Persuasion in Random Networks

Melika Liporace

Tilburg University

EEA ESEM Congress August 2023

- Information constantly shared through social networks
 - Large literature about role of networks on spread of information \rightarrow learning, polarization, ...
 - Sparser literature about the role of networks on information provision
- $\rightarrow\,$ presence of network changes incentives to provide information for a sender

- Information constantly shared through social networks
 - Large literature about role of networks on spread of information \rightarrow learning, polarization, ...
 - Sparser literature about the role of networks on information provision
- \rightarrow presence of network changes incentives to provide information for a sender
 - Networks allows more pieces of information to reach agents...

- Information constantly shared through social networks
 - Large literature about role of networks on spread of information \rightarrow learning, polarization, ...
 - Sparser literature about the role of networks on information provision
- \rightarrow presence of network changes incentives to provide information for a sender
 - Networks allows more pieces of information to reach agents...
 - Network structure might be exploited to tailor communication to different audiences

- Information constantly shared through social networks
 - Large literature about role of networks on spread of information \rightarrow learning, polarization, ...
 - Sparser literature about the role of networks on information provision
- $\rightarrow\,$ presence of network changes incentives to provide information for a sender
 - Networks allows more pieces of information to reach agents...
 - Network structure might be exploited to tailor communication to different audiences
 - Network's connection patterns shaped by heterogenous beliefs e.g. homophily, segregation

- Information constantly shared through social networks
 - Large literature about role of networks on spread of information \rightarrow learning, polarization, ...
 - Sparser literature about the role of networks on information provision
- $\rightarrow\,$ presence of network changes incentives to provide information for a sender
 - Networks allows more pieces of information to reach agents...
 - Network structure might be exploited to tailor communication to different audiences
 - Network's connection patterns shaped by heterogenous beliefs e.g. homophily, segregation

How and when to exploit the network rather than public communication?

- Information constantly shared through social networks
 - Large literature about role of networks on spread of information \rightarrow learning, polarization, ...
 - Sparser literature about the role of networks on information provision
- $\rightarrow\,$ presence of network changes incentives to provide information for a sender
 - Networks allows more pieces of information to reach agents...
 - Network structure might be exploited to tailor communication to different audiences
 - ▶ Network's connection patterns shaped by heterogenous beliefs e.g. homophily, segregation

How and when to exploit the network rather than public communication? Is the existence of network detrimental to information?

• Classical Bayesian persuasion:

- Classical Bayesian persuasion:
- $\rightarrow\,$ Add heterogenous priors among agents

- Classical Bayesian persuasion:
- $\rightarrow\,$ Add heterogenous priors among agents
- $\rightarrow~\mathsf{Add}$ a communication network

- Classical Bayesian persuasion:
- $\rightarrow\,$ Add heterogenous priors among agents
- \rightarrow Add a communication network

How and when to exploit a communication network?

- $\rightarrow\,$ Very limited knowledge sufficient to take advantage of the network
- \rightarrow Segregation and extreme beliefs make the network more vulnerable

- Classical Bayesian persuasion:
- $\rightarrow\,$ Add heterogenous priors among agents
- \rightarrow Add a communication network
- How and when to exploit a communication network?
 - $\rightarrow\,$ Very limited knowledge sufficient to take advantage of the network
 - \rightarrow Segregation and extreme beliefs make the network more vulnerable
- *Is the existence of network detrimental to information?*
 - $\rightarrow\,$ Existence of vulnerable network might be the lesser of two evils

Literature

Bayesian Persuasion

- Seminal works: Kamenica and Gentzkow (2011)
- Heterogenous unconnected receivers: Innocenti (2021)
 - \rightarrow *Introduce*: networks
- Homogenous connected receivers:
 - With voting quota: Kerman and Tenev (2021)
 - ▶ For general games: Galperti and Perego (2019)
 - → *Introduce*: polarization & random networks

Information design

- link with Bayesian persuasion: Bergemann and Morris (2019)
 - \rightarrow *Introduce*: endogeneity of publicness of signals
- link with network: Egorov and Sonin (2020), Candogan (2019)

