Sentiment, Mispricing and Excess Volatility in Presence of Institutional Investors

Hervé Roche¹ Juan Sotes-Paladino²

¹FEN Universidad de Chile ²Universidad de los Andes

EEA/ESEM 2023

August 2023

Sentiment trading in highly institutionalized markets

- Q: Effect of sentiment on asset prices in highly institutionalized markets?
 - Sentiment: Investors' irrational optimism/pessimism
 - Institutionalization: Participation of financial institutions in asset markets
 - What about sentiment/institutions?
 - Sentiment-driven trading can differ substantially from rational paradigm
 - * Deviations can be long lasting, even in frictionless markets
 - * Economically relevant price impact \Rightarrow deviation of prices from fundamentals
 - * More or less temporarily, depending on limits to arbitrage
 - Institutions' portfolios can also differ from standard prescription
 - * Even if fully rational and sophisticated
 - * Possibly, in response to shareholders' investment constraints
 - * Benchmarking concerns, risk-limiting provisions, etc.

▷ Do institutions help correct or worsen sentiment-induced AP distortions?

(日本)(日本)(日本)(日本)

Motivation: Why care?

- (Retail) investor sentiment important to explain asset pricing puzzles
 - e.g., IVOL anomaly, momentum and value effects, etc.
 - Beliefs biases in portfolio decisions are significant and long lasting
 - * Giglio et al. (2021)
- Institutions arguably single most important investor class in today's markets
 - e.g., 13F institutions manage 68% of the US stock market
 - * Koijen & Yogo (2019)
 - Even higher percentage of daily equity trading volume (think, e.g., of HFTs)
 - Subject to economically significant investment constraints
 - * De Vault et al. (2019), Cao et al. (2017)
 - * Possibly driven by agency frictions, asymmetric info, etc.
 - ▷ Our focus: Relative performance concerns w.r.t. a benchmark index

Economy

- Continuous-time pure-exchange economy
- Finite (typically, short) investment horizon T
- Financial markets:
 - > 1 riskfree asset (cash) in zero net supply
 - ★ Payoff normalized to 1 at T
 - > 1 risky asset (a stock market portfolio) in unit supply
 - * Pays dividend D_T (only) at T
 - ★ Cash flow "news" D_t arrive continuously over $t \in [0, T]$ according to

$$dD_t = D_t(\mu dt + \sigma dB_t), \tag{1}$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

where

 $\triangleright \mu, \sigma$ are constant, and

 \triangleright dB_t is a Wiener process under the actual probability \mathbb{P}

No frictions: no leverage/short-sale constraints, taxes, etc.

Preferences

• Log preferences over final wealth: for agent k,

$$J_k(W_t^k) = \max_{\theta^k} E_t^k[u_k(W_T^k)],$$

• Two types of agents: $k \in \{R, I\}$, with

$$u_k(W_T^k) = \begin{cases} \log W_T^k, & k = R \text{etail investors,} \\ (1 - \upsilon + \upsilon Y_T) \log W_T^k, & k = I \text{nstitutional investors.} \end{cases}$$

- I investors:
 - have otherwise standard preferences, except that
 - they have relative performance concerns $(1 v + vY_T)$, $v \in [0, 1)$
 - w.r.t. a benchmark index Y
 - ▷ Basak & Pavlova (2013)'s reduced-form approach to benchmarking concerns
- Utility max problem subject to standard self-financing constraint

Beliefs

- *R*-investors potentially feature "sentiment"
 - Belief that the mean growth rate of D is equal to $\mu^{R} = \mu + \sigma^{2} \delta^{R}$
 - δ^R reflects degree of optimism / bullish sentiment about the market
 ★ with δ^R < 0 reflecting pessimism / bear sentiment
 - Their "perceived" dynamics for the dividend process is:

$$dD_t = D_t \left((\mu + \sigma^2 \delta^R) dt + \sigma dB_t^R
ight),$$

where $dB_t^R = dB_t - \sigma \delta^R dt$ is the increment of a Wiener process under \mathbb{P}^R

