

Carbon Cost Pass-Through in European Aviation

Evidence from low-cost airlines

Adrián Santonja, Jordi Teixidó & Aleksandar Zaklan

Introduction Policy Data Descriptives Theory Research design Results Conclusion References •000 0 000 0 000 00 000 00 000 00 000 00 000 0 00 0

Aviation CO₂ emissions are rising quickly

Source: European Environmental Agency

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	References
0000	O	000	0000	O	OO	0000	00	
Motiva	tion							

- Transport decarbonization is lagging behind other sectors
- $\rightarrow\,$ sector is increasingly drawing the attention of policymakers

Introduction								
0000	0	000	0000	0	00	0000	00	
Motiva	ation							

- Transport decarbonization is lagging behind other sectors
- $\rightarrow\,$ sector is increasingly drawing the attention of policymakers
 - Air transport stands out as particularly challenging due to
 - sector's growth path
 - 2 its international nature
 - 3 the release of non-CO $_2$ emissions at high altitudes
 - 4 lack of currently affordable and substantial abatement technologies

Introduction								
0000	0	000	0000	0	00	0000	00	
Motiva	ation							

- Transport decarbonization is lagging behind other sectors
- $\rightarrow\,$ sector is increasingly drawing the attention of policymakers
- Air transport stands out as particularly challenging due to
 - sector's growth path
 - 2 its international nature
 - 3 the release of non-CO $_2$ emissions at high altitudes
 - 4 lack of currently affordable and substantial abatement technologies
- European flights included under EU ETS, but unclear to what extent consumers receive the carbon price signal due to a potential lack of pass-through

Introduction								
0000	0	000	0000	0	00	0000	00	
Motiva	ation							

- Transport decarbonization is lagging behind other sectors
- $\rightarrow\,$ sector is increasingly drawing the attention of policymakers
- Air transport stands out as particularly challenging due to
 - sector's growth path
 - 2 its international nature
 - 3 the release of non-CO $_2$ emissions at high altitudes
 - 4 lack of currently affordable and substantial abatement technologies
- European flights included under EU ETS, but unclear to what extent consumers receive the carbon price signal due to a potential lack of pass-through
- Carbon cost pass-through would imply windfall profits for European airlines from free allocation of EUAAs

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	References
0000	O	000	0000	O	00	0000	00	
Literat	ure							

The intersection of three fields of empirical research:

- I EU ETS and the aviation sector (Fageda and Teixidó 2022; Jong 2022; Kang et al. 2022)
- 2 Fuel cost and tax pass-through in aviation (Bernardo et al. 2022; Bradley and Feldman

2020; Cannon and Watanabe 2020; Gayle and Lin 2021; Wolter et al. 2021)

- Carbon cost pass-through
 - under the EU ETS (Cludius et al. 2020; Duso and Szücs 2017; Fabra and Reguant 2014; Hintermann 2016)
 - in transportation (Erutku 2019; Knittel et al. 2015; Stitzing 2017)

Introduction								
0000	0	000	0000	0	00	0000	00	
Literat	ure							

The intersection of three fields of empirical research:

- I EU ETS and the aviation sector (Fageda and Teixidó 2022; Jong 2022; Kang et al. 2022)
- 2 Fuel cost and tax pass-through in aviation (Bernardo et al. 2022; Bradley and Feldman

2020; Cannon and Watanabe 2020; Gayle and Lin 2021; Wolter et al. 2021)

- Carbon cost pass-through
 - under the EU ETS (Cludius et al. 2020; Duso and Szücs 2017; Fabra and Reguant 2014; Hintermann 2016)
 - in transportation (Erutku 2019; Knittel et al. 2015; Stitzing 2017)
- $\rightarrow\,$ No study on the carbon cost pass-through in aviation

Introduction								
0000	0	000	0000	0	00	0000	00	
This p	paper							

- ? Research Question
 - What is the degree of carbon cost pass-through in European aviation under the EU ETS?
 - Does carbon cost pass-through differ by market structure?

