What is Missing in **Asset-Pricing Factor Models?**

Massimo Dello Preite

Paolo Zaffaroni

Imperial College London

Raman Uppal

Imperial College London Edhec Business School, CEPR

Irina Zviadadze

HEC Paris. CEPR

EEA-ESEM 2023 Barcelona School of Economics 28th August - 1st September

Objective and Motivation

- Major challenge in finance is to price cross-section of stock returns.
 - That is, explain why do stocks differ in their expected returns?
- The first model proposed to address this challenge was the CAPM.
- When the CAPM failed, researchers then explored other candidate models with hundreds of systematic risk factors (factor zoo).
- However, there is still a sizable pricing error in returns, called alpha.
- In this paper we ask:What is missing in asset-pricing factor models?

Objective and Motivation

- Major challenge in finance is to price cross-section of stock returns.
 - That is, explain why do stocks differ in their expected returns?
- The first model proposed to address this challenge was the CAPM.
- When the CAPM failed, researchers then explored other candidate models with hundreds of systematic risk factors (factor zoo).
- However, there is still a sizable pricing error in returns, called alpha.
- In this paper we ask:What is missing in asset-pricing factor models?

Objective and Motivation

- Major challenge in finance is to price cross-section of stock returns.
 - That is, explain why do stocks differ in their expected returns?
- The first model proposed to address this challenge was the CAPM.
- When the CAPM failed, researchers then explored other candidate models with hundreds of systematic risk factors (factor zoo).
- However, there is still a sizable pricing error in returns, called alpha.
- In this paper we ask: What is missing in asset-pricing factor models?

Where we deviate from existing models

 Existing models typically assume that only systematic (common) risk is compensated in financial markets.

$$\mathbb{E}(R_{t+1} - R_{ft}1_N) - \beta\lambda = a = 0.$$

- ullet is a vector of assets' exposures to systematic risk
- ullet λ is a vector of prices of unit of systematic risk
- Under the Arbitrage Pricing Theory (APT) setting of Ross (1976, 1977), we explore the possibility that unsystematic risk is also compensated.

$$\mathbb{E}(R_{t+1} - R_{ft}1_N) - \beta\lambda = a \neq 0.$$

Where we deviate from existing models

 Existing models typically assume that only systematic (common) risk is compensated in financial markets.

$$\mathbb{E}(R_{t+1} - R_{ft}1_N) - \beta\lambda = a = 0.$$

- ullet is a vector of assets' exposures to systematic risk
- $\bullet \;\; \lambda$ is a vector of prices of unit of systematic risk
- Under the Arbitrage Pricing Theory (APT) setting of Ross (1976, 1977), we explore the possibility that unsystematic risk is also compensated.

$$\mathbb{E}(R_{t+1}-R_{ft}1_N)-\beta\lambda=a\neq0.$$

Our line of attack ... use the SDF

- Each asset-pricing model implies a stochastic discount factor (SDF).
- The SDF adjusts cashflows for time and risk.

$$\begin{aligned} \mathsf{price}_t^n &= \mathbb{E}[M_{t+1} \times \mathsf{cashflow}_{t+1}^n] & \dots \mathsf{cashflows} \\ 1 &= \mathbb{E}[M_{t+1} \times R_{t+1}^n] & \dots \mathsf{returns} \\ 0 &= \mathbb{E}\left[M_{t+1} \times (R_{t+1}^n - R_f)\right] & \dots \mathsf{excess} \; \mathsf{returns} \\ \mathbb{E}[R_{t+1}^n - R_f] &= -\underbrace{\mathsf{cov}(M_{t+1}, R_{t+1}^n)}_{\mathsf{risk}} \times R_f & \dots \mathsf{covariances} \end{aligned}$$

- We examine misspecification in factor models through lens of SDF.
- We use as a pricing metric the HJ distance.

What we do

- 1. Under the APT setting
 - Identify the admissible SDF implied by the APT (in which $a \neq 0$);
 - Quantify the importance of unsystematic risk by estimating the SDF.
- Given some candidate factor mode
 - Develop a methodology to correct a misspecified candidate model;
 - Characterize what is missing in some popular models.

What we do

- 1. Under the APT setting
 - Identify the admissible SDF implied by the APT (in which $a \neq 0$);
 - Quantify the importance of unsystematic risk by estimating the SDF.
- 2. Given some candidate factor model
 - Develop a methodology to correct a misspecified candidate model;
 - Characterize what is missing in some popular models.

What we find

- Unsystematic risk is priced in financial markets.
 - The unsystematic SDF component explains more than 72% of variation in the admissible SDF;
 - Several successful factors correlate with unsystematic SDF component, such as
 - Value (Fama and French, 2015),
 - Momentum (Jegadeesh and Titman, 1993).
- Systematic component of SDF is driven by Market factor.
 - The Market factor explains 95% of the variation in the systematic component of the SDF.
- What is missing in popular candidate models is, largely, compensation for unsystematic risk.

What we find

- Unsystematic risk is priced in financial markets.
 - The unsystematic SDF component explains more than 72% of variation in the admissible SDF;
 - Several successful factors correlate with unsystematic SDF component, such as
 - Value (Fama and French, 2015),
 - Momentum (Jegadeesh and Titman, 1993).
- Systematic component of SDF is driven by Market factor.
 - The Market factor explains 95% of the variation in the systematic component of the SDF.
- What is missing in popular candidate models is, largely, compensation for unsystematic risk.