- *I*-investors are fully rational (no sentiment)
 - i..e, they see the actual dividend dynamics (1)

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ● ● ●

Equilibrium Characterization

- Equilibrium prices and allocations depend on:
 - ► The share of aggregate wealth in *I*-investors' hands:

$$\boldsymbol{\varpi}_t^{\prime} \triangleq \frac{W_t^{\prime}}{W_t^{\prime} + W_t^R}$$

The strength of institutions' benchmarking concerns:

$$\boldsymbol{q}_t \triangleq \frac{\upsilon D_t \boldsymbol{e}^{\mu(\tau-t)}}{1-\upsilon+\upsilon D_t \boldsymbol{e}^{\mu(\tau-t)}}, \qquad \boldsymbol{q}_t \in [0,1),$$

▶ The relative strength of *R*'s sentiment over *I*'s benchmarking concerns

$$\delta^R - q_t$$

• Goal: compare equilibrium in this economy w.r.t. equilibria in

STD: A standard rational non-institutionalized economy: $\delta^R = 0, v = 0$ BP: A rational institutionalized economy: $\delta^R = 0$ (Basak & Pavlova, 2013) SENT: A non-institutionalized economy: v = 0

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Equilibrium price-dividend ratio and market price of risk

• Proposition: The equilibrium price-dividend ratio and market price of risk are:

$$\begin{split} S_t/D_t &= \overline{(S/D)}_t \frac{1}{\varpi_t^l (1 - \gamma (T-t) q_t) + (1 - \varpi_t^l) (1 - \gamma (\delta^R (T-t)))}, \\ \kappa_t &= \bar{\kappa} \left(1 - \frac{\varpi_t^l (1 - \gamma (T-t)) q_t + (1 - \varpi_t^l) (1 - \gamma (\delta^R (T-t))) \delta^R}{\varpi_t^l (1 - \gamma (T-t) q_t) + (1 - \varpi_t^l) (1 - \gamma (\delta^R (T-t)))} \right), \end{split}$$

where

•
$$\gamma(x) < 1, \gamma'(x) > 0$$

$$\overline{(S/D)}_t \triangleq (S_t/D_t)|_{\delta^R = 0, \upsilon = 0}$$

$$\quad \mathbf{\bar{\kappa}} \triangleq \kappa_t|_{\delta^R = 0, \upsilon = 0} = \sigma$$

• Both bullish sentiment and benchmarking concerns have similar

- boosting effect on prices
- depressing effect on the market price of risk

医下颌 医下颌

Equilibrium portfolio allocations and return volatility

• Proposition: The equilibrium portfolio weights in the stock are:

$$\begin{aligned} \theta_t^R &= \frac{\kappa_t}{\sigma_{S,t}} + \frac{\sigma}{\sigma_{S,t}} \delta^R, \\ \theta_t^I &= \frac{\kappa_t}{\sigma_{S,t}} + \frac{\sigma}{\sigma_{S,t}} q_t, \end{aligned}$$

where the equilibrium stock return volatility, $\sigma_{S,t}$, is:

$$\sigma_{S,t} = \bar{\sigma}_S \left(1 + \varpi_t^{\prime} \frac{\gamma(T-t)q_t(1-q_t) + (1-\varpi_t^{\prime})(\gamma(\delta^R(T-t)) - \gamma(T-t)q_t)(\delta^R-q_t)}{\varpi_t^{\prime}(1-\gamma(T-t)q_t) + (1-\varpi_t^{\prime})(1-\gamma(\delta^R(T-t)))} \right)$$
$$\bar{\sigma}_S \triangleq \sigma_{S,t}|_{\delta^R=0, v=0} = \sigma$$

- Portfolio allocations in the stock are the sum of:
 - a mean-variance (MV, standard) component $\kappa_t/\sigma_{S,t}$
 - a non-standard feature-specific component:
 - * $\sigma/\sigma_{S,t}\delta^R$: sentiment-driven demand wedge
 - * $\sigma/\sigma_{S,t}q_t$: Institution's hedging demand