💻 Data

- Granular route by airline level data on schedules and fares
- Restriction to 2017-2019 and focus on two low-cost airlines (Ryanair & easyJet)

🏁 Results

- Full carbon cost pass-through on average
- No conclusive pattern on differences across market structures

Introduction Policy Data Descriptives Theory Research design Results Conclusion References 0000 • 000 000 0 000 00 The EU ETS and aviation

- Aviation included in 2012 as the first non-stationary sector
 - Stop-the-clock decision restricted coverage to within EEA flights
 - Range of exceptions at the route and operator level
- 80% of the baseline allowance volume is allocated for free
 - \blacksquare Sector growth over time \rightarrow aviation as a net buyer of allowances
 - Around half of total emissions of the sector are covered through purchased allowances

		Data						
0000	0	000	0000	0	00	0000	00	

Three main data sources

- Data on flight schedules (RDC)
- 2 Data on fares (RDC)
- **3** Input prices (Bloomberg)
 - EU ETS allowance price
 - New York Harbor kerosene spot price

		Data O●O			
Flight	sched	ules			

Total flights and seats for routes landing/departing in Europe by

- origin and destination airport
- month-of-sample
- airline (categorized into network, low-cost and other)
- aircraft type
- \rightarrow includes estimate of CO₂ emissions (or equivalent fuel consumption)

Final dataset aggregated to the month-route-airline level

 $\rightarrow\,$ Number of seats from London-Heathrow to Barcelona-El Prat in October 2017 with Ryanair

		Data 000				
Flight	ticket	price	25			

Average economy class fare for routes landing/departing in Europe by

- origin and destination airport
- month-of-sample
- airline (Fare coverage)
- time-of-sale (three months ahead, one month ahead, one week ahead, weighted average)

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	
0000	O	000	0000	O	OO	0000	00	
Flight	ticket	price	ς					

Average economy class fare for routes landing/departing in Europe by

- origin and destination airport
- month-of-sample
- airline (Fare coverage)
- time-of-sale (three months ahead, one month ahead, one week ahead, weighted average)
- A Observed ticket prices only for point-to-point travel

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	References
0000	O	00●	0000	O	00	0000	00	
Flight	ticket	price	es					

Average economy class fare for routes landing/departing in Europe by

- origin and destination airport
- month-of-sample
- airline (Fare coverage)
- time-of-sale (three months ahead, one month ahead, one week ahead, weighted average)
- A Observed ticket prices only for point-to-point travel
- $\rightarrow\,$ Restrict sample to most two prominent airlines catering to point-to-point travellers

1 Ryanair (31% of total low-cost seats)

2 easyJet (20% of total low-cost seats)

Low-cost airlines among top CO₂ emitters

Low-cost airlines face highly concentrated markets

🕨 ннг

Price evolution 2013-2022

 CO_2 costs only small fraction of fares

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	References
0000	O	000	0000	•	OO	0000	00	
These	at a d	الم ما در	ام میں م					

Theoretical background

Competition in the aviation sector (Koopmans and Lieshout 2016)

- Airport pair as relevant market definition
- High levels of market concentration
- Cournot model of competition

				Theory				
0000	0	000	0000	•	00	0000	00	
Theor	otical	back	round					

Theoretical background

Competition in the aviation sector (Koopmans and Lieshout 2016)

- Airport pair as relevant market definition
- High levels of market concentration
- Cournot model of competition

Equilibrium pass-through rate of sector-wide price shock (Koopmans and

Lieshout 2016; Weyl and Fabinger 2013)

• Monopoly:
$$\rho = \frac{1}{1 + \frac{\epsilon_D - 1}{\epsilon_S} + \frac{1}{\epsilon_{ms}}}$$

- > Constant MC + linear demand ($\epsilon_{ms} = 1$): $\rho = 0.5$
- > Constant MC + constant elasticity demand ($\epsilon_{ms} = -\epsilon_D$): $\rho > 1$
- > In general: $\uparrow |\epsilon_D|$ leads to $\downarrow \rho$

Introduction Policy Data Descriptives Theory Research design Results Conclusion References

Theoretical background

Competition in the aviation sector (Koopmans and Lieshout 2016)

- Airport pair as relevant market definition
- High levels of market concentration
- Cournot model of competition

Equilibrium pass-through rate of sector-wide price shock $({\sf Koopmans and}$

Lieshout 2016; Weyl and Fabinger 2013)

• Monopoly:
$$\rho = \frac{1}{1 + \frac{\epsilon_D - 1}{\epsilon_S} + \frac{1}{\epsilon_{ms}}}$$

- > Constant MC + linear demand ($\epsilon_{ms} = 1$): $\rho = 0.5$
- > Constant MC + constant elasticity demand ($\epsilon_{ms} = -\epsilon_D$): $\rho > 1$
- > In general: $\uparrow |\epsilon_D|$ leads to $\downarrow \rho$
- Symmetric imperfect competition: $\rho = \frac{1}{1 + \frac{\theta}{\epsilon_{\theta}} + \frac{\epsilon_{D} \theta}{\epsilon_{S}} + \frac{\theta}{\epsilon_{ms}}}$
 - ➤ Constant MC + constant conduct parameter θ + linear demand or constant elasticity demand: ↑ competition leads to ↑ ρ

