overline{5} \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.0 \overline{0} \overline{1} \\ & (0.001) \end{aligned}$	$\begin{gathered} 0.003^{* * *} \\ (0.001) \end{gathered}$	$\begin{array}{r} -0.001 \\ (0.001) \end{array}$	$\begin{aligned} & 0.003^{\overline{* * *}} \\ & (0.001) \end{aligned}$	
UK country of birth	$\begin{gathered} 0.044 \\ (0.059) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.020) \end{gathered}$	$\begin{aligned} & -0.001 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.030) \end{aligned}$	$\begin{aligned} & -0.013 \\ & (0.030) \end{aligned}$	$\begin{gathered} 0.024 \\ (0.027) \end{gathered}$	
income	$\begin{gathered} 0.168^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} 0.010 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.011) \end{gathered}$	$\begin{aligned} & 0.026^{* *} \\ & (0.011) \end{aligned}$	$\begin{gathered} 0.017 \\ (0.011) \end{gathered}$	$\begin{aligned} & 0.021^{* *} \\ & (0.010) \end{aligned}$	
econ at uni	$\begin{gathered} 0.450^{* * *} \\ (0.051) \end{gathered}$	$\begin{gathered} -0.033^{*} \\ (0.017) \end{gathered}$	$\begin{aligned} & -0.032 \\ & (0.026) \end{aligned}$	$\begin{gathered} 0.022 \\ (0.026) \end{gathered}$	$\begin{gathered} -0.048^{*} \\ (0.026) \end{gathered}$	$\begin{gathered} -0.039^{*} \\ (0.024) \end{gathered}$	
pre-anchored exps	$\begin{gathered} 0.518^{* * *} \\ (0.047) \end{gathered}$	$\begin{gathered} 0.077^{* * *} \\ (0.016) \end{gathered}$	$\begin{gathered} 0.233^{* * *} \\ (0.024) \end{gathered}$	$\begin{gathered} 0.174^{* * *} \\ (0.024) \end{gathered}$	$\begin{gathered} 0.093^{* *} \\ (0.024) \end{gathered}$	$\begin{gathered} 0.093^{* * *} \\ (0.022) \end{gathered}$	
Demographic Controls Observations	$\begin{gathered} \text { Yes } \\ 1,745 \end{gathered}$	$\begin{gathered} \text { Yes } \\ 1,745 \end{gathered}$	$\begin{gathered} \text { Yes } \\ 1,745 \end{gathered}$	$\begin{gathered} \text { Yes } \\ 1,745 \end{gathered}$	$\begin{aligned} & \text { Yes } \\ & 1,745 \end{aligned}$	$\begin{gathered} \text { Yes } \overline{\bar{E}} \\ 1,745 \end{gathered}$	$\begin{aligned} & \equiv \rho Q C \\ & 10 / 14 \end{aligned}$

More results

Rational borrowing and savings preferences

How would your borrowing and savings preferences change under various interest rates?

Results: Attitudes towards CB

And these results also hold when we condition on demographic factors

Simple Rational Inattention Model

Summary

Two agents:

Simple Rational Inattention Model

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.

Simple Rational Inattention Model

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
(ii) Household h. Imperfectly informed: rationally inattentive.

Simple Rational Inattention Model

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
(ii) Household h. Imperfectly informed: rationally inattentive.

Stage 1. Household h has a prior belief \bar{x}_{h} about the state of the economy.

Simple Rational Inattention Model

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
(ii) Household h. Imperfectly informed: rationally inattentive.

Stage 1. Household h has a prior belief \bar{x}_{h} about the state of the economy.
Stage 2. CB transmits a message, $x \sim \mathcal{N}\left(0, \sigma_{x}^{2}\right)$, revealing true state of the economy.

Simple Rational Inattention Model

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
(ii) Household h. Imperfectly informed: rationally inattentive.

