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Objective and Motivation

• Major challenge in finance is to price cross-section of stock returns.

• That is, explain why do stocks differ in their expected returns?

• The first model proposed to address this challenge was the CAPM.

• When the CAPM failed, researchers then explored other candidate

models with hundreds of systematic risk factors (factor zoo).

• However, there is still a sizable pricing error in returns, called alpha.

• In this paper we ask:

What is missing in asset-pricing factor models?
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Where we deviate from existing models

• Existing models typically assume that only systematic (common)

risk is compensated in financial markets.

E(Rt+1 − Rft1N)− βλ = a = 0.

• β is a vector of assets’ exposures to systematic risk

• λ is a vector of prices of unit of systematic risk

• Under the Arbitrage Pricing Theory (APT) setting of Ross (1976,

1977), we explore the possibility that unsystematic risk is also

compensated.

E(Rt+1 − Rft1N)− βλ = a 6= 0.
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Our line of attack . . . use the SDF

• Each asset-pricing model implies a stochastic discount factor (SDF).

• The SDF adjusts cashflows for time and risk.

pricent = E[Mt+1 × cashflown
t+1] . . . cashflows

1 = E[Mt+1 × Rn
t+1] . . . returns

0 = E [Mt+1 × (Rn
t+1 − Rf )] . . . excess returns

E[Rn
t+1 − Rf︸ ︷︷ ︸

risk premium

] = − cov(Mt+1,R
n
t+1)︸ ︷︷ ︸

risk

×Rf . . . covariances

• We examine misspecification in factor models through lens of SDF.

• We use as a pricing metric the HJ distance.
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What we do

1. Under the APT setting

• Identify the admissible SDF implied by the APT (in which a 6= 0);

• Quantify the importance of unsystematic risk by estimating the SDF.

2. Given some candidate factor model

• Develop a methodology to correct a misspecified candidate model;

• Characterize what is missing in some popular models.
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What we find

• Unsystematic risk is priced in financial markets.

• The unsystematic SDF component explains more than 72% of

variation in the admissible SDF;

• Several successful factors correlate with unsystematic SDF

component, such as

• Value (Fama and French, 2015),

• Momentum (Jegadeesh and Titman, 1993).

• Systematic component of SDF is driven by Market factor.

• The Market factor explains 95% of the variation in the systematic

component of the SDF.

• What is missing in popular candidate models is, largely,

compensation for unsystematic risk.
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Theory: Our methodology



Arbitrage Pricing Theory (APT) . . . our starting point

• Gross returns are described by a latent linear factor model

Rt+1 − E(Rt+1) = β
(
ft+1 − E(ft+1)

)
+ et+1,

• Expected excess returns are, for some a,

E(Rt+1 − Rf 1N) = a + βλ,

• By asymptotic no-arbitrage, the vector a satisfies the no-arbitrage

restriction

∀N, a′V−1
e a ≤ δapt <∞.

• ft+1 be the K × 1 vector of common (latent) risk factors with risk premia λ and

a K × K positive definite covariance matrix Vf > 0,

• β = (β1, β2, . . . , βN)′ is the N × K full-rank matrix of loadings,

• et+1 is the vector of unsystematic shocks with zero mean and the N ×N positive

definite covariance matrix Ve > 0.
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Proposition 1: The SDF under the APT

• The SDF implied by the APT-model of asset returns is

Mt+1 = Mβ
t+1 + Ma

t+1, where

Mβ
t+1 =

1

Rf
−
λV−1

f

Rf
(ft+1 − E(ft+1)) . . . systematic component

Ma
t+1 = −a′V−1

e

Rf
et+1 . . . unsystematic component
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Now, develop results for second question:

What is missing in asset-pricing factor models?
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Correcting a candidate factor model

• Let’s consider a candidate model with K can observable risk factors

f cant+1.

Rt+1 − Rf 1N = α + βcanλcan + βcan(f cant+1 − E[f cant+1]) + εt+1

• The candidate model may omit

1. Systematic risk factors f mis
t+1

2. Compensation for unsystematic risk a.

• We can rewrite α and εt+1 as follows

α = a + βmisλmis

εt+1 = βmis(f mis
t+1 − E[f mis

t+1 ]) + et+1

Vε = var(εt+1) = βmisVf misβmis′ + Ve .
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Proposition 4: Correcting the candidate SDF

• Under the APT assumptions, there exists an admissible SDF Mt+1

Mt+1 = Mβ,can
t+1 + (Ma

t+1 + Mβ,mis
t+1 )︸ ︷︷ ︸

=Mα
t+1

,

Mβ,can
t+1 =

1

Rf
−

(λcan)′V−1
f can

Rf
(f cant+1 − E[f cant+1])

Mβ,mis
t+1 = −

(λmis)′V−1
f mis

Rf
(f mis
t+1 − E[f mis

t+1 ])

Ma
t+1 = −a′V−1

e

Rf
et+1
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Key insight of paper that follows from the proposition

• In the candidate model, α represents the pricing error:

α = E[Mβ,can
t+1 (Rt+1 − Rf 1N)]× Rf ,

• In the corrected model, α represents compensation for assets’

exposures to the missing factors f mis
t+1 and unsystematic risk et+1:

α = − cov(Mα
t+1, (Rt+1 − Rf 1N))× Rf

= − cov(Mt+1, εt+1)× Rf .