What we find

- Unsystematic risk is priced in financial markets.
 - The unsystematic SDF component explains more than 72% of variation in the admissible SDF;
 - Several successful factors correlate with unsystematic SDF component, such as
 - Value (Fama and French, 2015),
 - Momentum (Jegadeesh and Titman, 1993).
- Systematic component of SDF is driven by Market factor.
 - The Market factor explains 95% of the variation in the systematic component of the SDF.
- What is missing in popular candidate models is, largely, compensation for unsystematic risk.

Theory: Our methodology

Arbitrage Pricing Theory (APT) ... our starting point

• Gross returns are described by a latent linear factor model

$$R_{t+1} - \mathbb{E}(R_{t+1}) = \beta \big(f_{t+1} - \mathbb{E}(f_{t+1}) \big) + \mathbf{e_{t+1}},$$

• Expected excess returns are, for some a,

$$\mathbb{E}(R_{t+1} - R_f 1_N) = \mathbf{a} + \beta \lambda,$$

 By asymptotic no-arbitrage, the vector a satisfies the no-arbitrage restriction

$$\forall N, \quad \mathbf{a}' V_e^{-1} \mathbf{a} \leq \delta_{\mathsf{apt}} < \infty.$$

- f_{t+1} be the $K \times 1$ vector of common (latent) risk factors with risk premia λ and a $K \times K$ positive definite covariance matrix $V_f > 0$,
- $\beta = (\beta_1, \beta_2, \dots, \beta_N)'$ is the $N \times K$ full-rank matrix of loadings,
- e_{t+1} is the vector of unsystematic shocks with zero mean and the $N \times N$ positive definite covariance matrix $V_e > 0$.

Arbitrage Pricing Theory (APT) ... our starting point

• Gross returns are described by a latent linear factor model

$$R_{t+1} - \mathbb{E}(R_{t+1}) = \beta \big(f_{t+1} - \mathbb{E}(f_{t+1}) \big) + \mathbf{e_{t+1}},$$

• Expected excess returns are, for some a,

$$\mathbb{E}(R_{t+1}-R_f1_N)=a+\beta\lambda,$$

 By asymptotic no-arbitrage, the vector a satisfies the no-arbitrage restriction

$$\forall N, \quad \mathbf{a}' V_e^{-1} \mathbf{a} \leq \delta_{\mathsf{apt}} < \infty.$$

- f_{t+1} be the $K \times 1$ vector of common (latent) risk factors with risk premia λ and a $K \times K$ positive definite covariance matrix $V_f > 0$,
- $\beta = (\beta_1, \beta_2, \dots, \beta_N)'$ is the $N \times K$ full-rank matrix of loadings,
- e_{t+1} is the vector of unsystematic shocks with zero mean and the $N \times N$ positive definite covariance matrix $V_e > 0$.

Arbitrage Pricing Theory (APT) ... our starting point

• Gross returns are described by a latent linear factor model

$$R_{t+1} - \mathbb{E}(R_{t+1}) = \beta \big(f_{t+1} - \mathbb{E}(f_{t+1}) \big) + \mathbf{e_{t+1}},$$

• Expected excess returns are, for some a,

$$\mathbb{E}(R_{t+1}-R_f1_N)=a+\beta\lambda,$$

 By asymptotic no-arbitrage, the vector a satisfies the no-arbitrage restriction

$$\forall N$$
, $\mathbf{a}'V_e^{-1}\mathbf{a} \leq \delta_{\mathsf{apt}} < \infty$.

- f_{t+1} be the $K \times 1$ vector of common (latent) risk factors with risk premia λ and a $K \times K$ positive definite covariance matrix $V_f > 0$,
- $\beta = (\beta_1, \beta_2, \dots, \beta_N)'$ is the $N \times K$ full-rank matrix of loadings,
- e_{t+1} is the vector of unsystematic shocks with zero mean and the $N \times N$ positive definite covariance matrix $V_e > 0$.

Proposition 1: The SDF under the APT

The SDF implied by the APT-model of asset returns is

$$M_{t+1} = M_{t+1}^{\beta} + M_{t+1}^{a}$$
, where

$$M_{t+1}^{eta} = rac{1}{R_f} - rac{\lambda V_f^{-1}}{R_f} (f_{t+1} - \mathbb{E}(f_{t+1}))$$
 ... systematic component

$$M_{t+1}^a = -rac{a'V_e^{-1}}{R_f}e_{t+1}$$
 ... unsystematic component

Now, develop results for second question: What is missing in asset-pricing factor models?

Correcting a candidate factor model

• Let's consider a candidate model with K^{can} observable risk factors f_{t+1}^{can} .

$$R_{t+1} - R_f 1_N = \alpha + \beta^{can} \lambda^{can} + \beta^{can} (f_{t+1}^{can} - \mathbb{E}[f_{t+1}^{can}]) + \varepsilon_{t+1}$$

- The candidate model may omit
 - 1. Systematic risk factors f_{t+1}^{mis}
 - 2. Compensation for unsystematic risk a.
- We can rewrite α and ε_{t+1} as follows

$$egin{aligned} & lpha = \mathsf{a} + eta^{ extit{mis}} \lambda^{ extit{mis}} \ & arepsilon_{t+1} = eta^{ extit{mis}} ig(f^{ extit{mis}}_{t+1} - \mathbb{E}[f^{ extit{mis}}_{t+1}]ig) + e_{t+1} \ & V_{arepsilon} = \mathrm{var}(arepsilon_{t+1}) = eta^{ extit{mis}} V_{f^{ extit{mis}}} eta^{ extit{mis}'} + V_{e}. \end{aligned}$$

Correcting a candidate factor model

• Let's consider a candidate model with K^{can} observable risk factors f_{t+1}^{can} .