Stage 1. Household h has a prior belief \bar{x}_{h} about the state of the economy.
Stage 2. CB transmits a message, $x \sim \mathcal{N}\left(0, \sigma_{x}^{2}\right)$, revealing true state of the economy.
Stage 3. Households receive the CB's message as a noisy signal: $s_{h}=x+\underbrace{\epsilon_{h}}_{\text {noise }}$

Simple Rational Inattention Model

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
(ii) Household h. Imperfectly informed: rationally inattentive.

Stage 1. Household h has a prior belief \bar{x}_{h} about the state of the economy.
Stage 2. CB transmits a message, $x \sim \mathcal{N}\left(0, \sigma_{x}^{2}\right)$, revealing true state of the economy.
Stage 3. Households receive the CB's message as a noisy signal: $s_{h}=x+\underbrace{\epsilon_{h}}$
Stage 4. Update beliefs: $\tilde{x}_{h}=E\left[x \mid s_{h}\right]=\left(1-\xi_{h}\right) \bar{x}_{h}+\xi_{h} s_{h}$

Simple Rational Inattention Model

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
(ii) Household h. Imperfectly informed: rationally inattentive.

Stage 1. Household h has a prior belief \bar{x}_{h} about the state of the economy.
Stage 2. CB transmits a message, $x \sim \mathcal{N}\left(0, \sigma_{x}^{2}\right)$, revealing true state of the economy.
Stage 3. Households receive the CB's message as a noisy signal: $s_{h}=x+\underbrace{\epsilon_{h}}$
Stage 4. Update beliefs: $\tilde{x}_{h}=E\left[x \mid s_{h}\right]=\left(1-\xi_{h}\right) \bar{x}_{h}+\xi_{h} s_{h}$
Choosing ξ_{h} based on utility from being informed, $u_{h}\left(x, \tilde{x}_{h}\right)$, and cost of attention, $c_{h}(\mu)$

Simple Rational Inattention Model

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
(ii) Household h. Imperfectly informed: rationally inattentive.

Stage 1. Household h has a prior belief \bar{x}_{h} about the state of the economy.
Stage 2. CB transmits a message, $x \sim \mathcal{N}\left(0, \sigma_{x}^{2}\right)$, revealing true state of the economy.
Stage 3. Households receive the CB's message as a noisy signal: $s_{h}=x+\underbrace{\epsilon_{h}}$
Stage 4. Update beliefs: $\tilde{x}_{h}=E\left[x \mid s_{h}\right]=\left(1-\xi_{h}\right) \bar{x}_{h}+\xi_{h} s_{h}$ noise

Choosing ξ_{h} based on utility from being informed, $u_{h}\left(x, \tilde{x}_{h}\right)$, and cost of attention, $c_{h}(\mu)$

Result: Optimal attention: $\frac{\partial \xi_{h}^{*}}{\partial \mu}<0$, and inaccuracy of updated belief: $\frac{\partial\left(x-\tilde{x}_{h}\right)}{\partial \mu}>0$.

Model - Extension 2

Scenario 2: RI journalists unintentionally bias the signal when they simplify it

Journalists receive a clean signal from the central bank: $\tilde{x}_{m}^{B}=x$ but in seeking to simplify it, generates 'unintentional bias':

$$
\begin{equation*}
s_{p}^{B}=\left(1-\mu \sigma_{x}^{2}\right) x+\epsilon_{p} \tag{1}
\end{equation*}
$$

The public optimally allocates attention to this simplified, but now biased signal, generating posterior belief:

$$
\begin{equation*}
x-\tilde{x}_{p}^{B}=\mu \sigma_{x}^{2} x+\frac{\tau x}{2 b_{p} \sigma_{x}^{2}}\left(1-\mu \sigma_{x}^{2}\right)-\eta_{p} \tag{2}
\end{equation*}
$$

[^0]: BoE Publication - MP Report - MP Summary - Visual Summary

[^1]: BoE Publication - MP Report - MP Summary - Visual Summary

[^2]: Which of the following do you think would have made the text easier to understand?

[^3]: Source: Beechey \& Johansen 2011