• In particular, a is compensation for unsystematic risk et+1:

a = − cov(Ma
t+1, (Rt+1 − Rf 1N))× Rf

= − cov(Mt+1, et+1)× Rf .
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Empirics: Apply methodology



Estimating the set of parameters

• We use Gaussian maximum-likelihood estimator under the

no-arbitrage restriction

max
θ∈Θ

`(θ;K )

s.t. a′V−1
e a ≤ δapt

• Determine the hyper-parameters (K , δapt)

• using cross-validation

• with HJ-distance as selection metric.
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Data

• Basis assets: 202 characteristic-based portfolios with monthly

returns: 1963:07 to 2019:08. list

• To interpret our results, we collected a comprehensive set of
variables at monthly frequency potentially spanning the SDF

• 457 traded strategies list

• 103 non-traded variables list
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Model selection: determine hyper-parameters (K , δapt)

• K = 2

• δapt = 0.0529

• SRa = 0.80 p.a.

• Unsystematic risk

is priced.
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Time-series properties of SDF and its components

0
1

2
M̂

ex
p

0
1

2

M̂
ex

p

a

0
1

2

M̂
ex

p

β

1970 1980 1990 2000 2010 2020

15/22



Time-series properties of SDF and its components

0
1

2
M̂

ex
p

0
1

2

M̂
ex

p

a

0
1

2

M̂
ex

p

β

1970 1980 1990 2000 2010 2020

15/22



Time-series properties of SDF and its components

0
1

2
M̂

ex
p

0
1

2

M̂
ex

p

a

0
1

2

M̂
ex

p

β

1970 1980 1990 2000 2010 2020

15/22



Time-series properties of SDF and its components

0
1

2
M̂

ex
p

0
1

2

M̂
ex

p

a

0
1

2

M̂
ex

p

β

1970 1980 1990 2000 2010 2020

15/22



Time-series properties of SDF and its components

0
1

2
M̂

ex
p

0
1

2

M̂
ex

p

a

0
1

2

M̂
ex

p

β

1970 1980 1990 2000 2010 2020

15/22



SDF: Systematic versus unsystematic risk

• Unsystematic risk accounts for 73% of variation in SDF

• Latent systematic factors explain only 27% of variation in SDF

std dev % var(log(M̂exp,t+1))

log(M̂exp,t+1) 0.89 100.00

log(M̂a
exp,t+1) 0.79 72.60

log(M̂β
exp,t+1) 0.51 27.40
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Focus on the unsystematic SDF component

• Acyclical: no relation to the NBER recession indicator

• Idiosyncratic-volatility factor (Ang, Hodrick, Xing, and Zhang, 2006)

explains no more than 10% of variation of Ma
t+1.

• 307 out of 457 (about 70%) of trading-strategy returns have

significant correlations with the unsystematic SDF component.

• Observed strategies do not fully span the unsystematic SDF

component. graph

• The strategies with highest compensation for unsystematic risk,

RPa
strategy , are attributed to frictions and behavioral biases in the

literature.

RPa
strategy = −cov(Ma

t+1,Rstrategy ,t+1)× Rf .
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Focus on the systematic SDF component

• Cyclical: related to the NBER recession indicator

• Market factor explains 95.22% of variation in systematic SDF

component.

• To explain 99% of variation in the systematic SDF-component,
need to add to the Market factor:

• Sales-to-market,

• Dollar trading volume, (. . . highly correlated with the Size factor)

• Bid-ask spread,

• Days with zero trades.

• To explain 99.5% of variation in the systematic SDF-component,

we need to use 17 observable tradable factors. graph
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Empirical results for second question:

What is missing in candidate models?
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What is missing in CAPM, C-CAPM, and FF3?

• All three models omit

• systematic risk factors and compensation for unsystematic risk.

• The main source of misspecification (by far) is compensation for

unsystematic risk.