Excess volatility decomposition

• Lemma: The equilibrium stock return volatility can be decomposed as:

$$\begin{split} \sigma_{S,t} &= \varepsilon_{S,t}^D \sigma + \varepsilon_{S,t}^q \sigma_{q,t} + \varepsilon_{S,t}^{\varpi'} \sigma_{\varpi',t}, \\ \text{where } \varepsilon_{S,t}^{\mathsf{x}} &= \frac{\partial S_t}{\partial \mathsf{x}_t} \times \frac{\mathsf{x}_t}{S_t}, \ \sigma_{q,t} &= (1 - q_t)\sigma, \ \sigma_{\varpi',t} = -(1 - \varpi_t^l)(\delta^R - q_t)\sigma, \text{ and} \\ \varepsilon_{S,t}^D &= 1, \\ \varepsilon_{S,t}^q &= \frac{\varpi_t^l \gamma(T - t)q_t}{\varpi_t^l (1 - \gamma(T - t)q_t) + (1 - \varpi_t^l)(1 - \gamma(\delta^R(T - t)))} > 0, \\ \varepsilon_{S,t}^{\varpi'} &= \frac{\gamma(T - t)q_t - \gamma(\delta^R(T - t))}{\varpi_t^l (1 - \gamma(T - t)q_t) + (1 - \varpi_t^l)(1 - \gamma(\delta^R(T - t)))} \omega_t^l. \end{split}$$

• The excess volatility ratio (w.r.t. STD case) is:

$$EVR_t \triangleq \sigma_{S,t}/\bar{\sigma}_S - 1 = \Psi_{q,t} + \Psi_{\varpi',t},$$

where:

$$\begin{array}{lll} \text{Benchmarking channel} & \Psi_{q,t} = & \varepsilon_{\mathcal{S},t}^q(1-q_t) > 0, \\ \text{Relative-wealth channel} & \Psi_{\varpi',t} = & -\varepsilon_{\mathcal{S},t}^{\varpi'}(1-\varpi_t^l)(\delta^R - q_t). \end{array}$$

< 回 > < 回 > < 回 > <

Excess volatility decomposition: Interpretation

- Benchmarking concerns amplify the effect of CF news on returns
 - By creating a positive feedback from prices to stock demand
 - $\Psi_{q,t}$ increases with δ^R
 - \Rightarrow Institutions' amplification of EV greater when trading with bullish *R*-investors
- Relative-wealth effects on EV intensify with portfolio heterogeneity
 - No relative-wealth channel in markets with no investor heterogeneity

$$\Psi_{\varpi',t} \cong \frac{\sigma^2(T-t)}{1-(\varpi_t^l q_t + (1-\varpi_t^l)\delta^R)\sigma^2(T-t)} \varpi_t^l (1-\varpi_t^l) (\delta^R - q_t)^2$$

- $\Psi_{\varpi',t}$ increases with both q_t and δ^R
- As long as <u>not</u> $q_t \approx \delta^R$!
- Both channels affected by q and δ^R
 - Complex interaction effects

「「「」 《 川 》 《 川 》 《 三 》 (三)

Relative wealth channel: Simple illustration

Homogeneous portfolios

• Assume: $S_t = 1 \rightarrow S_{t+1} = 1.2$

▶ i.e., $r_{t,t+1} = 0.2$

	ϖ_t^k	W_t^k	θ_t^k	$1 - \theta_t^k$	Stock Demand _t (\$)	W_{t+1}^k	ϖ_t^k	θ_{t+1}^k	$1-\theta_{t+1}^k$	Stock Demand _{t+1} (\$)
R	0.50	0.50	1.00	0.00	0.50	0.60	0.50	1.00	0.00	0.60
1	0.50	0.50	1.00	0.00	0.50	0.60	0.50	1.00	0.00	0.60
	1.00	1.00			1.00	1.20	1	-		1.20