					Research design			
0000	0	000	0000	0	00	0000	00	
Identifi	catior	n stra	ategy					

- We follow Fabra and Reguant 2014 in instrumenting costs per seat with monthly fuel price and monthly allowance price
- In addition, we interact these prices with route distance

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	
0000	O	000	0000	O	●O	0000	00	
Identifi	catio	n stra	ategy					

- We follow Fabra and Reguant 2014 in instrumenting costs per seat with monthly fuel price and monthly allowance price
- In addition, we interact these prices with route distance
- Identification will require
 - **1** Instrument relevance: mechanically given, as prices and distance are part of the costs per seat term

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	
0000	O	000	0000	O	●O	0000	00	
Identifi	catio	n stra	ategy					

- We follow Fabra and Reguant 2014 in instrumenting costs per seat with monthly fuel price and monthly allowance price
- In addition, we interact these prices with route distance
- Identification will require
 - Instrument relevance: mechanically given, as prices and distance are part of the costs per seat term
 - **2** Instrument exogeneity:
 - Distance is market-specific, but its impact on fares runs through fuel use (and CO₂ emissions)

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	
0000	O	000	0000	O	●O	0000	00	
Identifi	catio	n stra	ategy					

- We follow Fabra and Reguant 2014 in instrumenting costs per seat with monthly fuel price and monthly allowance price
- In addition, we interact these prices with route distance
- Identification will require
 - Instrument relevance: mechanically given, as prices and distance are part of the costs per seat term
 - 2 Instrument exogeneity:
 - Distance is market-specific, but its impact on fares runs through fuel use (and CO₂ emissions)
 - Fuel and allowance prices are cleared in a global/European market, in which European aviation is only a small actor. Potential endogeneity through macroeconomic fluctuations is alleviated by controlling for income at origin and destination at the yearly level.

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	
0000	O	000	0000	O	●O	0000	00	
Identifi	catio	n stra	ategy					

- We follow Fabra and Reguant 2014 in instrumenting costs per seat with monthly fuel price and monthly allowance price
- In addition, we interact these prices with route distance
- Identification will require
 - Instrument relevance: mechanically given, as prices and distance are part of the costs per seat term
 - 2 Instrument exogeneity:
 - Distance is market-specific, but its impact on fares runs through fuel use (and CO₂ emissions)
 - Fuel and allowance prices are cleared in a global/European market, in which European aviation is only a small actor. Potential endogeneity through macroeconomic fluctuations is alleviated by controlling for income at origin and destination at the yearly level.
 - 3 Full load factors as a good approximation to reality

					Research design			
0000	0	000	0000	0	00	0000	00	
Empiri	cal m	odel						

$$y_{\textit{iat}} = \beta_0 + \delta_1 \textit{fuel}_{\textit{iat}} + \delta_2 \textit{co} 2_{\textit{iat}} + \textit{X}_{\textit{iat}} + \mu_{\textit{ta}} + \lambda_{\textit{ia}} + \epsilon_{\textit{iat}}$$

- y_{iat} average one-month-ahead fare in month-of-sample t for route i and airline a
- *fuel_{iat}* contemporaneous fuel cost per seat
 - instrumented with fuel price (by distance)
- $co2_{iat}$ contemporaneous (opportunity) cost of CO_2 per seat
 - > instrumented with allowance price (by distance)
- X_{iat} vector of controls
 - > yearly population and income at origin and destination
 - competition intensity (HHI, only low-cost, market share)
- μ_{ta} year or year by airline fixed effects
- λ_{ia} airline by route fixed effects

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	References
0000	O	000	0000	O	OO	●000	00	
F' . C								

_			· ·			
	LC1	F '	<u> </u>		\mathbf{c}	\sim
			- 11		U I	-
			\sim .	LU.	<u> </u>	\sim
					0	

		Fuel cos	t per seat			CO2 cos	t per seat	
Jet fuel price	1.646***	1.646***	1.620***	1.620***	-0.001	-0.001	-0.003	-0.003
	(0.02)	(0.02)	(0.02)	(0.02)	(0.00)	(0.00)	(0.00)	(0.00)
Jet fuel price \times Distance	0.005***	0.005***	0.005***	0.005***	0.000**	0.000**	0.000***	0.000***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Allowance price	0.003**	0.003**	0.004***	0.004***	0.016***	0.016***	0.016***	0.016***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Allowance price \times Distance	-0.000***	-0.000***	-0.000***	-0.000***	0.000***	0.000***	0.000***	0.000***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Route by Airline FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	No	No	Yes	Yes	No	No
Year by Airline FE	No	No	Yes	Yes	No	No	Yes	Yes
Pop. & Income controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Competition controls	No	Yes	No	Yes	No	Yes	No	Yes
Observations	128300	128300	128300	128300	128300	128300	128300	128300

