Getting through: Communicating complex central bank messages

Michael McMahon^{1,2} Matthew Naylor¹

¹University of Oxford

²Irish Fiscal Council

³Bank of England

August 2023 - EEA

Disclaimer: Preliminary. The views expressed in this paper are those of the authors and not necessarily of the Bank of England or of the Irish Fiscal Council.

"I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex
 - ► FOMC: 19 years of schooling

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex
 - ► FOMC: 19 years of schooling, ECB: 16 years

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex
 - FOMC: 19 years of schooling, ECB: 16 years, BoE MPR: 15 years (Hernandez-Murillo & Shell 2014) FOMC

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex
 - FOMC: 19 years of schooling, ECB: 16 years, BoE MPR: 15 years (Hernandez-Murillo & Shell 2014) FOMC
- "Twin deficits problem" (Haldane & McMahon 2018)
 - Iow levels of informedness
 - Iow levels of trust

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex
 - FOMC: 19 years of schooling, ECB: 16 years, BoE MPR: 15 years (Hernandez-Murillo & Shell 2014) FOMC
- "Twin deficits problem" (Haldane & McMahon 2018)
 - Iow levels of informedness
 - Iow levels of trust
- Recent efforts to simplify language (Visual Summary, BoE)

- "I think our challenge is to speak in plain English as opposed to in a high-tech scientific language which only about half a dozen people understand and even less are interested in" Adrian Orr (2018)
- CB communications are very complex
 - FOMC: 19 years of schooling, ECB: 16 years, BoE MPR: 15 years (Hernandez-Murillo & Shell 2014) FOMC
- "Twin deficits problem" (Haldane & McMahon 2018)
 - Iow levels of informedness
 - Iow levels of trust
- Recent efforts to simplify language (Visual Summary, BoE)
- BUT narrow focus on Flesch-Kincaid (simple avg of word and sentence length).

Research questions

How might complex language influence the formation of inflation expectations?

Research questions

- How might complex language influence the formation of inflation expectations?
- ▶ What actually *is* linguistic complexity and how can we measure it?

Research questions

- ▶ How might complex language influence the formation of inflation expectations?
- ▶ What actually is linguistic complexity and how can we measure it?
- Which dimensions of complexity matter most?

Research questions

- How might complex language influence the formation of inflation expectations?
- ▶ What actually is linguistic complexity and how can we measure it?
- Which dimensions of complexity matter most?

Approach

Propose a simple theoretical argument for simplicity

Research questions

- How might complex language influence the formation of inflation expectations?
- ▶ What actually is linguistic complexity and how can we measure it?
- Which dimensions of complexity matter most?

Approach

- Propose a simple theoretical argument for simplicity
- Construct novel measures of complexity that capture broader dimensions

Research questions

- How might complex language influence the formation of inflation expectations?
- ▶ What actually is linguistic complexity and how can we measure it?
- Which dimensions of complexity matter most?

Approach

- Propose a simple theoretical argument for simplicity
- Construct novel measures of complexity that capture broader dimensions
- Test causal impact of complexity on informedness and trust, in an RCT

1. Complexity reduces attention paid to CB messages, reducing the accuracy of beliefs formed.

- 1. Complexity reduces attention paid to CB messages, reducing the accuracy of beliefs formed.
- 2. Efforts by the BoE to simplify language have focused on *semantic* dimensions of complexity, with more mixed evidence across *conceptual* dimensions.

- 1. Complexity reduces attention paid to CB messages, reducing the accuracy of beliefs formed.
- 2. Efforts by the BoE to simplify language have focused on *semantic* dimensions of complexity, with more mixed evidence across *conceptual* dimensions.
- 3. Conceptual complexity matters more than semantic complexity
 - For both informedness and trust

- 1. Complexity reduces attention paid to CB messages, reducing the accuracy of beliefs formed.
- 2. Efforts by the BoE to simplify language have focused on *semantic* dimensions of complexity, with more mixed evidence across *conceptual* dimensions.
- 3. Conceptual complexity matters *more* than semantic complexity
 - For both informedness and trust
 - Explained exclusively by a novel measure we construct.