$$R_{t+1} - R_f 1_N = \alpha + \beta^{can} \lambda^{can} + \beta^{can} (f_{t+1}^{can} - \mathbb{E}[f_{t+1}^{can}]) + \varepsilon_{t+1}$$

- The candidate model may omit
 - 1. Systematic risk factors f_{t+1}^{mis}
 - 2. Compensation for unsystematic risk a.
- We can rewrite α and ε_{t+1} as follows

$$egin{aligned} & lpha = \mathbf{a} + eta^{ extit{mis}} \lambda^{ extit{mis}} \ & arepsilon_{t+1} = eta^{ extit{mis}} (f_{t+1}^{ extit{mis}} - \mathbb{E}[f_{t+1}^{ extit{mis}}]) + e_{t+1} \ & V_{arepsilon} = ext{var}(arepsilon_{t+1}) = eta^{ extit{mis}} V_{f^{ extit{mis}}} eta^{ extit{mis}'} + V_{e^{ extit{mis}}} \end{aligned}$$

Correcting a candidate factor model

• Let's consider a candidate model with K^{can} observable risk factors f_{t+1}^{can} .

$$R_{t+1} - R_f 1_N = \alpha + \beta^{can} \lambda^{can} + \beta^{can} (f_{t+1}^{can} - \mathbb{E}[f_{t+1}^{can}]) + \varepsilon_{t+1}$$

- The candidate model may omit
 - 1. Systematic risk factors f_{t+1}^{mis}
 - 2. Compensation for unsystematic risk a.
- We can rewrite α and ε_{t+1} as follows

$$\begin{split} &\alpha = \mathbf{a} + \beta^{\textit{mis}} \lambda^{\textit{mis}} \\ &\varepsilon_{t+1} = \beta^{\textit{mis}} \big(f^{\textit{mis}}_{t+1} - \mathbb{E}[f^{\textit{mis}}_{t+1}] \big) + \mathbf{e}_{t+1} \\ &V_{\varepsilon} = \mathsf{var}(\varepsilon_{t+1}) = \beta^{\textit{mis}} V_{f^{\textit{mis}}} \beta^{\textit{mis}'} + V_{e}. \end{split}$$

Proposition 4: Correcting the candidate SDF

ullet Under the APT assumptions, there exists an admissible SDF M_{t+1}

$$M_{t+1} = M_{t+1}^{\beta, can} + \underbrace{\left(M_{t+1}^a + M_{t+1}^{\beta, mis}\right)}_{=M_{t+1}^{\alpha}},$$

$$egin{aligned} M_{t+1}^{eta, can} &= rac{1}{R_f} - rac{(\lambda^{can})' V_{fcan}^{-1}}{R_f} (f_{t+1}^{can} - \mathbb{E}[f_{t+1}^{can}]) \ M_{t+1}^{eta, mis} &= -rac{(\lambda^{mis})' V_{fmis}^{-1}}{R_f} (f_{t+1}^{mis} - \mathbb{E}[f_{t+1}^{mis}]) \ M_{t+1}^{oldsymbol{a}} &= -rac{a' V_e^{-1}}{R_f} e_{t+1} \end{aligned}$$

Key insight of paper that follows from the proposition

• In the candidate model, α represents the pricing error:

$$\alpha = \mathbb{E}[M_{t+1}^{\beta,can}(R_{t+1} - R_f 1_N)] \times R_f,$$

• In the corrected model, α represents compensation for assets' exposures to the missing factors f_{t+1}^{mis} and unsystematic risk e_{t+1}

$$egin{aligned} &lpha = -\operatorname{cov}(extit{ extit{M}}_{t+1}^{lpha}, (R_{t+1} - R_f 1_N)) imes R_f \ &= -\operatorname{cov}(extit{ extit{M}}_{t+1}, arepsilon_{t+1}) imes R_f. \end{aligned}$$

• In particular, a is compensation for unsystematic risk e_{t+1} :

$$a = -\cos(M_{t+1}^a, (R_{t+1} - R_f 1_N)) \times R_f$$

= $-\cos(M_{t+1}, e_{t+1}) \times R_f$.

Key insight of paper that follows from the proposition

• In the candidate model, α represents the pricing error:

$$lpha = \mathbb{E}[M_{t+1}^{\beta,can}(R_{t+1} - R_f 1_N)] \times R_f,$$

• In the corrected model, α represents compensation for assets' exposures to the missing factors f_{t+1}^{mis} and unsystematic risk e_{t+1} :

$$\begin{aligned} &\alpha = -\operatorname{cov}(M_{t+1}^{\alpha}, (R_{t+1} - R_f 1_N)) \times R_f \\ &= -\operatorname{cov}(M_{t+1}, \varepsilon_{t+1}) \times R_f. \end{aligned}$$

• In particular, a is compensation for unsystematic risk e_{t+1} :

$$a = -\cos(M_{t+1}^a, (R_{t+1} - R_f 1_N)) \times R_f$$

= $-\cos(M_{t+1}, e_{t+1}) \times R_f$.

Key insight of paper that follows from the proposition

• In the candidate model, α represents the pricing error:

$$lpha = \mathbb{E}[oldsymbol{\mathcal{M}}_{t+1}^{eta, \mathsf{can}}(R_{t+1} - R_{f}1_{\mathsf{N}})] imes R_{f},$$

• In the corrected model, α represents compensation for assets' exposures to the missing factors f_{t+1}^{mis} and unsystematic risk e_{t+1} :

$$\alpha = -\operatorname{cov}(M_{t+1}^{\alpha}, (R_{t+1} - R_f 1_N)) \times R_f$$

= $-\operatorname{cov}(M_{t+1}, \varepsilon_{t+1}) \times R_f$.

