Knowing your Lemon before You Dump it

Alessandro Pavan Jean Tirole

Motivation

- Strategic situations where decision to "engage" carries information
 - trade
 - partnerships
 - entry
 - marriage
 - ...
- Lemons (Akerlof)
 - negative inferences
- Anti-lemons (Spence)
 - positive inferences
- Endogenous information
 - acquisition
 - cognition

This Paper

- Generalized lemons (and anti-lemons)
 - endogenous information
- Information choices
 - type of strategic interaction
 - opponent's beliefs over selected information (expectation conformity)
 - effect of information on severity of adverse selection
 - effect of friendliness of opponent's reaction on value of information
- Expectation traps
- Disclosure and Cognitive Style
- Welfare and policy

Literature – Incomplete

- Endogenous info in lemons problem
 - Dang (2008), Thereze (2022), Lichtig and Weksler, (2023) \rightarrow EC, \neq bargaining game, timing, CS (gains from interaction, disclosure, policy)
- Payoffs in lemons problem
 - Levin (2001), Bar-Isaac et al. (2018), Kartik and Zhong (2023)... \rightarrow incentives analysis
- Policy in lemons mkts
 - Philippon and Skreta (2012), Tirole (2012), Dang et al (2017)... \rightarrow endogenous information
- Endogenous info in private-value bargaining
 - Ravid (2020), Ravid, Roesler, and Szentes (2021)...
 → lemons problem, competitive mkt
- Expectation conformity
 - Pavan and Tirole (2022)
 - \rightarrow different class of games (generalized lemons and anti-lemons)
- Mandatory disclosure laws
 - Pavan and Tirole (2023a)
 - \rightarrow endogenous information

Introduction

2 Model

- Expectation Conformity
- Expectation Traps
- Olicy Interventions
- I Flexible Information

Players

- Leader
- Follower

Choices

- Leader:
 - information structure, ρ
 - two actions:
 - adverse-selection-sensitive, a = 1 (engage)
 - adverse-selection insensitive, a = 0 (not engage)
- Follower:
 - reaction, $r \in \mathbb{R}$

State

- $\omega \sim {\rm prior}~G$
- mean: ω_0

Payoffs

- leader: $\delta_L(r, \omega) \equiv u_L(1, r, \omega) u_L(0, \omega)$
 - affine in $\boldsymbol{\omega}$
 - increasing in r (higher r: friendlier reaction)
 - decreasing in $\boldsymbol{\omega}$
 - benefit of friendlier reaction (weakly) increasing in state: $\frac{\partial^2 \delta_L}{\partial \omega \partial r} \ge 0$
- follower: $\delta_F(r, \omega) \equiv u_F(1, r, \omega) u_F(0, \omega)$
 - affine in $\boldsymbol{\omega}$

• Leader: seller

- $u_L(1, r, \omega) = r$ (price)
- $u_L(0, r, \omega) = \omega$ (asset value)

•
$$\delta_L(r, \omega) = r - \omega$$

• Follower: competitive buyer

- $u_F(0,\omega) = 0$
- $u_F(1, r, \omega) = \omega + \Delta r$
- $\delta_L(r, \omega) = u_F(1, r, \omega)$

- Information structure: $ho \in \mathbb{R}_+$
 - cdf $G(m; \rho)$ over posterior mean m (mean-preserving-contraction of G)
 - C(ρ): cost of information

Definition

Information structures consistent with **MPS order** (mean-preserving spreads) if, for any $\rho' > \rho$, any $m^* \in \mathbb{R}$, $\int_{-\infty}^{m^*} G(m; \rho') dm \ge \int_{-\infty}^{m^*} G(m; \rho) dm$

with $\int_{-\infty}^{+\infty} G(m; \rho') dm = \int_{-\infty}^{+\infty} G(m; \rho) dm = \omega_0.$

• For any (
ho,r), leader engages (i.e., a=1) iff $m\leq m^*(r)$ with $\delta_t(r,\,m^*(r))=0$

- $r(\rho)$: eq. reaction in fictitious game with exogenous information ρ
- Assumption (lemons):

$$\frac{dr(\rho)}{d\rho} \stackrel{\text{sgn}}{=} \frac{\partial}{\partial \rho} M^{-}(m^{*}(r(\rho)); \rho)$$

where

$$M^{-}(m^{*}; \rho) \equiv \mathbb{E}_{G(\cdot; \rho)}[m|m \leq m^{*}]$$

- Engagement threshold: $m^*(r) = r$
- Equilibrium price $r(\rho)$: solution to

 $r = M^{-}(r; \rho) + \Delta$

• Lemons:
$$\frac{dr(\rho)}{d\rho} \stackrel{\text{sgn}}{=} \frac{\partial}{\partial \rho} M^{-}(m^{*}(r(\rho)); \rho)$$