- 1. Complexity reduces attention paid to CB messages, reducing the accuracy of beliefs formed.
- 2. Efforts by the BoE to simplify language have focused on *semantic* dimensions of complexity, with more mixed evidence across *conceptual* dimensions.
- 3. Conceptual complexity matters *more* than semantic complexity
 - For both informedness and trust
 - Explained exclusively by a novel measure we construct.
- 4. This result holds among people who have studied economics at university.

Related Literature

CB Comms

1st Revolution (1990s): Financial markets

CBs have largely been successful in shaping exps Coibion et al., 2019; Swanson 2018

2nd Revolution (2010s): General public

- "It may be time to pay attention to communication with the public" Blinder (2008)
 - HHs and firms form exps in similar ways Coibion & Gorodnichenko, 2015; Nalewaik, 2016
 HH exps matter for activity and financial choices Reis 2023; Bachmann, Berg & Sims, 2015; Armantier et al., 2015; Malmendier & Nagel, 2016
- "CBs will keep trying but, for the most part, they will fail" Blinder (2018), Binder (2017)
 - Exciting open area of research D'Acunto et al., 2022

Linguistic Complexity

- Simplified communication can help achieve this Haldane & McMahon, 2018; Coibion et al., 2020
- But focus to date on Flesch-Kincaid score Mumtaz et al., 2023; Ferrara & Angino 2022; Hernandez-Murillo & Shell 2014; Bulir et al., 2012

A theoretical argument for simplicity

Simple Rational Inattention Model Summary

Two agents

Simple Rational Inattention Model Summary

Two agents

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.

Simple Rational Inattention Model Summary

Two agents

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
(ii) Household h. Imperfectly informed: rationally inattentive.

Simple Rational Inattention Model Summary

Two agents

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.(ii) Household *h*. Imperfectly informed: rationally inattentive.

Setup

CB transmits a message revealing the true state of the economy.

Simple Rational Inattention Model

Two agents

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.(ii) Household *h*. Imperfectly informed: rationally inattentive.

Setup

CB transmits a message revealing the true state of the economy.

h chooses how much attention to pay to it based on $u_h(informed)$ and $c_h(complexity)$.

Simple Rational Inattention Model

Two agents

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.(ii) Household *h*. Imperfectly informed: rationally inattentive.

Setup

CB transmits a message revealing the true state of the economy.

h chooses how much attention to pay to it based on $u_h(informed)$ and $c_h(complexity)$.

Result

Optimal attention: $\frac{\partial(attention)}{\partial(complexity)} < 0$, and inaccuracy of updated belief: $\frac{\partial(accuracy)}{\partial complexity} < 0$.

Linguistic Complexity of CB Communications

Traditional measures: Semantic Complexity

- Word Count
- Flesch-Kincaid

Flesch Kincaid Score =
$$0.39 \frac{n(Words)}{n(Sentences)} + 11.8 \frac{n(Syllables)}{n(Words)} - 15.59$$

Traditional measures: Semantic Complexity

BoE efforts to simplify language have focused on 'semantic' dimensions of complexity...

BoE Publication - MP Report - MP Summary - Visual Summary

Traditional measures: Semantic Complexity

BoE efforts to simplify language have focused on 'semantic' dimensions of complexity...

シック・ 正正 (山) (山) (山) (山) (山)

Proportion of Jargon

$$\text{PoJ} = \frac{\sum_{j=1}^{J} w_j}{\sum_{i=1}^{N} w_i} \equiv \frac{W_j}{W_i}$$

 w_j : number of instances *jargon* term $j \in \{1, ..., J\}$ is mentioned. w_i : number of instances *any* word $i \in \{1, ..., N\}$ is mentioned.

