Marriage and employment returns to female education

Mohammad Hoseini

Tehran Institute for Advanced Studies, Khatam University

August 30, 2023
EEA/ESEM 2023, Barcelona

Motivation

The past century has witnessed a dramatic increase in women's education.
Schooling of female population, 15 years and over

region
-- Advanced Economies
\simeq East Asia and the Pacific

- Europe and Central Asia
- Latin America and the Caribbean
\#- Middle East and North Africa
* South Asia
- Sub-Saharan Africa

Motivation

Education affects women's prospects in two markets:

- Labor market - Marriage market

Motivation

Education affects women's prospects in two markets:

- Labor market - Marriage market
- Extensive margin: working marriage

Motivation

Education affects women's prospects in two markets:

- Labor market - Marriage market
- Extensive margin:
working
marriage
- Intensive margin:
- match quality job spouse type

Motivation

Education affects women's prospects in two markets:

- Labor market - Marriage market
- Extensive margin:
working
marriage
- Intensive margin:
- match quality

> job
> wage \& salary
spouse type
surplus share

Motivation

Education affects women's prospects in two markets:

- Labor market - Marriage market
working
marriage
- Intensive margin:
- match quality
job
wage \& salary
- transfer
spouse type
surplus share
unobservable

Measuring marriage return to education

Wage premium is usually used to measure labor market return to education But in marriage markets, surplus and transfer are not observable

Estimation of surplus using matching patterns (who marries whom)

- Choo and Siow (2006): frictionless matching with transferable utility
- Recovering deterministic gains from marriage patterns

Measuring marriage return to education

Wage premium is usually used to measure labor market return to education But in marriage markets, surplus and transfer are not observable

Estimation of surplus using matching patterns (who marries whom)

- Choo and Siow (2006): frictionless matching with transferable utility
- Recovering deterministic gains from marriage patterns

Chiappori et al. (2017) use deterministic utilities to measure marriage return to education level 2 compared to 1 as

$$
\underbrace{U_{2}^{\text {married }}-U_{2}^{\text {single }}}_{\text {marriage gain from edu } 2}-(\underbrace{\left.U_{1}^{\text {married }}-U_{1}^{\text {single }}\right)}_{\text {marriage gain from edu } 1})
$$

This paper

Extends the framework of Choo and Siow (2006); Chiappori et al. (2017)

- Two bilateral matching markets: job market, marriage market
- Matching based on partner's quality (job \& spouse types)
- Estimation using 3-way empirical distribution table of women's education \times employment \times marital status.
- Using transfer in labor market (earnings) as OID restrictions for estimation.

Yet, no joint estimation for the marriage and employment return to education and their difference.

Sign-based identification with no distributional assumption.
Documenting the U.S. trends for 1960-2019 (and many other countries).

Basic matching model: extending Choo-Siow

There are a large number of women, firms, and men belonging to a small number of observable categories.

- $I \in\left\{1, \ldots, N_{I}\right\}$ women's education
- $J \in\left\{0,1, \ldots, N_{J}\right\}$ job classification ($0=$ not working)
- $K \in\left\{0,1, \ldots, N_{K}\right\}$ men's education ($0=$ single)

Basic matching model: extending Choo-Siow

There are a large number of women, firms, and men belonging to a small number of observable categories.

- $I \in\left\{1, \ldots, N_{I}\right\}$ women's education
- $J \in\left\{0,1, \ldots, N_{J}\right\}$ job classification ($0=$ not working)
- $K \in\left\{0,1, \ldots, N_{K}\right\}$ men's education ($0=$ single)

Women compete in two bilateral frictionless markets:

- Job market to match with firms
- Marriage market to match with men

Basic matching model: extending Choo-Siow

There are a large number of women, firms, and men belonging to a small number of observable categories.

- $I \in\left\{1, \ldots, N_{I}\right\}$ women's education
- $J \in\left\{0,1, \ldots, N_{J}\right\}$ job classification ($0=$ not working)
- $K \in\left\{0,1, \ldots, N_{K}\right\}$ men's education ($0=$ single)

Women compete in two bilateral frictionless markets:

- Job market to match with firms
- Marriage market to match with men
- In the job (marriage) market, the marriage (employment) category of the woman is important for firms (men).