Standard errors in parentheses

 $^+\ \rho < 0.10,\ ^*\ \rho < 0.05,\ ^{**}\ \rho < 0.01,\ ^{***}\ \rho < 0.001$

F-Statistic above Stock & Yogo critical value for 5% maximal IV relative bias

						Results		
0000	0	000	0000	0	00	0000	00	

Main results: average pass-through rate

		Average one	-month-a	head fare	
	OLS		Г	V	
Fuel cost	0.52***	0.50***	0.53***	0.51***	0.53***
	(0.11)	(0.11)	(0.11)	(0.11)	(0.11)
CO2 cost	1.19**	1.19**	1.12*	1.40**	1.32**
	(0.46)	(0.46)	(0.46)	(0.46)	(0.46)
Route by Airline FE	Yes	Yes	Yes	Yes	Yes
Month FE	Yes	Yes	Yes	Yes	Yes
Year FE	No	Yes	Yes	No	No
Year by Airline FE	Yes	No	No	Yes	Yes
Pop. & Income controls	Yes	Yes	Yes	Yes	Yes
Competition controls	Yes	No	Yes	No	Yes
Observations	128300	128300	128300	128300	128300

Standard errors in parentheses

+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001

						Results		
0000	0	000	0000	0	00	0000	00	

Pass-through rate by market structure

	Average one-month-ahead fare									
		Nor	-Monopol	у		Monopoly				
	OLS		P	V		OLS		P	V	
Fuel cost	1.04***	0.95***	1.01***	0.94***	1.01***	0.24	0.17	0.17	0.17	0.17
	(0.18)	(0.18)	(0.18)	(0.18)	(0.18)	(0.15)	(0.14)	(0.14)	(0.14)	(0.14)
CO2 cost	0.97	1.29+	1.09	1.34+	1.13	1.31*	0.97	0.97	1.41*	1.41*
	(0.72)	(0.72)	(0.73)	(0.71)	(0.72)	(0.62)	(0.60)	(0.60)	(0.62)	(0.62)
Route by Airline FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Month FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	No	Yes	Yes	No	No	No	Yes	Yes	No	No
Year by Airline FE	Yes	No	No	Yes	Yes	Yes	No	No	Yes	Yes
Pop. & Income controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Competition controls	Yes	No	Yes	No	Yes	Yes	No	Yes	No	Yes
Observations	52640	52640	52640	52640	52640	75660	75660	75660	75660	75660

Standard errors in parentheses

 $^+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001$

Deee	والمريح بروالد		for select				CU CT	C
0000	0	000	0000	0	00	0000	00	
						Results		

Pass-through rate for placebo routes not under EU ETS

	Avera	age one-m	onth-ahead	d fare
Fuel cost	1.06***	1.06***	1.27***	1.25***
	(0.27)	(0.27)	(0.28)	(0.28)
CO2 cost	0.02	0.01	-0.35	-0.48
	(1.15)	(1.15)	(1.31)	(1.31)
Route by Airline FE	Yes	Yes	Yes	Yes
Month EE	Voc	Vec	Vec	Voc
MONUN FE	res	res	res	res
Year FF	Yes	Yes	No	No
	105	105	110	110
Year by Airline FE	No	No	Yes	Yes
-				
Pop. & Income controls	Yes	Yes	Yes	Yes
Competition controls	No	Yes	No	Yes
Observations	14237	14237	14237	14237

Standard errors in parentheses

 $^{+}$ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	References
0000	O	000	0000	O	OO	0000	O	
Conclu	sion							

🏁 Our findings

- We are the first to analyze carbon cost pass-through in the aviation sector
- Full pass-through on average, likely implying windfall profits from free allocation for airlines
- No conclusive pattern on differences across market structures

SOON Outlook

- Incorporate demand data at the route-airline level
- Granular definition of competition at route level

			Conclusion	
			00	

Thank you for your attention!