Wordcloud: Monetary Policy Report

MPR 2005-2023 tions anima in proton percenting. rang shap interest rate risen particular weaker factor three near broad purchas data asset from capa economi import unit simifi suggest uncertainti ect section box labour compani effect 0100 reflect market recent chang upport ---- demand global = and slow past _ ster lower tion a may higher spend sin like rate price servi current = relat howev recoveri neet year _{rise} term chart growth credit Suppli estim Nation CIL provid C reals poyme ---bank fall tabl month ing married and a second increas period lerg tor in the state of the state of the state of the state of the ···· ··· redu - condit report time affect measure measure cost also inflat expect not \$800 gdp mul risk around remain 🔤 project will -----No. 1 (Start of the section) committe ^{energi} continu sector follow namber household 📑 averag busi although abov wage Survey ntral wask invest product a part can activ central - weak andresi one The part of the second second second point weigh hours - ease incom impact fallen pressur assum appear Day area novemb real rose shami and industries " bratis

... but we do not observe the same trend-decline along dimensions of 'conceptual' complexity.

BoE Publication - MP Report - MP Summary - Visual Summary

Proportion of Jargon

$$\mathrm{PoJ} = \frac{W_j}{W_i}$$
Proportion of Jargon

$$\text{PoJ} = \frac{W_j}{W_i}$$

McMahon-Naylor Conceptual Complexity (MNCC) Index

$$\text{MNCC} = \frac{\sum_{t=1}^{T} W_{j,t}^* \times \Phi}{W_i}$$

Proportion of Jargon

$$\text{PoJ} = \frac{W_j}{W_i}$$

McMahon-Naylor Conceptual Complexity (MNCC) Index

$$\text{MNCC} = \frac{\sum_{t=1}^{T} W_{j,t}^* \times \Phi}{W_i}$$

We categorise jargon into 10 topics (MP, inflation, output, etc.) and make two adjustments:

Proportion of Jargon

$$\mathrm{PoJ} = \frac{W_j}{W_i}$$

McMahon-Naylor Conceptual Complexity (MNCC) Index

$$\text{MNCC} = \frac{\sum_{t=1}^{T} W_{j,t}^* \times \Phi}{W_i}$$

We categorise jargon into 10 topics (MP, inflation, output, etc.) and make two adjustments: i $\sum_{t=1}^{T} W_{j,t}^* \equiv \frac{W_{j,t}}{\Psi_t}$: breadth and dispersion of *distinct* jargon terms used *within* topic *t*.

Proportion of Jargon

$$PoJ = \frac{W_j}{W_i}$$

McMahon-Naylor Conceptual Complexity (MNCC) Index

$$\text{MNCC} = \frac{\sum_{t=1}^{T} W_{j,t}^* \times \Phi}{W_i}$$

We categorise jargon into 10 topics (MP, inflation, output, etc.) and make two adjustments:

i $\sum_{t=1}^{T} W_{j,t}^* \equiv \frac{W_{j,t}}{\Psi_t}$: breadth and dispersion of *distinct* jargon terms used *within* topic *t*. ii Φ : adjusts for the range of topics, *T*, discussed.

The MP Summary uses a broader range of technical terms and concepts.

BoE Publication - MP Report - MP Summary - Visual Summary

The MP Summary uses a broader range of technical terms and concepts.

2023

2019 2021

15 / 30

The MP Summary uses a broader range of technical terms and concepts.

MP Summary 2015-2023

Visual Summary 2017-2023

Empirical Strategy: RCT

Survey Design

- **Respondents**: 2000 representative members of the public
- Pre-treatment questions: Demographics, interests, state of UK economy
- **Treatment**: Read a CB report. Texts vary in complexity across dimensions
- Post-treatment questions: Capture levels of informedness and trust

Treatment

Texts vary across different dimensions of complexity

		Semantic		
		Low	Medium	High
	Low	Text 1	Text 2	
Conceptual	Medium	Text 3	Text 4	
	High		Text 5	Text 6

- ▶ Text 1 = 2018 Q1 VS
- ▶ Text 3 = 2019 Q4 VS
- ► Text 6 = 2018 Q1 MPS

Complexity scores

Post-Treatment Questions

i Understanding

- Perceived
- Actual
- ii Attitude towards CB (such as trust)
- iii What matters most?

Results

<ロ> <同> <同> < 目> < 目> < 目> のへの

19 / 30

Results

i Understanding

Perceived

- Actual
- ii Attitude towards CB (such as trust)
- iii What matters most?

Results: Perceived Understanding

Complexity reduces perceived understanding

Q: To what extent are you able to understand the content and messages of the material you just read?