Basic matching model: extending Choo-Siow

There are a large number of women, firms, and men belonging to a small number of observable categories.

- $I \in\left\{1, \ldots, N_{I}\right\}$ women's education
- $J \in\left\{0,1, \ldots, N_{J}\right\}$ job classification ($0=$ not working)
- $K \in\left\{0,1, \ldots, N_{K}\right\}$ men's education ($0=$ single)

Women compete in two bilateral frictionless markets:

- Job market to match with firms

Basic matching model: extending Choo-Siow

There are a large number of women, firms, and men belonging to a small number of observable categories.

- $I \in\left\{1, \ldots, N_{I}\right\}$ women's education
- $J \in\left\{0,1, \ldots, N_{J}\right\}$ job classification ($0=$ not working)
- $K \in\left\{0,1, \ldots, N_{K}\right\}$ men's education ($0=$ single)

Women compete in two bilateral frictionless markets:

- Job market to match with firms
- Marriage market to match with men

Extending Choo-Siow model

Woman's utility is quasi-linear in the payoffs from the two markets

$$
u_{i}=\underbrace{x_{i}}_{\substack{\text { marriage } \\ \text { transfer }}}+\Phi(\underbrace{w_{i}}_{\text {earnings }}), \quad \Phi \text { is a strictly increasing }
$$

By assuming separability of unobservable factors in observable categories,
$U^{I J K}=$ average utility of women with education I, job J, spouse K
is estimated up to a constant for each I using a distributional assumption for those unobservable terms.

Conditional returns to education I_{2} from I_{1} - extensive margin

Marriage return of marrying husband K conditional on employment J :

$$
r_{I_{1} I_{2} J K}^{m}=U^{I_{2} J K}-U^{I_{2} J 0}-\left(U^{I_{1} J K}-U^{I_{1} J 0}\right), \quad K \geq 1
$$

Employment return of getting job J conditional on marriage K :

$$
r_{I_{1} I_{2} J K}^{e}=U^{I_{2} J K}-U^{I_{2} 0 K}-\left(U^{I_{1} J K}-U^{I_{1} 0 K}\right), \quad J \geq 1
$$

The conditional difference between marriage K and employment J returns

$$
\delta_{I_{1} I_{2} J K}^{m e}=\underbrace{U^{I_{2} 0 K}-U^{I_{1} 0 K}}_{\text {married to } K \text { not-working }}-(\underbrace{U^{I_{2} J 0}-U^{I_{1} J 0}}_{\text {single working in } J}) \quad J, K \geq 1
$$

Returns with logit distribution

Let $n(I J K)$ be the population corresponding to education I, occupation J, and spouse K.

Proposition

If difference in unobservable terms has logit distribution

$$
\begin{array}{ll}
r_{I_{1} I_{2} J K}^{m}=\ln \frac{n\left(I_{2} J K\right) \times n\left(I_{1} J 0\right)}{n\left(I_{2} J 0\right) \times n\left(I_{1} J K\right)}, & K \geq 1 \\
r_{I_{1} I_{2} J K}^{e}=\ln \frac{n\left(I_{2} J K\right) \times n\left(I_{1} 0 K\right)}{n\left(I_{2} 0 K\right) \times n\left(I_{1} J K\right)}, & J \geq 1 \\
\delta_{I_{1} I_{2} J K}^{r}=\ln \frac{n\left(I_{2} 0 K\right) \times n\left(I_{1} J 0\right)}{n\left(I_{1} 0 K\right) \times n\left(I_{2} J 0\right)}, & J, K \geq 1
\end{array}
$$

Aggregate returns

Aggregate returns at the extensive margin

$$
\begin{aligned}
& \hat{r}_{I_{1} I_{2}}^{m}=E\left[r_{I_{1} I_{2} J K}^{m} \mid I_{1}, I_{2}\right] \\
& \hat{r}_{I_{1}}^{e} I_{2}=E\left[r_{I_{1} I_{2} J K} \mid I_{1}, I_{2}\right] \\
& \hat{\delta}_{I_{1} I_{2}}^{m e}=E\left[\delta_{I_{1} I_{2} J K}^{m e} \mid I_{1},\right. \\
& \hline
\end{aligned}
$$