• always if $G(m; \rho)/g(m; \rho)$ increasing in m

Introduction

2 Model

Expectation Conformity

Expectation Traps

- Olicy Interventions
- I Flexible Information

Expectation Conformity

Effect of cognition on adverse selection

• $r(\rho)$: eq. reaction with exogenous cognition ρ

•
$$M^{-}(m^{*};\rho) \equiv rac{\int_{-\infty}^{m^{*}} m dG(m;\rho)}{G(m^{*};\rho)}$$

Definition

Information

• aggravates adverse selection if $\frac{\partial}{\partial \rho}M^{-}(m^{*}(r(\rho)); \rho) < 0$

• alleviates adverse selection if
$$\frac{\partial}{\partial \rho}M^{-}(m^{*}(r(\rho)); \rho) > 0$$

Effect of information on adverse selection

$$\frac{\partial}{\partial \rho} M^{-}(m^{*}; \rho) \stackrel{\text{sgn}}{=} A(m^{*}; \rho)$$

where

$$A(m^*;\rho) \equiv \left[m^* - M^-(m^*;\rho)\right] G_{\rho}(m^*;\rho) - \int_{-\infty}^{m^*} G_{\rho}(m;\rho) dm$$

with $G_{\rho}(m;\rho) \equiv \frac{\partial}{\partial \rho} G(m;\rho)$

• Two channels through which cognition affects AS:

• prob. of trade, $G_{\rho}(m^*; \rho)$

• dispersion of posterior mean, $\int_{-\infty}^{m^*} G_{\rho}(m; \rho) dm$

•
$$A(\rho) \equiv A(m^*(r(\rho)); \rho)$$
: adverse-selection effect

Effect of unfriendlier reactions on value of information

• L's payoff when actual cognition is ρ and reaction is r:

$$\Pi(\rho; r) = G(m^*(r); \rho)\delta_L(r, M^-(m^*(r); \rho))$$

- Benefit of friendlier reaction effect
 - ρ : actual information
 - ρ^{\dagger} : anticipated information (by F)

$$B(
ho;
ho^{\dagger}) \equiv -\frac{\partial^2}{\partial
ho\partial r}\Pi(
ho;r(
ho^{\dagger}))$$

- Starting from $r(\rho^{\dagger})$, reduction in r
 - raises value of information at ρ if $B(\rho; \rho^{\dagger}) > 0$
 - lowers value of information at ρ if $B(\rho; \rho^{\dagger}) < 0$

$$B(\rho;\rho^{\dagger}) = -\frac{\partial \delta_{L}(r,m^{*}(r(\rho^{\dagger})))}{\partial r}G_{\rho}\left(m^{*}(r(\rho^{\dagger});\rho\right) + \int_{-\infty}^{m^{*}(r(\rho^{\dagger}))}\frac{\partial^{2}\delta_{L}(r,m)}{\partial r\partial m}G_{\rho}(m;\rho)dm\right)$$

Two channels through which, starting from r(ρ[†]), reduction in r affects value of information at ρ:

• prob. of trade,
$$G_{\rho}\left(m^*(r(\rho^{\dagger});\rho\right)$$

• dispersion of posterior mean,
$$\int_{-\infty}^{m^*(r(\rho^{\dagger}))} \frac{\partial^2 \delta_L(r,m)}{\partial r \partial m} G_{\rho}(m; \rho) dm$$

• L's value function when actual information is ρ and F expects ρ^{\dagger} :

$$V_L(\rho; \rho^{\dagger}) \equiv \Pi(\rho; r(\rho^{\dagger}))$$

Definition

Expectation conformity holds at (ρ, ρ^{\dagger}) iff

$$rac{\partial^2 V_L(
ho;
ho^\dagger)}{\partial
ho \partial
ho^\dagger} > 0$$

•
$$A(\rho^{\dagger}) \stackrel{\text{sgn}}{=} \frac{\partial}{\partial \rho} M^{-}(m^{*}(r(\rho^{\dagger})); \rho^{\dagger})$$
: adverse-selection effect

•
$$B(\rho; \rho^{\dagger}) = -\frac{\partial^2 \Pi(\rho; r(\rho^{\dagger}))}{\partial \rho \partial r}$$
: benefit-of-friendlier-reactions effect

Expectation Conformity

Proposition

Assume MPS order.

(i) EC at (ρ, ρ^{\dagger}) iff $A(\rho^{\dagger})B(\rho; \rho^{\dagger}) < 0$.