Results: Perceived Understanding

High conceptual complexity drives this

Q: To what extent are you able to understand the content and messages of the material you just read?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□■ のQ@

Results: Perceived Understanding

High conceptual complexity drives this, explained exclusively by the MNCC index

Q: To what extent are you able to understand the content and messages of the material you just read?

Results

i Understanding

Perceived

Actual

ii Attitude towards CB (such as $\ensuremath{\textit{trust}})$

iii What matters most?

Results: Actual Understanding

Conceptual complexity reduces accuracy of beliefs formed

What is the current inflation rate in the economy described?

What is the interest rate in the economy described?

What do you expect to happen to pay (adjusting for price changes) in the coming years?

・ロ・・師・・前・・ 西・ ・日・

Results: Empirical Specification

We test these observations conditioning on demographic factors

$$\begin{split} \mathbf{Y}_i &= \beta_1 \mathsf{Conceptual} \; \mathsf{Medium}_i + \beta_2 \mathsf{Conceptual} \; \mathsf{High}_i \\ &+ \gamma_1 \mathsf{Semantic} \; \mathsf{Medium}_i + \gamma_2 \mathsf{Semantic} \; \mathsf{High}_i \\ &+ \delta X_i + \epsilon_i \end{split}$$

Results: Understanding

And these results hold when we condition on demographic factors

	Perceived	Actual Understanding				
	Understanding	Inflation(t)	Interest Rate(t)	Pay		
	(1)	(2)	(3)	(4)		
Conceptual						
Medium	-0.039	-0.011	0.048	0.015		
	(0.060)	(0.031)	(0.031)	(0.030)		
High	-0.791*** (0.084)	-0.079* (0.043)	-0.186*** (0.043)	-0.130*** (0.042)		
Semantic						
Medium	0.029	-0.041	0.016	-0.040		
	(0.061)	(0.031)	(0.031)	(0.031)		
High	0.005	-0.001	0.019	-0.115**		
0	(0.108)	(0.056)	(0.056)	(0.055)		
Studied Econ at Uni	0.450***	-0.032	0.022			
	(0.051)	(0.026)	(0.026)	(0.026)		
Demographic Controls	Yes	Yes	Yes	Yes		
Observations	1,745	1,745	1,745	1,745		
R ²	0.267	0.063	0.090	0.050		

Note:

*p<0.1; **p<0.05; ***p<0.01 < ♂ > < ≥ > < ≥ > ≥| = ∽ < ⊙

Results

i Understanding

- Perceived
- Actual

ii Attitude towards CB (such as trust)

iii What matters most?

Results: Attitudes towards CB

Conceptual complexity also drives the degrading of attitudes towards the CB

Q: To what extent do you agree with each of the following statements:

I now have a better understanding of the role of the Bank of England

I am now more likely to pay attention to future documents published by the Bank of England

I now have more trust in the Bank of England as an institution

Results: Attitudes towards CB

And these results also hold when we condition on demographic factors

	Trust	Attention	Role of BoE	
	(1)	(2)	(3)	
Conceptual				
Medium Conceptual	-0.009	-0.025	-0.099	
	(0.058)	(0.071)	(0.067)	
High Conceptual	-0.185**	-0.313***	-0.546***	
0	(0.081)	(0.098)	(0.093)	
Semantic				
Medium Semantic	0.057	0.004	0.053	
	(0.058)	(0.071)	(0.067)	
High Semantic	0.009	-0.115	0.043	
0	(0.104)	(0.127)	(0.120)	
Studied Econ at Uni		0.224***	0.252***	
	(0.049)	(0.059)	(0.056)	
Demographic Controls	Yes	Yes	Yes	
Observations	1,742	1,743	1,745	
R ²	0.047	0.051	0.090	
Note:	*p<0.1: **p<0.05: ***p<0.01			

► Full table 26 / 30

Results

i Understanding

- Perceived
- Actual
- ii Attitude towards CB (such as trust)
- iii What matters most?

Results: What would make the text easier?

Respondents identified conceptual complexity as the greatest barrier

Which of the following do you think would have made the text easier to understand?