Adrián Santonja

📨 asantonjadifonzo@diw.de 👇

♥ @adrian_santonja

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	References
0000	O	000	0000	O	OO	0000	00	
Refere	nces l							

- Bernardo, V., Fageda, X. and Teixidó, J. J. (2022). "Flight Ticket Taxes in Europe: Environmental and Economic Impact". en. In: SSRN Electronic Journal. Available at: https://www.ssrn.com/abstract=4124321, accessed on April 20, 2023.
- Bradley, S. and Feldman, N. E. (2020), "Hidden Baggage: Behavioral Responses to Changes in Airline Ticket Tax Disclosure", en. In: American Economic Journal: Economic Policy 12.4, pp. 58-87, Accessed on November 9, 2021.
- Cannon, J. N. and Watanabe, O. V. (2020), "Do Firms Pass Commodity Cost Savings to Consumers? Evidence and Impacts of Asymmetric Pricing Behavior in the U.S. Airline Industry", en. In: Working Paper,
- Cludius, J., Bruyn, S. de, Schumacher, K. and Vergeer, R. (2020). "Ex-post Investigation of Cost Pass-Through in the EU ETS: An Analysis for Six Industry Sectors". In: Energy Economics 91, p. 104883.
- Duso, T. and Szücs, F. (2017). "Market Power and Heterogeneous Pass-Through in German Electricity Retail". In: European Economic Review 98, pp. 354-372.
- Erutku, C. (2019), "Carbon pricing pass-through: Evidence from Ontario and Quebec's wholesale gasoline markets", en. In: Energy Policy 132. pp. 106-112.
- Fabra, N. and Reguant, M. (2014). "Pass-Through of Emissions Costs in Electricity Markets". In: American Economic Review 104.9, pp. 2872-99.
- Fageda, X. and Teixidó, J. J. (2022). "Pricing carbon in the aviation sector: Evidence from the European emissions trading system". In: Journal of Environmental Economics and Management 111, p. 102591.
- Gayle, P. G. and Lin, Y. (2021). "Cost Pass-Through in Commercial Aviation: Theory and Evidence". In: Economic Inquiry 59.2. pp. 803-828.
- Hintermann, B. (2016). "Pass-Through of CO2 Emission Costs to Hourly Electricity Prices in Germany". In: Journal of the Association of Environmental and Resource Economists 3.4, pp. 857-891.
- Jong, G. de (2022). "Emission Pricing and Capital Replacement: Evidence from Aircraft Fleet Renewal". en. In: Tinbergen Institute Discussion Paper, No. TI 2022-060/VIII, p. 42.
- Kang, Y., Liao, S., Jiang, C. and D'Alfonso, T. (2022). "Synthetic control methods for policy analysis: Evaluating the effect of the European Emission Trading System on aviation supply". In: Transportation Research Part A: Policy and Practice 162, pp. 236-252.
- Knittel, C. R., Meiselman, B. and Stock, J. (2015). "The Pass-THrough of rin Prices to Wholesale and Retail Fuels under the Renewable Fuel Standard". In: NBER Working Paper 21343.
- Koopmans, C. and Lieshout, R. (2016). "Airline cost changes: To what extent are they passed through to the passenger?" In: Journal of Air Transport Management 53, pp. 1-11.

Introduction	Policy	Data	Descriptives	Theory	Research design	Results	Conclusion	References
0000	O	000	0000	O	00	0000	00	
Referer	ices I	1						

Stitzing, R. (2017). "Distributional and Environmental Effects of an Emissions-Differentiated Car Sales Tax". In: SSRN Electronic Journal.

- Weyl, E. G. and Fabinger, M. (2013). "Pass-Through as an Economic Tool: Principles of Incidence under Imperfect Competition". In: Journal of Political Economy 121.3.
- Wolter, A. H., Ehlers, T., Luetjens, K. and Gollnick, V. (August 2021). "Commodity price pass-through in the US airline industry and the hidden perks of consolidation". In: Journal of Air Transport Management 95, p. 102100, Available at: https://linkinghub.elsevier.com/retrieve/pii/S0969699721000831, accessed on April 20, 2023.

Appendix •0000

Airline fare coverage

Low-cost airlines	Blue Air, Eurowings, Flybe, Jet2, Laudamotion, Moarch Airlines,
	Norwegian Air Shuttle, Ryanair, SmartWings, Transavia,
	Volotea, Vueling, WOW Air, Wizz Air, easyJet
Network airlines	Aegean Airlines, Aer Lingus, Air China, Air France, Alitalia, Austrian, British Airways, Brussels Airlines, CSA, Finnair, Iberia, KLM, LOT Polisch Airlines, Lufthansa, SAS, TAP Air Portugal, TAROM, airberlin
Other airlines	Air Baltic, Air Corsica, Air Malta, Bulgarian Air, CityJet, Hainan Airlines, Hop!, Loganair, Olympic Air

Appendix 00000

Herfindahl-Hirschman Index for non-monopoly routes

Appendix 00000

Price evolution 2013-2022

🕨 Back

CO_2 cost distribution for low-cost airlines

Back

Fuel cost distribution for low-cost airlines

▶ Back