• In particular, a is compensation for unsystematic risk e_{t+1} :

$$a = -\cos(M_{t+1}^a, (R_{t+1} - R_f 1_N)) \times R_f$$

= $-\cos(M_{t+1}, e_{t+1}) \times R_f$.

Empirics: Apply methodology

Estimating the set of parameters

 We use Gaussian maximum-likelihood estimator under the no-arbitrage restriction

$$\max_{\theta \in \Theta} \ \ell(\theta; K)$$
s.t. $a' V_e^{-1} a \le \delta_{apt}$

- Determine the hyper-parameters (K, δ_{apt})
 - using cross-validation
 - with HJ-distance as selection metric.

Data

• Basis assets: 202 characteristic-based portfolios with monthly returns: 1963:07 to 2019:08.

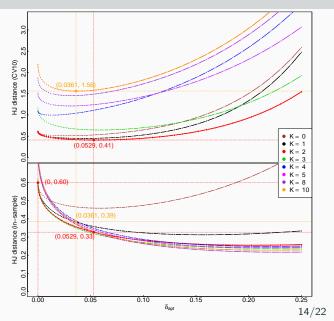
- To interpret our results, we collected a comprehensive set of variables at monthly frequency potentially spanning the SDF
 - 457 traded strategies (list)
 - 103 non-traded variables list

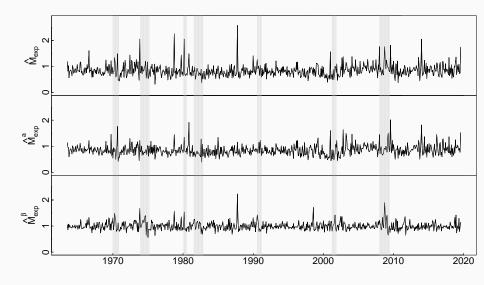
Data

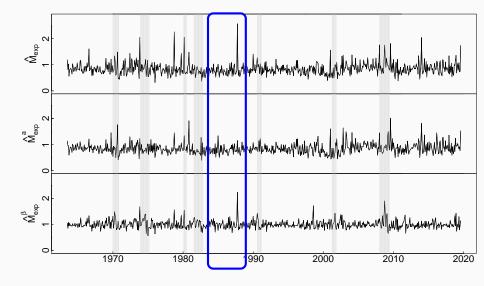
- Basis assets: 202 characteristic-based portfolios with monthly returns: 1963:07 to 2019:08.
- To interpret our results, we collected a comprehensive set of variables at monthly frequency potentially spanning the SDF
 - 457 traded strategies (list)
 - 103 non-traded variables (list)

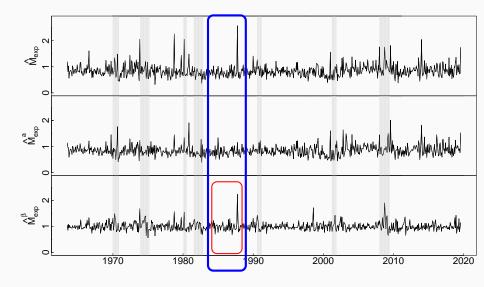
Model selection: determine hyper-parameters (K, δ_{apt})

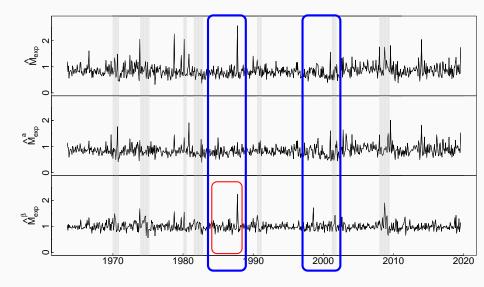
- K = 2
- $\delta_{apt} = 0.0529$
- $SR^a = 0.80$ p.a.
- Unsystematic risk is priced.

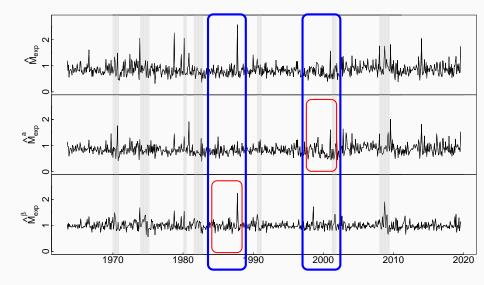












SDF: Systematic versus unsystematic risk

- Unsystematic risk accounts for 73% of variation in SDF
- Latent systematic factors explain only 27% of variation in SDF

	std dev	$\%$ var $(\log(\hat{M}_{exp,t+1}))$
$\log(\hat{M}_{\exp,t+1})$	0.89	100.00
$\log(\hat{M}^a_{{\sf exp},t+1})$	0.79	72.60
$\log(\hat{M}_{exp,t+1}^{eta})$	0.51	27.40

- Acyclical: no relation to the NBER recession indicator
- Idiosyncratic-volatility factor (Ang, Hodrick, Xing, and Zhang, 2006) explains no more than 10% of variation of M_{t+1}^a .
- 307 out of 457 (about 70%) of trading-strategy returns have significant correlations with the unsystematic SDF component.
- Observed strategies do not fully span the unsystematic SDF component.
- The strategies with highest compensation for unsystematic risk,
 RP^a_{strategy}, are attributed to frictions and behavioral biases in the literature.