• Aggregate stock demand (in \$) grows by 0.2

Relative wealth channel: Simple illustration

Heterogeneous portfolios

• Assume: $S_t = 1 \rightarrow S_{t+1} = 1.2$

▶ i.e., $r_{t,t+1} = 0.2$

	ϖ_t^k	W_t^k	θ_t^k	$1 - \theta_t^k$	Stock Demand _t (\$)	W_{t+1}^k	ϖ_t^k	θ_{t+1}^k	$1-\theta_{t+1}^k$	Stock Demand $_{t+1}$ (\$)
R	0.50	0.50	1.15	-0.15	0.58	0.62	0.51	1.15	-0.15	0.71
Ι	0.50	0.50	0.85	0.15	0.43	0.59	0.49	0.85	0.15	0.50
	1.00	1.00			1.00	1.20	1	-		1.21

• Aggregate stock demand (in \$) grows by 0.21

Relative wealth channel: Simple illustration

Even more heterogeneous portfolios

• Assume: $S_t = 1 \rightarrow S_{t+1} = 1.2$

▶ i.e., $r_{t,t+1} = 0.2$

	ϖ_t^k	W_t^k	θ_t^k	$1 - \theta_t^k$	Stock Demand _t (\$)	W_{t+1}^k	ϖ_t^k	θ_{t+1}^k	$1-\theta_{t+1}^k$	Stock Demand _{t+1} (\$)
R	0.50	0.50	1.30	-0.30	0.65	0.63	0.53	1.30	-0.30	0.82
1	0.50	0.50	0.70	0.30	0.35	0.57	0.47	0.70	0.30	0.40
	1.00	1.00			1.00	1.20	1.00			1.22

• Aggregate stock demand (in \$) grows by 0.22

Comparison of BP and SENT reference economies

- Benchmarking concerns and bullish sentiment can be observationally similar
 - But not equivalent
- Lemma: At any given horizon T t, the degree of optimism

$$\delta^R = \check{\delta}^R_t = rac{1}{\sigma^2(T-t)}\lograc{1}{1-\gamma(T-t)q_t} > 0.$$

leads to identical stock price-dividend ratios across the BP and SENT cases

- Return volatility and MPR, however, are always higher under the BP case
 - Not only the benchmarking channel is 0 in the SENT case
 - ▶ But also, for low enough ϖ_t^R , $\Psi_{\varpi',t}^{SE} < \Psi_{\varpi',t}^{BP}$

「「「」 《 川 》 《 川 》 《 三 》 (三)

General (GE) case: Sentiment meets Institutions

- Interaction of sentiment and benchmarking concerns important to assess
 - 1. Effect of sentiment on excess vol in institutionalized markets
 - 2. Effect of institutionalization on prices in sentiment-driven economy
- Link to relevant empirical problems
 - 1. Can irrational noise be empirically associated to excess volatility?
 - * Answer key to interpretation of Volatility Ratio (VR) tests
 - 2. Will continuation of recent institutionalization trends worsen mispricing?
 - * As conjectured by DeVault et al. (2019)

1. Excess volatility

• Proposition: $\exists' \hat{\delta}^R(D_t, \varpi_t', T-t) > \check{\delta}^R_t > 0$ such that:

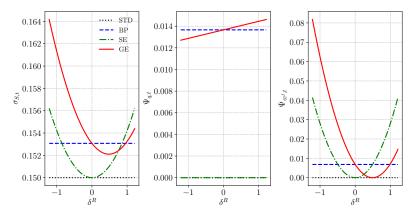
$$rac{\partial \sigma_{S,t}}{\partial \delta^R} \left\{ egin{array}{ll} > 0, & \delta^R > \hat{\delta}^R(D_t, arpi_t^l, T-t) \ = 0, & \delta^R = \hat{\delta}^R(D_t, arpi_t^l, T-t) \ < 0, & \delta^R < \hat{\delta}^R(D_t, arpi_t^l, T-t) \end{array}
ight.$$