3/15

- Classical Bayesian persuasion:
 - A sender wants to induce receivers to take some *favorable* action
 - N receivers want to match a payoff-relevant state
 - \rightarrow Sender commits to signal structure conditional rate of success (and correlation)

Setup "Classical" Unique Strategy

- SoW $\omega \in \{0,1\}$, common prior $\Pr(\omega = 1) = \mu$
- Sender sets:

	$\omega = 0$	$\omega = 1$
s=0	1-p	1-q
s=1	р	q

• Receivers' posterior after s = 1: $\beta(1) = \Pr(\omega = 1 | s = 1) = \frac{q\mu}{q\mu + (1-\mu)\rho}$ \rightarrow Assume $a^*(\beta(s)) = 1 \Leftrightarrow \beta(s) \ge t$

Setup "Classical" Unique Strategy

- SoW $\omega \in \{0,1\}$, common prior $\Pr(\omega = 1) = \mu$
- Sender sets:

	$\omega = 0$	$\omega = 1$
s=0	1-p	1-q
s=1	р	q

- Receivers' posterior after s = 1: $\beta(1) = \Pr(\omega = 1 | s = 1) = \frac{q\mu}{q\mu + (1-\mu)\rho}$ \rightarrow Assume $a^*(\beta(s)) = 1 \Leftrightarrow \beta(s) \ge t$
- Key insight: p, q such that $\beta(1) = t \Rightarrow q^* = 1; p^* = \frac{\mu(1-t)}{t(1-\mu)} =: \alpha$
 - \Rightarrow Persuasion payoff: $V = \mu + (1 \mu)\alpha$

Setup

- Classical Bayesian persuasion:
 - A sender wants to induce receivers to take some *favorable* action
 - N receivers want to match a payoff-relevant state
 - \rightarrow Sender commits to signal structure conditional rate of success (and correlation)
- $\rightarrow\,$ Add heterogenous priors among agents
 - Two groups (denoted A and B) defined by their priors
 - Persuade one group without dissuading the other

Setup Heterogenous Agents: "Hard News" Strategy

- SoW $\omega \in \{0,1\}$, sender's prior $Pr(\omega = 1) = \mu$; μ_A, μ_B for receivers.
- Sender sets:

	$\omega = 0$	$\omega = 1$
s=0	1-p	1-q
s=1	р	q

- Receivers *I*'s posterior after s = 1: $\beta_I(1) = \Pr(\omega = 1 | s = 1) = \frac{q\mu_I}{q\mu_I + (1 \mu_I)p}$ \rightarrow Assume $a^*(\beta(s)) = 1 \Leftrightarrow \beta(s) \ge t$
- Key insight: p, q such that $\beta_B(1) = t \Rightarrow q^* = 1; p^* = \frac{\mu_B(1-t)}{t(1-\mu_B)} =: \alpha_B$
 - \Rightarrow Persuasion payoff: $V = \mu + (1 \mu)\alpha_{B}$

- Classical Bayesian persuasion:
 - A sender wants to induce receivers to take some *favorable* action
 - N receivers want to match a payoff-relevant state
 - \rightarrow Sender commits to signal structure conditional rate of success (and correlation)
- \rightarrow Add heterogenous priors among agents
 - Two groups (denoted A and B) defined by their priors
 - Persuade one group without dissuading the other
- \rightarrow Add a communication network
 - ► Exogenous and random (→ degree distribution)
 - Exogenous communication of signals -i observes his and his neighbor's signals.