Results: Sub-Sample of Economics graduates

Our results hold when we focus on a sub-sample of respondents who studied Economics at university

	Perceived	Actual Understanding		Sentiments towards CB			
	Understanding	Inf(t)	i(t)	Exp Pay	Trust	Attention	BoE Role
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
High Conceptual	-0.784***	-0.053	-0.195**	-0.206**	-0.339**	-0.406**	-0.462***
	(0.189)	(0.092)	(0.089)	(0.089)	(0.150)	(0.179)	(0.170)
High Semantic	0.225	0.006	-0.052	0.004	0.248	-0.009	0.207
	(0.246)	(0.119)	(0.115)	(0.116)	(0.195)	(0.233)	(0.221)
Demographic Controls	Yes	Yes	Yes	Yes .	Yes	Yes	Yes
Sample	Econ	Econ	Econ	Econ	Econ	Econ	
Observations	288	288	288	288	288	288	288
R ²	0.129	0.018	0.093	0.051	0.044	0.036	0.038

Note:

*p<0.1; **p<0.05; ***p<0.01

► Full table

Conclusions

<ロ> <回> <回> < 回> < 回> < 回> < 回> < 回</p>

29 / 30

Conclusions

- 1. If agents are rationally inattentive, complexity reduces the accuracy of beliefs formed
- 2. Efforts by the BoE to reduce complexity have focused on *semantic* dimensions, while evidence across *conceptual* dimensions is more mixed
- 3. Conceptual complexity matters more than semantic complexity. It reduces:
 - perceived understanding
 - actual understanding
 - attitudes towards the central bank
- 4. This remains the case among people who have studied economics at university.

Policy Implications

- Targeting a broader range of dimensions of complexity could enable more effective communications ...
- > ... potentially with *all* economic agents, not just the general public.

Appendix

Financial market participants have well anchored 5-year ahead inflation expectations

Source: Beechey & Johansen 2011

Household long-run expectations are poorly anchored

Source: Binder 2017 (US Michigan Survey of Consumers)

Firms' are similarly poorly anchored

	Control	Professional forecasters		Households		Firms	
	bank (1)	Mcan (2)	SD (3)	Mean (4)	SD (5)	Mean (6)	SD (7)
Panel A. 2013:IV (wave 1, n	umber of observation	c: 3,144)					
Inflation	1.3	2.0	0.2	3.6	2.4	5.3	3.2
Panel R 2014:1 (wave 2 ma	wher of observations	7/2)					
Inflation	1.9	2.0	0.3	3.7	2.1	6.1	2.7
Unemployment	4.9	5.3	0.3	NA	NA	5.2	0.7
GDP growth	3.5	3.4	0.5	NA	NA	3.1	0.7
Panel C 2014-III (sease 3 a	umber of observation	e 1600					
Inflation	1.6	1.9	0.2	3.5	2.4	4.1	2.5
Panel D. 2014:IV (wave 4. n	umber of observation	e: 1.257)					
Inflation	1.1	1.7	0.3	3.1	2.0	4.5	2.8
Unemployment	5.2	5.2	0.3	NA	NA	5.9	1.2
GDP growth	3.5	3.0	0.3	NA	NA	3.6	1.0
Panel F 2016:11 (searce 5 m	mber of observations	2.040					
Inflation	1.6	1.3	0.2	2.3	2.1	2.8	2.3
Unemployment	5.2	5.5	0.2	NA	NA	5.5	0.6
GDP growth	3.4	2.6	0.3	NA	NA	2.7	0.5
Panel F 2016 IV (wave 6, w	umber of observation	- 1.4040					
Inflation	1.7	1.6	0.2	2.8	2.6	2.7	2.4
Unemployment	4.7	4.8	0.3	NA	NA	5.5	0.6
GDP growth	3.4	3.0	0.4	NA	NA	2.4	0.6

Source: Coibion, Gorodnichenko and Kumar 2018 (New Zealand 5-year ahead expectations)

FK score of FOMC statements has increased significantly since 1990s

Source: Hernandez-Murillo and Shell 2014

Jargon

Jargon	Relatable
inflation	prices
wages	pay
unemployment	jobs
firms	companies
agents	people
percentages	GBP values

back

 Motivated by study conducted by Bholat et al., 2018 in collaboration with Behavioural Insights Team