• In particular, for $0 < \delta^R < \check{\delta}^R_t$, higher optimism

- reduces the stock return volatility
- across all wealth distributions \u03c8^l
- relative to a rational institutionalized (BP) economy
- ... Link between irrationality and excess vol "broken" in institutionalized markets
 - Key prediction of noise/sentiment risk model
 - ★ De Long et al. (1990), Dumas et al. (2009)
 - Important to associate excess vol in VR tests to irrationality/mispricing
 - * e.g., Shiller (1979, 1981), Giglio & Kelly (2018)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

1. Excess volatility: Illustration



• Effect arises purely from relative-wealth channel

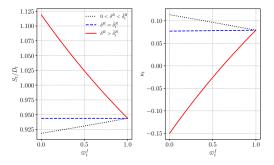
- As sentiment rises and tends to offset I's demand for the stock
- Asymmetric effect of sentiment on (excess) vol

э

1. Effect of institutionalization

• Lemma: In presence of both R- and I-investors,

$$\frac{\partial (S/D)_t}{\partial \varpi_t^l} \stackrel{\geq}{_{\scriptstyle =}} \mathsf{0} \Leftrightarrow \delta^{\mathsf{R}} \stackrel{\leq}{_{\scriptstyle =}} \check{\delta}^{\mathsf{R}}_t$$



- DeVault et al. (2019)'s conjecture holds only for low levels of sentiment
- For high enough δ^R , institutions always push prices closer to fundamentals

伺下 イヨト イヨト

э

Dynamics: Interaction of cash flow and wealth effects

- So far, effects are mostly static
- As the economy unfolds, CF shocks endogenously change ϖ'_t
- Lemma: In presence of both R- and I-investors,

$$\frac{\partial(\varpi_t^{\,\prime})}{\partial D_t} \begin{cases} >0, \quad \delta^R < q_t \\ =0, \quad \delta^R = q_t \\ <0, \quad \delta^R > q_t \end{cases}$$

• Positive CF news decrease the I-investors' share of aggregate wealth if:

- *R*-investors are sufficiently bullish
- The market is already in a low state D_t
- Benchmarking weight v in *I*'s preference is sufficiently low

prices and MPR

・ 「 ・ モ ・ ・ 日 ・ ・ 日 ・

Dynamics of relative-wealth effect: Simple illustration

Heterogeneous (fixed) portfolios

• Assume: $S_t = 1 \rightarrow S_{t+1} = 1.2$

• i.e., $r_{t,t+1} = 0.2$

	ϖ_t^k	W_t^k	θ_t^k	$1 - \theta_t^k$	Stock Demand _t (\$)	W_{t+1}^k	ϖ_t^k	θ_{t+1}^k	$1-\theta_{t+1}^k$	Stock Demand _{t+1} (\$)
R	0.50	0.50	1.30	-0.30	0.65	0.63	0.53	1.30	-0.30	0.82
1	0.50	0.50	0.70	0.30	0.35	0.57	0.47	0.70	0.30	0.40
	1.00	1.00			1.00	1.20	1.00	-		1.22

• Aggregate stock demand (in \$) grows by 0.22

э

Dynamics of relative-wealth effect: Simple illustration

Less heterogeneous next-period portfolios

• Assume: $S_t = 1 \rightarrow S_{t+1} = 1.2$

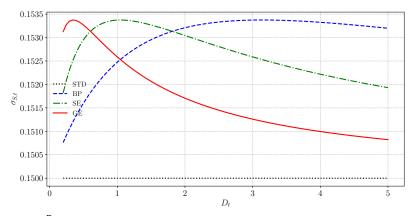
• i.e., $r_{t,t+1} = 0.2$

	ϖ_t^k	W_t^k	θ_t^k	$1 - \theta_t^k$	Stock Demand _t (\$)	W_{t+1}^k	ϖ_t^k	θ_{t+1}^k	$1-\theta_{t+1}^k$	Stock Demand _{t+1} (\$)
R	0.50	0.50	1.30	-0.30	0.65	0.63	0.53	1.10	-0.10	0.69
Ι	0.50	0.50	0.70	0.30	0.35	0.57	0.47	0.90	0.10	0.51
	1.00	1.00			1.00	1.20	1.00			1.21