(ii) Information aggravates AS at ρ^{\dagger} (i.e., $A(\rho^{\dagger}) < 0$) for Uniform, Pareto, Exponential $G(\cdot; \rho)$, or, more generally, when $G_{\rho}(m^{*}(r(\rho^{\dagger}); \rho^{\dagger}) < 0$.

(iii) Lower r raises incentive for information at (ρ, ρ^{\dagger}) (i.e., $B(\rho; \rho^{\dagger}) > 0$) if $G_{\rho}(m^{*}(r(\rho^{\dagger}); \rho) < 0$.

(iv) Therefore EC at (ρ, ρ^{\dagger}) if

$$\max\left\{\mathsf{G}_{\rho}(m^{*}(r(\rho^{\dagger}));\rho^{\dagger}),\mathsf{G}_{\rho}(m^{*}(r(\rho^{\dagger}));\rho)\right\}<0$$

(v) Suppose, for any m^{*}, $M^-(m^*; \rho)$ decreasing in ρ (e.g., Uniform, Pareto, Exponential) and $\partial^2 \delta_L(r, m) / \partial r \partial m = 0$ (e.g., Akerlof). Then, $G_\rho(m^*(r(\rho^{\dagger}); \rho) < 0$ NSC for EC at (ρ, ρ^{\dagger}) .

Introduction

2 Model

Expectation Conformity

Expectation Traps

- Olicy Interventions
- I Flexible Information

Expectation Traps

Proposition

Suppose ρ_1 and $\rho_2 > \rho_1$ are eq. levels and information aggravates AS, i.e., $A(\rho) < 0$ for all $\rho \in [\rho_1, \rho_2]$. Then L better off in low-information equilibrium ρ_1 . Converse true when information alleviates AS, i.e., $A(\rho) > 0$.

- Expectation traps
 - driven by AS effect
 - friendliness of F's reaction decreasing in L's information
 - expectation traps emerge even if information is free
- Contrast to private values + screening (Ravid et al. 2022)
 - equilibria Pareto ranked
 - eq. payoffs increasing in informativeness of the signal

Introduction

2 Model

Expectation Conformity

Expectation Traps

- Olicy Interventions
- I Flexible Information

Policy Interventions

Subsidies to Trade

• Welfare (competitive F):

$$W \equiv \int_{-\infty}^{m^*} \left(\delta_L(r,m) + s \right) dG(m;\rho) - C(\rho) - (1+\lambda) sG(m^*;\rho)$$

where

- s: subsidy to trade
- λ : cost of public funds (DWL of taxation)
- Subsidy impacts:
 - engagement, m*
 - friendliness of F's reaction, r
 - $\bullet\,$ cognition, ρ

- Subsidies optimal in Akerlof model when
 - 1. Small cost λ of public funds
 - 2. Information aggravates AS (A(ρ) < 0)
 - 3. CS of eq. same as BR: Subsidies reduce information acquisition

 Proposition 6 (in paper) identifies precise conditions for optimality of subsidies/taxes in generalized lemons/anti-lemons problems.

Corollary

In Akerlof model, endogeneity of information calls for larger subsidy when information reduces prob. of trade.

• Same condition for EC

- Double dividend of subsidy
 - more engagement
 - less information acquisition
- Implication for Gov. asset repurchases programs: more generous terms

Introduction

2 Model

Expectation Conformity

Expectation Traps

Olicy Interventions

Interview Flexible Information

Flexible Information

Flexible information

- **Entropy** cost of cognition:
 - ρ parametrizes MC of entropy reduction (alternatively, capacity)
 - L invests in ability to process info (MC or capacity)
 - then chooses experiment $q:\Omega
 ightarrow\Delta(Z)$ at cost

$$\frac{1}{\rho}c(I_q)$$

where I_q is mutual information between z and ω

- Max-slope of stochastic choice rule:
 - ρ parametrizes max slope of stochastic choice rule $\sigma:\Omega\to[0,1]$ specifying prob. she engages
 - L chooses ρ at cost C(ρ)
 - then selects experiment $q: \Omega \to \Delta(Z)$ and engagement strategy $a: Z \to [0, 1]$ among those inducing stochastic choice rule with slope less than ρ

• Key insights similar to those under MPS order

- Endogenous information in mks with adverse selection
- Expectation conformity
 - prob of engagement decreasing in information
 - large gains from interaction
- Expectation traps
- Welfare and policy implications
 - endogeneous info: larger subsidies

• Ongoing work:

- bilateral information acquisition
- public information disclosures
- ...

THANKS!