Topics discussed in BoE publications

Treatment

Texts vary across different dimensions of complexity

Degree of Complexity	Semantic	Conceptual		
Degree of Complexity	FK	PoJ	MNCC	
Low	6.0	5	10	
Medium	10.5	10	15	
High	14.5	10	30	

▶ back

Results: Understanding (alternative)

And these results hold when we condition on demographic factors

		Depe	ndent varia	ble: Self-re	ported Un	derstanding	
Baseline	SC low	SC low	SC med	CC low	CC low	CC low	CC med
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
SC med	-0.050 (0.085)	0.084 (0.088)					
SC high			-0.028 (0.088)				
CC med				-0.076 (0.081)	0.037 (0.090)		
CC high						-0.748*** (0.087)	-0.787*** (0.093)
Sample	CC low	CC med	CC high	, SC low	SC med	SC med	SC med
Demographic Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	482	470	432	505	447	439	410
R ²	0.180	0.188	0.169	0.254	0.139	0.233	0.251

Note:

*p<0.1; **p<0.05; ***p<0.01

▲□▶ ▲□▶ ▲目▶ ▲目≯ 夕久⊙

Results: Understanding

And these results hold when we condition on demographic factors

	Perceived	Actual Understanding				
	Understanding	GDP(t)	Inflation(t)	Interest Rate(t)	Pay	Interest Rate Response
	(1)	(2)	(3)	(4)	(5)	(6)
Conceptual						
High Conceptual	-0.791***	-0.0004	-0.079^{*}	-0.186^{***}	-0.130^{***}	-0.030
	(0.084)	(0.028)	(0.043)	(0.043)	(0.042)	(0.039)
age		0.0005-	-0.001	0.003***	-0.001	0.003***
-	(0.002)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
UK country of birth	0.044	0.012	-0.001	-0.009	-0.013	0.024
	(0.059)	(0.020)	(0.030)	(0.030)	(0.030)	(0.027)
ncome	0.168***	0.010	0.012	0.026**	0.017	0.021**
	(0.022)	(0.007)	(0.011)	(0.011)	(0.011)	(0.010)
con at uni	0.450***	-0.033*	-0.032	0.022	-0.048*	-0.039*
	(0.051)	(0.017)	(0.026)	(0.026)	(0.026)	(0.024)
pre-anchored exps	0.518***	0.077***	0.233***	0.174***	0.093***	0.093***
•	(0.047)	(0.016)	(0.024)	(0.024)	(0.024)	(0.022)
Demographic Controls	Yes	Yes	Yes	Yes	Yes	□ ▶ ∢ / ■ ▶ Yes = ▶ ∢ =
Observations	1,745	1,745	1,745	1,745	1,745	1,745
- 0						

More results

Rational borrowing and savings preferences

How would your borrowing and savings preferences change under various interest rates?

Results: Attitudes towards CB

And these results also hold when we condition on demographic factors

	Dependent variable:				
	Trust	Attention	Role of BoE		
	(1)	(2)	(3)		
Conceptual					
High Conceptual	-0.185^{**}	-0.313^{***}	-0.546^{***}		
	(0.081)	(0.098)	(0.093)		
age	0.007***	0.003	0.0003		
-	(0.002)	(0.002)	(0.002)		
UK country of birth	-0.106*	-0.236***	-0.038		
	(0.056)	(0.069)	(0.065)		
income	0.056***	0.032	0.072***		
	(0.021)	(0.026)	(0.025)		
econ at uni	0.118**	0.224***	0.252***		
	(0.049)	(0.059)	(0.056)		
pre-anchored exps	0.146***	0.122**	0.322***		
	(0.045)	(0.055)	(0.052)		
Constant	1.418***	2.148***	1.750***		
	(0.094)	(0.115)	(0.109)		
Demographic Controls	Yes	Yes	Yes		
Observations	1,742	1,743	1,745		
R ²	0.047	0.051	0.090		
Note:	*p<0.1: **p<0.05: ***p<0.01				

Simple Rational Inattention Model Summary

Two agents:

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.