• Aggregate stock demand (in \$) grows by 0.21

э

Dynamics: Effect on volatility $\delta^{R} = 1, \mu = 0, \sigma = 0.15, t = 1, T = 5, D_{0} = 1, v = 0.5$



• For $\delta^R \ge 1$, I's trading with R- (instead of rational) investors lead to:

- Counter-cyclical pattern in return volatility
- Lower excess vol than in both BP and SENT cases , app .

• • **=** • **=**

Dynamics: Practical Implications

- 1. In presence of high sentiment:
 - institutions can have a stronger depressing effect on volatility
 - than equivalently rational but non-institutional investors
 - despite their benchmarking concerns
- 2. In highly institutionalized markets:
 - sentiment need not create "excess volatility"
 - but substantially reduce it
- ... Importance of distinguishing degree of institutionalization of markets
 - e.g., if degree is high:
 - ★ High P/D ratio + Low excess vol \Rightarrow High sentiment
 - ★ High P/D ratio + High excess vol \Rightarrow Low sentiment

伺下 イヨト イヨト ニヨ

Conclusions

- Complex joint effect of sentiment and benchmarking concerns on volatility
 - Can be very different from the addition of the individual effects
 - Relative-wealth channel can attenuate transmission of shocks to prices
- Rich implications for the levels and dynamics of volatility
 - Excess vol can decrease with the level of investor optimism
 - Can fall below the levels prevailing in pure rational and sentiment driven cases
 - Lead to countercyclical patterns in vol
 - * Consistent with empirical evidence
- Role of institutionalization of markets as correcting force is ambiguous
 - Institutions worsen overpricing created by low-to-moderate optimism
 - But help correct the severe mispricing created by "exuberant" beliefs
 - > Benchmark-related pressure on stock prices is positive but bounded

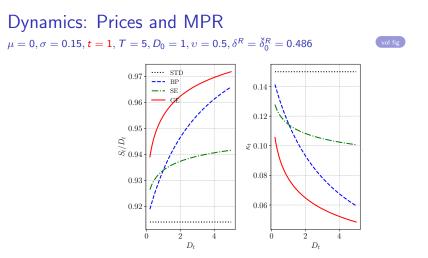
(1日) (1日) (日) (日) (日)

Roche & Sotes-Paladino

Sentiment-Driven Excess Vol and Institutions

26

▲ロト ▲母 ト ▲目 ト ▲目 ト ▲ のへの

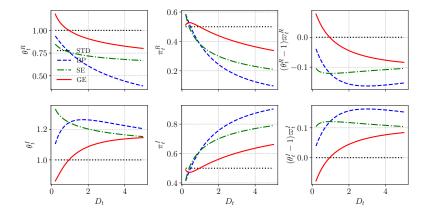


• After positive shocks $dB_t > 0$ in the BP (SENT) economy

- ▶ The *I*(*R*)-investor becomes wealthier
- Stock prices increase and the MPR falls (cyclical / counter-cyclical patterns)
- Effects in GE economy combine (\approx linearly) those in the BP and SENT cases

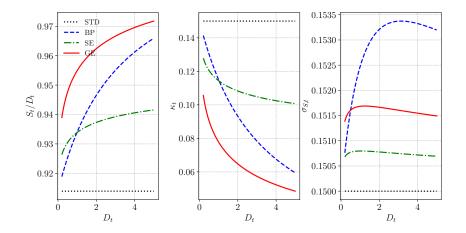
Dynamics: Associated portfolios

• Opposite trading patterns for I and R investors across BP and SENT cases



back

Dynamics: Prices and MPR $\delta^{R} = \delta_{0}^{R} = 0.486, \mu = 0, \sigma = 0.15, t = 1, T = 5, D_{0} = 1, v = 0.5$