An easy example

Assume:

- $\mu = t = 0.5, \alpha_A = 2, \alpha_B = 1/2$
- $\delta_A(d_i = 1) = 1$ and $\delta_B(d_i = 2) = 1$

An easy example

Assume:

- $\mu = t = 0.5, \alpha_A = 2, \alpha_B = 1/2$
- $\delta_A(d_i = 1) = 1$ and $\delta_B(d_i = 2) = 1$

Then:

• Without exploiting the network (perfectly correlated s_i),

	$\omega = 0$	$\omega = 1$
s=0	1 - p	0
s=1	0	0
s=2	$p = \alpha_B$	1

An easy example

Assume:

• $\mu = t = 0.5, \alpha_A = 2, \alpha_B = 1/2$

•
$$\delta_A(d_i = 1) = 1$$
 and $\delta_B(d_i = 2) = 1$

Then:

• Without exploiting the network (perfectly correlated *s_i*),

$$V_U = \mu + (1-\mu)p = 3/4$$

	$\omega = 0$	$\omega = 1$
s=0	1 - p	0
s=1	0	0
s=2	$p = \alpha_B$	1

An easy example

Assume:

- $\mu = t = 0.5, \alpha_A = 2, \alpha_B = 1/2$
- $\delta_A(d_i = 1) = 1$ and $\delta_B(d_i = 2) = 1$

Then:

• Without exploiting the network (perfectly correlated s_i),

$$V_U = \mu + (1 - \mu)p = 3/4$$

	$\omega = 0$	$\omega = 1$
s=0	$(1 - p)^2$	0
s=1		0
s=2	$p^2 = \alpha_B$	1

An easy example

Assume:

- $\mu = t = 0.5, \alpha_A = 2, \alpha_B = 1/2$
- $\delta_A(d_i = 1) = 1$ and $\delta_B(d_i = 2) = 1$

Then:

• Without exploiting the network (perfectly correlated s_i),

$$V_U = \mu + (1 - \mu)p = 3/4$$

	$\omega = 0$	$\omega = 1$
s=0	$(1 - p)^2$	0
s=1	2p(1-p)	0
s=2	$p^2 = \alpha_B$	1

An easy example

Assume:

- $\mu = t = 0.5, \alpha_A = 2, \alpha_B = 1/2$
- $\delta_A(d_i = 1) = 1$ and $\delta_B(d_i = 2) = 1$

Then:

• Without exploiting the network (perfectly correlated s_i),

$$V_U = \mu + (1 - \mu)p = 3/4$$

$$V_{MM} = \mu + (1 - \mu) \left[p^2 + \frac{a}{2} 2p(1 - p) \right] \approx 13/16$$

	$\omega = 0$	$\omega = 1$
s=0	$(1 - p)^2$	0
s=1	2p(1-p)	0
s=2	$p^2 = \alpha_B$	1

Beyond the example

Generally: hard news: exploiting the network = message informativeness depends on degree

Beyond the example

Generally: hard news: exploiting the network = message informativeness depends on degree

- Benefits: exploits connectivity differences between groups (segregation)
- Costs: introduces unnecessary heterogeneity within group
 - Agents in *B* with same belief and different degrees receive different informativeness

Beyond the example

Generally: hard news: exploiting the network = message informativeness depends on degree

- Benefits: exploits connectivity differences between groups (segregation)
- Costs: introduces unnecessary heterogeneity within group
 - Agents in B with same belief and different degrees receive different informativeness

Therefore:

- Benefits increase with segregation
- Costs decrease with within-B degree homogeneity
- Costs do not increase with connectivity

Beyond the example

Generally: hard news: exploiting the network = message informativeness depends on degree

- Benefits: exploits connectivity differences between groups (segregation)
- Costs: introduces unnecessary heterogeneity within group
 - ▶ Agents in *B* with same belief and different degrees receive different informativeness

Therefore:

- Benefits increase with segregation
- Costs decrease with within-B degree homogeneity
- Costs do not increase with connectivity
- $\bullet\,$ Benefits increase with a and costs increase with α_B and μ

Beyond the example

Generally: hard news: exploiting the network = message informativeness depends on degree

- Benefits: exploits connectivity differences between groups (segregation)
- Costs: introduces unnecessary heterogeneity within group
 - Agents in B with same belief and different degrees receive different informativeness

Therefore:

- Benefits increase with segregation
- Costs decrease with within-B degree homogeneity
- Costs do not increase with connectivity
- Benefits increase with *a* and costs increase with α_B and μ
- \rightarrow Seggregation and extreme belief make the network more vulnerable

Setup Heterogenous Agents: "Soft News" Strategy

- SoW $\omega \in \{0,1\}$, sender's prior $Pr(\omega = 1) = \mu$; μ_A, μ_B for receivers.
- Sender sets:

	$\omega = 0$	$\omega = 1$
s=0	1-p	1-q
s=1	р	q

- Receivers *I*'s posterior after s = 1: $\beta_I(1) = \Pr(\omega = 1 | s = 1) = \frac{q\mu_I}{q\mu_I + (1 \mu_I)p}$ \rightarrow Assume $a^*(\beta(s)) = 1 \Leftrightarrow \beta(s) \ge t$
- Key insight: p, q such that $\beta_A(0) = t \Rightarrow 1 q^* = \alpha_A(1 p^*); p^* = \alpha_B q^*$
 - \Rightarrow Persuasion payoff: $V = \mathbf{a} + \mathbf{b}[\mu + (1 \mu)\alpha_B]\mathbf{q}^*$

An easy example

Assume:

- $\mu = t = 0.5, \alpha_A = 2, \alpha_B = 1/2$
- $\delta_A(d_i = 1) = 1$ and $\delta_B(d_i = 2) = 1$

An easy example

Assume:

• $\mu = t = 0.5, \alpha_A = 2, \alpha_B = 1/2$

•
$$\delta_A(d_i = 1) = 1$$
 and $\delta_B(d_i = 2) = 1$

Then:

• Without exploiting the network, $1 - p = \alpha_A(1 - q)$

	$\omega = 0$	$\omega = 1$
s=0	1 - p	1-q
s=1	0	0
s=2	$p = \alpha_B$	q

An easy example

Assume:

• $\mu = t = 0.5, \alpha_A = 2, \alpha_B = 1/2$

•
$$\delta_A(d_i = 1) = 1$$
 and $\delta_B(d_i = 2) = 1$

Then:

• Without exploiting the network, $1 - p = \alpha_A(1 - q)$

$$V_U = a + b \big[\mu + (1 - \mu) \alpha_B \big] q = 3/4$$

	$\omega = 0$	$\omega = 1$
s=0	1 - p	1-q
s=1	0	0
s=2	$p = \alpha_B$	q

An easy example

Assume:

- $\mu = t = 0.5, \alpha_A = 2, \alpha_B = 1/2$
- $\delta_A(d_i = 1) = 1$ and $\delta_B(d_i = 2) = 1$

Then:

• Without exploiting the network, $1 - p = \alpha_A(1 - q)$

$$V_U = a + b \big[\mu + (1 - \mu) \alpha_B \big] q = 3/4$$

	$\omega = 0$	$\omega = 1$
s=0	$(1 - p)^2$	$(1-q)^2$
s=1	2p(1-p)	2q(1-q)
s=2	$p^2 = \alpha_B q^2$	q^2

An easy example

Assume:

- $\mu = t = 0.5, \alpha_A = 2, \alpha_B = 1/2$
- $\delta_A(d_i = 1) = 1$ and $\delta_B(d_i = 2) = 1$

Then:

• Without exploiting the network, $1 - p = \alpha_A(1 - q)$

$$V_U = a + b \big[\mu + (1 - \mu) \alpha_B \big] q = 3/4$$

• By exploiting the network, $1 - p = \alpha_A(1 - q)$

	$\omega = 0$	$\omega = 1$
s=0	$(1 - p)^2$	$(1-q)^2$
s=1	2p(1-p)	2q(1-q)
s=2	$p^2 = \alpha_B q^2$	q^2

An easy example

Assume:

• $\mu = t = 0.5, \alpha_A = 2, \alpha_B = 1/2$

•
$$\delta_A(d_i = 1) = 1$$
 and $\delta_B(d_i = 2) = 1$

Then:

• Without exploiting the network, $1 - p = \alpha_A(1 - q)$

$$V_U = a + b \big[\mu + (1 - \mu) \alpha_B \big] q = 3/4$$

• By exploiting the network, $1 - p = \alpha_A(1 - q)$

$$V_{MM} = a + b [\mu + (1 - \mu)\alpha_B]q^2 = 2/3$$

	$\omega = 0$	$\omega = 1$
s=0	$(1 - p)^2$	$(1-q)^2$
s=1	2p(1-p)	2q(1-q)
s=2	$p^2 = \alpha_B q^2$	q^2

If focus on never dissuading A, never optimal to exploit the network

- Soft news \approx add "confusion" when ω = 1 to retain $A \Rightarrow q_{SN} < 1$
- Intuitively, the "confusion" gets amplified through network

If focus on never dissuading A, never optimal to exploit the network

- Soft news \approx add "confusion" when ω = 1 to retain $A \Rightarrow q_{SN} < 1$
- Intuitively, the "confusion" gets amplified through network

When to exploiting the network? \rightarrow 3 parameters: *a*, μ and α_I 's

 $\rightarrow\,$ favor both soft news (w/o exploiting the network) and exploiting the network

If focus on never dissuading A, never optimal to exploit the network

- Soft news \approx add "confusion" when ω = 1 to retain ${\cal A} \Rightarrow q_{SN} < 1$
- Intuitively, the "confusion" gets amplified through network

When to exploiting the network? \rightarrow 3 parameters: *a*, μ and α_I 's

 $\rightarrow\,$ favor both soft news (w/o exploiting the network) and exploiting the network

Is the presence of a network detrimental to information?

 $\rightarrow\,$ it depends on the alternative public communication strategy...

If focus on never dissuading A, never optimal to exploit the network

- Soft news \approx add "confusion" when ω = 1 to retain ${\cal A} \Rightarrow q_{SN} < 1$
- Intuitively, the "confusion" gets amplified through network

When to exploiting the network? \rightarrow 3 parameters: *a*, μ and α_I 's

 $\rightarrow\,$ favor both soft news (w/o exploiting the network) and exploiting the network

Is the presence of a network detrimental to information?

 $\rightarrow\,$ it depends on the alternative public communication strategy...

 \rightarrow Vulnerable network might be the lesser of two evils

Generalization of results require considering more strategies. Most important:

• Definition of SN strategy very tight $\rightarrow A$ dissuaded only if > x unfavorable signals?

- Definition of SN strategy very tight $\rightarrow A$ dissuaded only if > x unfavorable signals?
 - Shape of $V_{MM}(x)$ in x unclear. Numerically, arg max V(x) might not belong to $\{0, d_a\}$
 - Numerically, not problematic? α 's d's μ , a

- Definition of SN strategy very tight $\rightarrow A$ dissuaded only if > x unfavorable signals?
 - Shape of $V_{MM}(x)$ in x unclear. Numerically, arg max V(x) might not belong to $\{0, d_a\}$
 - Numerically, not problematic? α 's d's μ , a
- All strategies assume $s_i \in \{0, 1\} \rightarrow$ more signal realizations?

- Definition of SN strategy very tight $\rightarrow A$ dissuaded only if > x unfavorable signals?
 - Shape of $V_{MM}(x)$ in x unclear. Numerically, arg max V(x) might not belong to $\{0, d_a\}$
 - Numerically, not problematic? α 's d's μ , a
- All strategies assume $s_i \in \{0, 1\} \rightarrow$ more signal realizations?
 - e.g. third signal, neutral. Intuitively, messages less dependent on the degree \rightarrow not optimal
 - Does the intuition carries through for any signal space?