Std Dev or Sharpe ratio (p.a.) Variance decomp. (%)

log of log of

Model M̂exp,t+1 M̂a
t+1 M̂β,can

t+1 M̂β,mis
t+1 M̂a

t+1 M̂β,can
t+1 M̂β,mis

t+1

APT 0.89 0.79 0.51 72.60 27.40

CAPM 0.89 0.80 0.42 0.27 74.14 18.48 7.38

C-CAPM 0.92 0.79 0.36 0.42 66.05 15.92 18.03

FF3 0.99 0.80 0.67 0.27 55.49 38.30 6.21
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Consistent correction of candidate factor models

• After correction, SDFs implied by these models are almost perfectly

correlated to each other;

Correlations

log(M̂exp,t+1) log(M̂a
exp,t+1)

Corrected Corrected

APT CAPM C-CAPM FF3 APT CAPM C-CAPM FF3

APT 1.00 0.99 0.97 0.98 1.00 0.97 1.00 0.94

CAPM 0.99 1.00 0.96 0.97 0.97 1.00 0.97 0.93

C-CAPM 0.97 0.96 1.00 0.94 1.00 0.97 1.00 0.93

FF3 0.98 0.97 0.94 1.00 0.94 0.93 0.93 1.00

• The pricing performances are aligned across the corrected models.
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Microfoundations

for pricing of unsystematic risk
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Micro-foundations for priced asset-specific risk

• Merton (1987) develops an equilibrium model in which

• only a proportion qi of investors are informed about asset i ;

• Returns, the SDF and its components have the same functional form

as what we have specified in our APT-based model.

• Proposition 5: When N →∞
• Equilibrium asset returns are

Ri − Rf = ai + βi (Rm − Rf ) + ei , where ai = γσ2
i

(
1

qi
− 1

)
Vi

Vm
;

• Equilibrium SDF is

M = −a′Ve

Rf
e︸ ︷︷ ︸

Ma

+
1

Rf
− E(Rm − Rf )

Rf × var(Rm)
(Rm − E(Rm))︸ ︷︷ ︸

Mβ

21/22



Micro-foundations for priced asset-specific risk

• Merton (1987) develops an equilibrium model in which

• only a proportion qi of investors are informed about asset i ;

• Returns, the SDF and its components have the same functional form

as what we have specified in our APT-based model.

• Proposition 5: When N →∞
• Equilibrium asset returns are

Ri − Rf = ai + βi (Rm − Rf ) + ei , where ai = γσ2
i

(
1

qi
− 1

)
Vi

Vm
;

• Equilibrium SDF is

M = −a′Ve

Rf
e︸ ︷︷ ︸

Ma

+
1

Rf
− E(Rm − Rf )

Rf × var(Rm)
(Rm − E(Rm))︸ ︷︷ ︸

Mβ

21/22



Conclusion



Conclusion

• Develop a methodology

• to identify what is missing in factor models;

• use this to examine potential significance of unsystematic risk.

• Key insight: quantitative importance of unsystematic risk

• for theorists: vital for developing microfounded models;

• for empiricists: essential for resolving the factor zoo;

• for corporate finance: crucial for estimating cost of capital.
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Thank you!

Please send comments to
m.dello-preite18@imperial.ac.uk

raman.uppal@edhec.edu

p.zaffaroni@imperial.ac.uk

zviadadze@hec.fr
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Basis assets

• Basis assets: 202 characteristic-based portfolios with monthly
returns: 1963:07 to 2019:08:

• 25 size and book-to-market portfolios,

• 17 industry portfolios,

• 25 investment profitability and investment,

• 25 size and variance portfolios,

• 35 size and net issuance portfolios,

• 25 size and accruals portfolios,

• 25 size and beta portfolios,

• 25 size and momentum portfolios

back



Data on 457 tradable factors potentially spanning the SDF

• Factors used in Chen and Zimmermann (2022), Jensen, Kelly, and

Pedersen (2021), and Kozak, Nagel, and Santosh (2020).

• Industry-adjusted value, momentum, and profitability factors

(Novy-Marx, 2013).

• Intra-industry value, momentum, and profitability factors, and basic

profitable-minus-unprofitable factor.

• Expected growth factor of Hou, Mo, Xue, and Zhang (2021) and

the momentum Up minus Down (UMD) factor.

• Factors from Bryzgalova, Huang, and Julliard (2023).
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Data on 103 macro factors potentially spanning the SDF

• Macroeconomic and business-cycle variables

• 3 principal components and their VAR residuals for 279 macro

variables (Jurado, Ludvigson, and Ng, 2015).

• 8 principal components and their VAR residuals for 128 macro

variables (McCracken and Ng, 2015).

• Consumption and inflation variables.

• Sentiment and confidence indexes.

• Volatility and uncertainty measures

• Market-dislocations index (Pasquariello, 2014)

• Disagreement index (Huang, Li, and Wang, 2021)

• Chicago Board Options Exchange volatility index (VIX, from CBOE)

• US econ. policy uncertainty index EPU (Baker, Bloom, and Davis, 2016)

• Equity-mkt vol. (EMV) tracker (Baker, Bloom, and Davis, 2016).
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Spanning Ma
t+1 with observed factors
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Spanning Mβ,mis
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