э

Reference economy 1: BP case

- Deviations of prices, MPR and volatility from STD case a function of $\varpi_t^I q_t$
 - "Benchmarked wealth"

$$\begin{split} (S/D)_t^{BP} &\triangleq (S_t/D_t)|_{\delta^R=0} = \overline{(S/D)}_t \frac{1}{1 - \gamma(T - t)\varpi_t^l q_t} \geq \overline{(S/D)}_t, \\ \kappa_t^{BP} &\triangleq \kappa_t|_{\delta^R=0} = \overline{\kappa} \left(1 - \frac{(1 - \gamma(T - t))\varpi_t^l q_t}{1 - \gamma(T - t)\varpi_t^l q_t} \right) \leq \overline{\kappa}, \\ \sigma_{S,t}^{BP} &\triangleq \sigma_{S,t}|_{\delta^R=0} = \overline{\sigma}_S \left(1 + \gamma(T - t) \frac{\varpi_t^l q_t (1 - \varpi_t^l q_t)}{1 - \gamma(T - t)\varpi_t^l q_t} \right) \geq \overline{\sigma}_S. \end{split}$$

• Excess vol is: $EVR_t^{BP} = \Psi_{q,t}^{BP} + \Psi_{\varpi',t}^{BP}$, with:

$$\begin{split} \Psi^{BP}_{q,t} &= \frac{\gamma(T-t)\varpi^{t}_{t}q_{t}}{1-\gamma(T-t)\varpi^{t}_{t}q_{t}}(1-q_{t}) > 0, \\ \Psi^{BP}_{\varpi^{l},t} &= \frac{\gamma(T-t)\varpi^{t}_{t}(1-\varpi^{t}_{t})q^{2}_{t}}{1-\gamma(T-t)\varpi^{t}_{t}q_{t}} > 0. \end{split}$$

- In rational markets:
 - Greater institutionalization ϖ_t^l increases $\Psi_{q,t}^{BP}$
 - Benchmarking-induced EV always amplified by relative wealth channel

Reference economy 2: SENT case

- Bullish (bearish) investors over(under)weigh the stock in their portfolios
- Pushing stock prices up (down) and the MPR down (up) accordingly

$$\begin{split} (S/D)_t^{SE} &\triangleq (S_t/D_t)|_{\upsilon=0} = \overline{(S/D)}_t \frac{1}{1 - \varpi_t^R \gamma(\delta^R(T-t))}, \\ \kappa_t^{SE} &\triangleq \kappa_t|_{\upsilon=0} = \bar{\kappa} \left(1 - \frac{\varpi_t^R (1 - \gamma(\delta^R(T-t)))\delta^R}{1 - \varpi_t^R \gamma(\delta^R(T-t))} \right). \end{split}$$

- Deviations from STD equilibrium values increase monotonically with $|\delta^{R}|$
- Both bullish and bearish sentiment symmetrically increase return (excess) vol

$$\begin{split} \sigma_{S,t}^{SE} &\triangleq \sigma_{S,t}|_{\upsilon=0} = \bar{\sigma}_{S} \left(1 + \frac{\varpi_{t}^{R}(1 - \varpi_{t}^{R})\gamma(\delta^{R}(T - t))}{1 - \varpi_{t}^{R}\gamma(\delta^{R}(T - t))} \delta^{R} \right), \\ EVR_{t}^{SE} &\triangleq EVR_{t}|_{\upsilon=0} = \Psi_{\varpi',t}^{SE} = \frac{\varpi_{t}^{R}(1 - \varpi_{t}^{R})\gamma(\delta^{R}(T - t))}{1 - \varpi_{t}^{R}\gamma(\delta^{R}(T - t))} \delta^{R}. \end{split}$$

- Basis of excess volatility ratio tests of market irrationality
- e.g., Shiller 1979, 1981; Giglio and Kelly 2018.