$$\mathsf{RP}^{a}_{\mathit{strategy}} = -\mathsf{cov}(\mathit{M}^{a}_{t+1}, \mathit{R}_{\mathit{strategy}, t+1}) \times \mathit{R}_{\mathit{f}}$$

- Acyclical: no relation to the NBER recession indicator
- Idiosyncratic-volatility factor (Ang, Hodrick, Xing, and Zhang, 2006) explains no more than 10% of variation of M_{t+1}^a .
- 307 out of 457 (about 70%) of trading-strategy returns have significant correlations with the unsystematic SDF component.
- Observed strategies do not fully span the unsystematic SDF component.
- The strategies with highest compensation for unsystematic risk,
 RP^a_{strategy}, are attributed to frictions and behavioral biases in the literature.

$$\mathsf{RP}^{a}_{\mathit{strategy}} = -\mathsf{cov}(\mathit{M}^{a}_{t+1}, \mathit{R}_{\mathit{strategy}, t+1}) \times \mathit{R}_{\mathit{f}}$$

- Acyclical: no relation to the NBER recession indicator
- Idiosyncratic-volatility factor (Ang, Hodrick, Xing, and Zhang, 2006) explains no more than 10% of variation of M_{t+1}^a .
- 307 out of 457 (about 70%) of trading-strategy returns have significant correlations with the unsystematic SDF component.
- Observed strategies do not fully span the unsystematic SDF component.
- The strategies with highest compensation for unsystematic risk,
 RP^a_{strategy}, are attributed to frictions and behavioral biases in the literature.

$$\mathsf{RP}^{a}_{\mathit{strategy}} = -\mathsf{cov}(\mathit{M}^{a}_{t+1}, \mathit{R}_{\mathit{strategy}, t+1}) \times \mathit{R}_{\mathit{f}}$$

- Acyclical: no relation to the NBER recession indicator
- Idiosyncratic-volatility factor (Ang, Hodrick, Xing, and Zhang, 2006) explains no more than 10% of variation of M_{t+1}^a .
- 307 out of 457 (about 70%) of trading-strategy returns have significant correlations with the unsystematic SDF component.
- Observed strategies do not fully span the unsystematic SDF component.
- The strategies with highest compensation for unsystematic risk,
 RP^a_{strategy}, are attributed to frictions and behavioral biases in the literature.

$$\mathsf{RP}^{\mathsf{a}}_{\mathit{strategy}} = -\mathsf{cov}(M^{\mathsf{a}}_{t+1}, R_{\mathit{strategy}, t+1}) \times R_{\mathsf{f}}.$$

- Cyclical: related to the NBER recession indicator
- Market factor explains 95.22% of variation in systematic SDF component.
- To explain 99% of variation in the systematic SDF-component, need to add to the Market factor:
 - Sales-to-market.
 - Dollar trading volume, (... highly correlated with the Size factor)
 - Bid-ask spread,
 - Days with zero trades.
- To explain 99.5% of variation in the systematic SDF-component, we need to use 17 observable tradable factors.

- Cyclical: related to the NBER recession indicator
- Market factor explains 95.22% of variation in systematic SDF component.
- To explain 99% of variation in the systematic SDF-component, need to add to the Market factor:
 - Sales-to-market.
 - Dollar trading volume, (... highly correlated with the Size factor)
 - Bid-ask spread,
 - Days with zero trades.
- To explain 99.5% of variation in the systematic SDF-component, we need to use 17 observable tradable factors.

- Cyclical: related to the NBER recession indicator
- Market factor explains 95.22% of variation in systematic SDF component.
- To explain 99% of variation in the systematic SDF-component, need to add to the Market factor:
 - Sales-to-market,
 - Dollar trading volume, (...highly correlated with the Size factor)
 - Bid-ask spread,
 - Days with zero trades.
- To explain 99.5% of variation in the systematic SDF-component, we need to use 17 observable tradable factors.

- Cyclical: related to the NBER recession indicator
- Market factor explains 95.22% of variation in systematic SDF component.
- To explain 99% of variation in the systematic SDF-component, need to add to the Market factor:
 - Sales-to-market,
 - Dollar trading volume, (...highly correlated with the Size factor)
 - Bid-ask spread,
 - Days with zero trades.
- To explain 99.5% of variation in the systematic SDF-component, we need to use 17 observable tradable factors.

Empirical results for second question: What is missing in candidate models?

What is missing in CAPM, C-CAPM, and FF3?

- All three models omit
 - systematic risk factors and compensation for unsystematic risk.
 - The main source of misspecification (by far) is compensation for unsystematic risk.

	Std De	v or Sha	rpe ratio	Variance decomp. (%)				
		log	of	log of				
Model	$\hat{M}_{e imes p, t+1}$	\hat{M}_{t+1}^a	$\hat{M}_{t+1}^{eta,can}$	$\hat{M}_{t+1}^{eta,mis}$	\hat{M}_{t+1}^{a}	$\hat{M}_{t+1}^{eta,can}$	$\hat{M}_{t+1}^{eta,mis}$	
APT	0.89	0.79	0.	51	72.60	27	.40	
CAPM	0.89	0.80	0.42	0.27	74.14	18.48	7.38	
C-CAPM	0.92	0.79	0.36	0.42	66.05	15.92	18.03	
FF3	0.99	0.80	0.67	0.27	55.49	38.30	6.21	

What is missing in CAPM, C-CAPM, and FF3?

- All three models omit
 - systematic risk factors and compensation for unsystematic risk.
 - The main source of misspecification (by far) is compensation for unsystematic risk.