Empirical methodology

The basic model is just-identified and throws out earnings information.
Adding more moments from average earnings $W^{I J K}$:

$$
U^{I J K}-U^{I J^{\prime} K}=\rho_{I K}\left(\Phi\left(W^{I J K}\right)-\Phi\left(W^{I J^{\prime} K}\right)\right), \quad J, J^{\prime}>0
$$

$\rho_{I K}$ is the sharing rule from just-identified model.
A heteroskedastic $\Phi(\cdot)$ as

$$
\Phi(W)=\frac{1}{1-\phi_{I}} W^{1-\phi_{I}}
$$

Finding $U^{I J K}$ and ϕ_{I} using Minimum Distance Estimator.

Dollar equivalent of spouse education

$$
u_{i}=\underbrace{x_{i}}_{\substack{\text { marriage } \\ \text { trancfor }}}+\Phi(\underbrace{w_{i}}_{\text {earnings }})
$$

$\Phi^{-1}(\cdot)$ converts utility units to earnings units
$r=\Delta U_{2}-\Delta U_{1}$ and from inverse function theorem

$$
\Phi^{-1}(r) \approx \frac{r}{\Phi^{\prime}\left(\Phi^{-1}(\bar{U})\right)}=\frac{r}{\Phi^{\prime}(\bar{W})}=r \bar{W}^{\phi}
$$

Data

USA: IPUMS USA, Version 12.0

- Census 1960 (5\%), 1970 (1\%), 1980 (5\%), 1990 (5\%), 2000 (5\%)
- American Community Surveys (ACS): 5-year averages $(2007,2012,2017)$
- 3-D discrete distribution for women between 35 and 50
- Average number of women per round: $1,270,000$

Classifications

- Education

1. Dropouts: have no high school qualification
2. High school: finished high school
3. Some college: attend 1 to 3 years of college
4. Bachelor: bachelor's degree
5. Graduate: higher education than bachelor's degree

- Occupation (ISCO code)

1. Unskilled: elementary occupations (code 9)
2. Skilled: skilled/semi-skilled workers (codes 0, 4 to 8)
3. High skilled: technicians and associate professionals (code 3)
4. Professional: managers, professionals (codes 1, 2)

Conditional marriage returns to female education in the US

spouse dropout \square high school \square some college
bachelor \square graduate

Conditional employment returns to female education in the US

occupation - unskilled $*$ skilled \cdot highskilled $\cdot \theta$ professional

Equivalent remuneration of marrying different men in 2017

		equivalent annual worth (in 2023 dollars)				\% of women's yearly earnings							
							women's education						
			$$										
\%	dropout					-1607	-4630	-8215	-7510	-4.91	-11.52	-13.76	-9.05
\cdots	high school	1014	858	3	-1230	3.10	2.13	0.00	-1.48				
$\stackrel{\square}{2}$	some college	965	3421	4445	3157	2.95	8.51	7.45	3.81				
$\stackrel{0}{0}$	bachelor	1119	3767	10357	9580	3.42	9.37	17.35	11.55				
$\stackrel{\square}{3}$	graduate	883	3500	10949	15056	2.70	8.71	18.34	18.15				

Aggregate extensive margin return indices in the US

Conclusion

Building a method for the joint estimation of marriage and employment returns to female education.

- Enabling comparison between the two returns
- Feasible in widely available cross-sectional household surveys
- Sign-based identification with no distributional assumption
- Separate estimations for extensive and intensive margins of the returns

Thank you!

m moseini@teias.institute

References:

Chiappori, P.-A., Salanié, B., and Weiss, Y. (2017). Partner Choice, Investment in Children, and the Marital College Premium. American Economic Review, 107(8):2109-2167.
Choo, E. and Siow, A. (2006). Who Marries Whom and Why. Journal of Political Economy, 114(1):175-201.