Summary

Two agents:

(i) Central Bank. <u>Perfectly</u> informed. Minimises shocks by anchoring exps.(ii) Household *h*. <u>Imperfectly</u> informed: rationally inattentive.

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
 (ii) Household h. <u>Imperfectly</u> informed: rationally inattentive.

Stage 1. Household h has a prior belief \bar{x}_h about the state of the economy.

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.
 (ii) Household h. <u>Imperfectly</u> informed: rationally inattentive.

Stage 1. Household h has a prior belief \bar{x}_h about the state of the economy.

Stage 2. CB transmits a message, $x \sim \mathcal{N}(0, \sigma_x^2)$, revealing true state of the economy.

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.(ii) Household h. Imperfectly informed: rationally inattentive.

Stage 1. Household h has a prior belief \bar{x}_h about the state of the economy.

Stage 2. CB transmits a message, $x \sim \mathcal{N}(0, \sigma_x^2)$, revealing true state of the economy.

Stage 3. Households receive the CB's message as a noisy signal: $s_h = x + \underbrace{\epsilon_h}_{}$

 \mathbf{noise}

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.(ii) Household h. Imperfectly informed: rationally inattentive.

Stage 1. Household h has a prior belief \bar{x}_h about the state of the economy.

Stage 2. CB transmits a message, $x \sim \mathcal{N}(0, \sigma_x^2)$, revealing true state of the economy.

Stage 3. Households receive the CB's message as a noisy signal: $s_h = x + \underbrace{\epsilon_h}_{}$

Stage 4. Update beliefs: $\tilde{x}_h = E[x|s_h] = (1 - \xi_h)\bar{x}_h + \xi_h s_h$

noise

Summary

Two agents:

(i) Central Bank. Perfectly informed. Minimises shocks by anchoring exps.(ii) Household h. Imperfectly informed: rationally inattentive.

Stage 1. Household h has a prior belief \bar{x}_h about the state of the economy.

Stage 2. CB transmits a message, $x \sim \mathcal{N}(0, \sigma_x^2)$, revealing true state of the economy.

Stage 3. Households receive the CB's message as a noisy signal: $s_h = x + \underbrace{\epsilon_h}_{\bullet h}$

Stage 4. Update beliefs: $\tilde{x}_h = E[x|s_h] = (1 - \xi_h)\bar{x}_h + \xi_h s_h$ Choosing ξ_h based on utility from being informed, $u_h(x, \tilde{x}_h)$, and cost of attention, $c_h(\mu)$

Summary

Two agents:

(i) Central Bank. <u>Perfectly</u> informed. Minimises shocks by anchoring exps.
(ii) Household h. <u>Imperfectly</u> informed: rationally inattentive.

Stage 1. Household h has a prior belief \bar{x}_h about the state of the economy.

Stage 2. CB transmits a message, $x \sim \mathcal{N}(0, \sigma_x^2)$, revealing true state of the economy.

Stage 3. Households receive the CB's message as a noisy signal: $s_h = x + \underbrace{\epsilon_h}_{\text{noise}}$ **Stage 4.** Update beliefs: $\tilde{x}_h = E[x|s_h] = (1 - \xi_h)\bar{x}_h + \xi_h s_h$

Choosing ξ_h based on utility from being informed, $u_h(x, \tilde{x}_h)$, and cost of attention, $c_h(\mu)$

Result: Optimal attention: $\frac{\partial \xi_h^*}{\partial \mu} < 0$, and inaccuracy of updated belief: $\frac{\partial (x - \tilde{x}_h)}{\partial \mu} > 0$.

Model - Extension 2

Scenario 2: RI journalists unintentionally bias the signal when they simplify it

Journalists receive a *clean* signal from the central bank: $\tilde{x}_m^B = x$ but in seeking to simplify it, generates 'unintentional bias':

$$s_p^B = (1 - \mu \sigma_x^2) x + \epsilon_p \tag{1}$$

The public optimally allocates attention to this simplified, but now biased signal, generating posterior belief:

$$x - \tilde{x}_p^B = \mu \sigma_x^2 x + \frac{\tau x}{2b_p \sigma_x^2} (1 - \mu \sigma_x^2) - \eta_p \tag{2}$$