	Std De	v or Sha	rpe ratio	Variand	Variance decomp. (%)			
		log	of		log of			
Model	$\hat{M}_{exp,t+1}$	\hat{M}_{t+1}^{a}	$\hat{M}_{t+1}^{eta,can}$	$\hat{M}_{t+1}^{eta,mis}$	\hat{M}_{t+1}^{a}	$\hat{M}_{t+1}^{eta,can}$	$\hat{M}_{t+1}^{eta,mis}$	
APT	0.89	0.79	0.	51	72.60	27	.40	
CAPM	0.89	0.80	0.42	0.27	74.14	18.48	7.38	
C-CAPM	0.92	0.79	0.36	0.42	66.05	15.92	18.03	
FF3	0.99	0.80	0.67	0.27	55.49	38.30	6.21	

What is missing in CAPM, C-CAPM, and FF3?

- All three models omit
 - systematic risk factors and compensation for unsystematic risk.
 - The main source of misspecification (by far) is compensation for unsystematic risk.

	Std Dev	or Shar	pe ratio	Variance decomp. (%)				
		log	of		log of			
Model	$\hat{M}_{exp,t+1}$	\hat{M}_{t+1}^{a}	$\hat{M}_{t+1}^{eta,can}$	$\hat{M}_{t+1}^{eta,mis}$	\hat{M}_{t+1}^{a}	$\hat{M}_{t+1}^{eta,can}$	$\hat{M}_{t+1}^{eta,mis}$	
APT	0.89	0.79	0.	51	72.60	27.40		
CAPM	0.89	0.80	0.42	0.27	74.14	18.48	7.38	
C-CAPM	0.92	0.79	0.36	0.42	66.05	15.92	18.03	
FF3	0.99	0.80	0.67	0.27	55.49	38.30	6.21	

 After correction, SDFs implied by these models are almost perfectly correlated to each other;

	Correlations								
	$\log(\hat{M}_{\exp,t+1})$				$\log(\hat{M}^a_{exp,t+1})$				
			Corrected				Corrected		
	APT	CAPM	C-CAPM	FF3	APT	CAPM	C-CAPM	FF3	
APT	1.00	0.99	0.97	0.98	1.00	0.97	1.00	0.94	
CAPM	0.99	1.00	0.96	0.97	0.97	1.00	0.97	0.93	
C-CAPM	0.97	0.96	1.00	0.94	1.00	0.97	1.00	0.93	
FF3	0.98	0.97	0.94	1.00	0.94	0.93	0.93	1.00	

 After correction, SDFs implied by these models are almost perfectly correlated to each other;

		Correlations							
	$\log(\hat{M}_{exp,t+1})$					log(<i>M</i>	$_{exp,t+1}^{a})$		
			Corrected				Corrected		
	APT	CAPM	C-CAPM	FF3	APT	CAPM	C-CAPM	FF3	
APT	1.00	0.99	0.97	0.98	1.00	0.97	1.00	0.94	
CAPM	0.99	1.00	0.96	0.97	0.97	1.00	0.97	0.93	
C-CAPM	0.97	0.96	1.00	0.94	1.00	0.97	1.00	0.93	
FF3	0.98	0.97	0.94	1.00	0.94	0.93	0.93	1.00	

 After correction, SDFs implied by these models are almost perfectly correlated to each other;

		Correlations							
	$\log(\hat{M}_{exp,t+1})$					$\log(\hat{M})$	$_{exp,t+1}^{a})$		
			Corrected				Corrected		
	APT	CAPM	C-CAPM	FF3	APT	CAPM	C-CAPM	FF3	
APT	1.00	0.99	0.97	0.98	1.00	0.97	1.00	0.94	
CAPM	0.99	1.00	0.96	0.97	0.97	1.00	0.97	0.93	
C-CAPM	0.97	0.96	1.00	0.94	1.00	0.97	1.00	0.93	
FF3	0.98	0.97	0.94	1.00	0.94	0.93	0.93	1.00	

 After correction, SDFs implied by these models are almost perfectly correlated to each other;

	Correlations								
		$\log(\hat{M})$	$_{exp,t+1})$			log(<i>M</i>	$_{exp,t+1}^{a})$		
			Corrected				Corrected		
	APT	CAPM	C-CAPM	FF3	APT	CAPM	C-CAPM	FF3	
APT	1.00	0.99	0.97	0.98	1.00	0.97	1.00	0.94	
CAPM	0.99	1.00	0.96	0.97	0.97	1.00	0.97	0.93	
C-CAPM	0.97	0.96	1.00	0.94	1.00	0.97	1.00	0.93	
FF3	0.98	0.97	0.94	1.00	0.94	0.93	0.93	1.00	

 After correction, SDFs implied by these models are almost perfectly correlated to each other;

	Correlations							
	$\log(\hat{M}_{\exp,t+1})$					log(<i>M</i>	$_{exp,t+1}^{a})$	
			Corrected				Corrected	
	APT	CAPM	C-CAPM	FF3	APT	CAPM	C-CAPM	FF3
APT	1.00	0.99	0.97	0.98	1.00	0.97	1.00	0.94
CAPM	0.99	1.00	0.96	0.97	0.97	1.00	0.97	0.93
C-CAPM	0.97	0.96	1.00	0.94	1.00	0.97	1.00	0.93
FF3	0.98	0.97	0.94	1.00	0.94	0.93	0.93	1.00

 After correction, SDFs implied by these models are almost perfectly correlated to each other;