- Definition of SN strategy very tight $\rightarrow A$ dissuaded only if > x unfavorable signals?
 - Shape of $V_{MM}(x)$ in x unclear. Numerically, arg max V(x) might not belong to $\{0, d_a\}$
 - Numerically, not problematic? α 's d's μ , a
- All strategies assume $s_i \in \{0, 1\} \rightarrow$ more signal realizations?
 - e.g. third signal, neutral. Intuitively, messages less dependent on the degree \rightarrow not optimal
 - Does the intuition carries through for any signal space?
- Informative signals only to $B \rightarrow$ optimal with "general" SN strategy and > 2 signals?

- Definition of SN strategy very tight $\rightarrow A$ dissuaded only if > x unfavorable signals?
 - Shape of $V_{MM}(x)$ in x unclear. Numerically, arg max V(x) might not belong to $\{0, d_a\}$
 - Numerically, not problematic? α 's d's μ , a
- All strategies assume $s_i \in \{0, 1\} \rightarrow$ more signal realizations?
 - e.g. third signal, neutral. Intuitively, messages less dependent on the degree \rightarrow not optimal
 - Does the intuition carries through for any signal space?
- Informative signals only to $B \rightarrow$ optimal with "general" SN strategy and > 2 signals?
 - Move towards optimization over space of posteriors?
 - How to link posteriors space of agents with different degrees?

How to exploit a communication network?

 \rightarrow Novel strategies exploiting the network

How to exploit a communication network?

 \rightarrow Novel strategies exploiting the network

When to exploit a communication network?

- When between-group much lower than within-group connectivity
 - · Connectivity is not bad per se; only connections between groups are bad
- When agents in B are harder to persuade

How to exploit a communication network?

 \rightarrow Novel strategies exploiting the network

When to exploit a communication network?

- When between-group much lower than within-group connectivity
 - · Connectivity is not bad per se; only connections between groups are bad
- When agents in B are harder to persuade

Segregation and extreme beliefs make the network more vulnerable

How to exploit a communication network?

 \rightarrow Novel strategies exploiting the network

When to exploit a communication network?

- When between-group much lower than within-group connectivity
 - Connectivity is not bad per se; only connections between groups are bad
- When agents in B are harder to persuade

Segregation and extreme beliefs make the network more vulnerable

Is the existence of network detrimental to information?

- Depends on the public communication alternative
- It is not when: few agents need persuading; favorable SoW is unlikely; polarization is high

15/15

How to exploit a communication network?

 \rightarrow Novel strategies exploiting the network

When to exploit a communication network?

- When between-group much lower than within-group connectivity
 - · Connectivity is not bad per se; only connections between groups are bad
- When agents in B are harder to persuade

Segregation and extreme beliefs make the network more vulnerable

Is the existence of network detrimental to information?

- Depends on the public communication alternative
- It is not when: few agents need persuading; favorable SoW is unlikely; polarization is high

Existence of vulnerable network might be the lesser of two evils

15/15

Thank you!

m.liporace@tilburguniversity.edu

Bibliography

- Dirk Bergemann and Stephen Morris. Information design: A unified perspective. *Journal of Economic Literature*, 57(1):44–95, 2019.
- Ozan Candogan. Persuasion in networks: Public signals and k-cores. In *Proceedings of the 2019 ACM Conference on Economics and Computation*, pages 133–134, 2019.
- Georgy Egorov and Konstantin Sonin. Persuasion on networks. Technical report, National Bureau of Economic Research, 2020.
- Simone Galperti and Jacopo Perego. Belief meddling in social networks: An information-design approach. *Working Paper*, 2019.
- Federico Innocenti. Can media pluralism be harmful to news quality? Technical report, University of Mannheim, 2021.
- Emir Kamenica and Matthew Gentzkow. Bayesian persuasion. *American Economic Review*, 101(6):2590–2615, 2011.
- Toygar Kerman and Anastas P Tenev. Persuading communicating voters. Working Paper, 2021.

Shape of V(x), numerically

Go Back
 Go Back
 Go Back
 Go Back
 State
 State

8

10

Shape of V(x), numerically

Go Back
 Go Back
 Go Back
 Go Back
 State
 State

Shape of V(x), numerically

Go Back
 Go Back
 Go Back
 Go Back
 State
 State