		Correlations							
	$\log(\hat{M}_{exp,t+1})$					$\log(\hat{M})$	$_{exp,t+1}^{a})$		
			Corrected				Corrected		
	APT	CAPM	C-CAPM	FF3	APT	CAPM	C-CAPM	FF3	
APT	1.00	0.99	0.97	0.98	1.00	0.97	1.00	0.94	
CAPM	0.99	1.00	0.96	0.97	0.97	1.00	0.97	0.93	
C-CAPM	0.97	0.96	1.00	0.94	1.00	0.97	1.00	0.93	
FF3	0.98	0.97	0.94	1.00	0.94	0.93	0.93	1.00	

Microfoundations for pricing of unsystematic risk

Micro-foundations for priced asset-specific risk

- Merton (1987) develops an equilibrium model in which
 - only a proportion q_i of investors are informed about asset i;
 - Returns, the SDF and its components have the same functional form as what we have specified in our APT-based model.
- **Proposition 5**: When $N \to \infty$
 - Equilibrium asset returns are

$$R_i - R_f = a_i + \beta_i (R_m - R_f) + e_i$$
, where $a_i = \gamma \sigma_i^2 \left(\frac{1}{q_i} - 1\right) \frac{V_i}{V_m}$;

Equilibrium SDF is

$$M = \underbrace{-\frac{a'V_e}{R_f}e}_{M^a} + \underbrace{\frac{1}{R_f} - \frac{\mathbb{E}(R_m - R_f)}{R_f \times \text{var}(R_m)}(R_m - \mathbb{E}(R_m))}_{M^\beta}$$

Micro-foundations for priced asset-specific risk

- Merton (1987) develops an equilibrium model in which
 - only a proportion q_i of investors are informed about asset i;
 - Returns, the SDF and its components have the same functional form as what we have specified in our APT-based model.
- **Proposition 5**: When $N \to \infty$
 - Equilibrium asset returns are

$$R_i - R_f = a_i + \beta_i (R_m - R_f) + e_i$$
, where $a_i = \gamma \sigma_i^2 \left(\frac{1}{q_i} - 1\right) \frac{V_i}{V_m}$;

Equilibrium SDF is

$$M = \underbrace{-\frac{a'V_e}{R_f}e}_{M^a} + \underbrace{\frac{1}{R_f} - \frac{\mathbb{E}(R_m - R_f)}{R_f \times \text{var}(R_m)}(R_m - \mathbb{E}(R_m))}_{M^{\beta}}$$

Conclusion

Conclusion

- Develop a methodology
 - to identify what is missing in factor models;
 - use this to examine potential significance of unsystematic risk.
- Key insight: quantitative importance of unsystematic risk
 - for theorists: vital for developing microfounded models;
 - for empiricists: essential for resolving the factor zoo;
 - for corporate finance: crucial for estimating cost of capital.

Thank you!

Please send comments to

m.dello-preite18@imperial.ac.uk raman.uppal@edhec.edu p.zaffaroni@imperial.ac.uk zviadadze@hec.fr

References

References i

- Almeida, C., and R. Garcia, 2012, "Assessing Misspecified Asset Pricing Models With Empirical Likelihood Estimators," *Journal of Econometrics*, 170, 519–537.
- Ang, A., R. J. Hodrick, Y. Xing, and X. Zhang, 2006, "Cross-Section of Volatility and Expected Returns," *Journal of Finance*, 61.
- Baker, S. R., N. Bloom, and S. J. Davis, 2016, "Measuring Economic Policy Uncertainty," *Quarterly Journal of Economics*, 131, 1593–1636.
- Breeden, D. T., 1979, "An Intertemporal Asset Pricing Model with Stochastic Consumption and Investment Opportunities," *Journal of Financial Economics*, 7, 265–296.
- Bryzgalova, S., J. Huang, and C. Julliard, 2023, "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," *Journal of Finance*, 78, 487–557.
- Chen, A. Y., and T. Zimmermann, 2022, "Open Source Cross-Sectional Asset Pricing," Critical Finance Review. 11. 207–264.
- Cochrane, J. H., 2011, "Presidential Address: Discount Rates," *Journal of Finance*, 66, 1047–1108.
- Daniel, K., and S. Titman, 1997, "Evidence on the Characteristics of Cross Sectional Variation in Stock Returns," *Journal of Finance*, 52, 1–33.

References ii

- Fama, E. F., and K. R. French, 1993, "Common Risk Factors in the Returns on Stocks and Bonds," *Journal of Financial Economics*, 33, 3–56.
- Fama, E. F., and K. R. French, 2015, "A Five-Factor Asset Pricing Model," Journal of Financial Economics, 116.
- Feng, G., S. Giglio, and D. Xiu, 2020, "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, 75, 1327–1370.
- Freyberger, J., A. Neuhierl, and M. Weber, 2020, "Dissecting Characteristics Nonparametrically," *Review of Financial Studies*, 33, 2326–2377.
- Gabaix, X., 2011, "The Granular Origins of Aggregate Fluctuations," *Econometrica*, 79, 733–772.
- Ghosh, A., C. Julliard, and A. P. Taylor, 2017, "What Is the Consumption-CAPM Missing? An Information-Theoretic Framework for the Analysis of Asset Pricing Models," Review of Financial Studies, 30, 442–504.
- Giglio, S., Y. Liao, and D. Xiu, 2021, "Thousands of Alpha Tests," Review of Financial Studies, 34, 3456–3496.

References iii

- Giglio, S., and D. Xiu, 2021, "Asset Pricing with Omitted Factors," Journal of Political Economy, 129, 1947–1990.
- Goyal, A., and P. Santa-Clara, 2003, "Idiosyncratic risk matters!," *Journal of Finance*, 58, 975–1007.
- Hansen, L. P., and R. Jagannathan, 1997, "Assessing Specification Errors in Stochastic Discount Factor Models," *Journal of Finance*, 52, 557–590.
- Harvey, C. R., Y. Liu, and H. Zhu, 2015, "... and the Cross-Section of Expected Returns," Review of Financial Studies, 29, 5–68.
- Herskovic, B., B. Kelly, H. Lustig, and S. Van Nieuwerburgh, 2016, "The Common Factor in ildiosyncratic Volatility: Quantitative Asset Pricing Implications," *Journal of Financial Economics*, 119, 249–283.
- Hou, K., H. Mo, C. Xue, and L. Zhang, 2021, "An Augmented Q-Factor Model with Expected Growth," Review of Finance, 25, 1–41.
- Hou, K., C. Xue, and L. Zhang, 2015, "Digesting Anomalies: An Investment Approach," Review of Financial Studies, 28, 650–705.

References iv

- Huang, D., J. Li, and L. Wang, 2021, "Are Disagreements Agreeable? Evidence from Information Aggregation," *Journal of Financial Economics*, 141, 83–101.
- Jegadeesh, N., and S. Titman, 1993, "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," *Journal of Finance*, 48, 65–91.
- Jensen, T. I., B. T. Kelly, and L. H. Pedersen, 2021, "Is There a Replication Crisis in Finance?," Working Paper.
- Jurado, K., S. C. Ludvigson, and S. Ng, 2015, "Measuring Uncertainty," American Economic Review, 105, 1177–1216.
- Korsaye, S., A. Quaini, and F. Trojani, 2019, "Smart SDFs," University of Geneva, Working Paper.
- Kozak, S., S. Nagel, and S. Santosh, 2020, "Shrinking the Cross-section," *Journal of Financial Economics*, 135, 271–292.
- Lettau, M., and M. Pelger, 2020, "Factors that Fit the Time-series and Cross-section of Stock Returns," *Review of Financial Studies*, 33, 2274–2325.
- McCracken, M. W., and S. Ng, 2015, "FRED-MD: A Monthly Database for Macroeconomic Research," Working Paper.

References v

- Mehra, R., S. Wahal, and D. Xie, 2021, "Is Idiosyncratic Risk Conditionally Priced?," *Quantitative Economics*, 12, 625–646.
- Merton, R. C., 1987, "A Simple Model of Capital Market Equilibrium with Incomplete Information," *Journal of Finance*, 42, 483–510.
- Novy-Marx, R., 2013, "The Other Side of Value: The Gross Profitability Premium," *Journal of Financial Economics*, 108, 1–28.
- Pasquariello, P., 2014, "Financial Market Dislocations," *Review of Financial Studies*, 27, 1868–1914.
- Raponi, V., R. Uppal, and P. Zaffaroni, 2022, "Robust Portfolio Choice," Working paper, Imperial College London.
- Ross, S., 1976, "The Arbitrage Theory of Capital Asset Pricing," *Journal of Economic Theory*, 13, 341–360.
- Ross, S. A., 1977, "Return, Risk, and Arbitrage," in Irwin Friend, and J.L. Bicksler (ed.), Risk and Return in Finance, Ballinger, Cambridge, MA.
- Sharpe, W., 1964, "Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk," Journal of Finance, 1919, 425–442.

Basis assets

- Basis assets: 202 characteristic-based portfolios with monthly returns: 1963:07 to 2019:08:
 - 25 size and book-to-market portfolios,
 - 17 industry portfolios,
 - 25 investment profitability and investment,
 - 25 size and variance portfolios,
 - 35 size and net issuance portfolios,
 - 25 size and accruals portfolios,
 - 25 size and beta portfolios,
 - 25 size and momentum portfolios

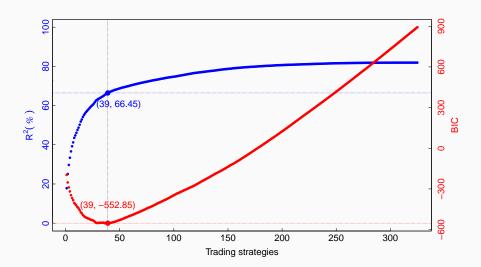
Data on 457 tradable factors potentially spanning the SDF

- Factors used in Chen and Zimmermann (2022), Jensen, Kelly, and Pedersen (2021), and Kozak, Nagel, and Santosh (2020).
- Industry-adjusted value, momentum, and profitability factors (Novy-Marx, 2013).
- Intra-industry value, momentum, and profitability factors, and basic profitable-minus-unprofitable factor.
- Expected growth factor of Hou, Mo, Xue, and Zhang (2021) and the momentum Up minus Down (UMD) factor.
- Factors from Bryzgalova, Huang, and Julliard (2023).

Data on 103 macro factors potentially spanning the SDF

- Macroeconomic and business-cycle variables
 - 3 principal components and their VAR residuals for 279 macro variables (Jurado, Ludvigson, and Ng, 2015).
 - 8 principal components and their VAR residuals for 128 macro variables (McCracken and Ng, 2015).
- Consumption and inflation variables.
- Sentiment and confidence indexes.
- Volatility and uncertainty measures
 - Market-dislocations index (Pasquariello, 2014)
 - Disagreement index (Huang, Li, and Wang, 2021)
 - Chicago Board Options Exchange volatility index (VIX, from CBOE)
 - US econ. policy uncertainty index EPU (Baker, Bloom, and Davis, 2016)
 - Equity-mkt vol. (EMV) tracker (Baker, Bloom, and Davis, 2016).

Spanning M_{t+1}^a with observed factors



Spanning $M_{t+1}^{\beta,mis}$ with observed factors

