Same Sex Marriage, The Great Equalizer

Aleksei Parakhonyak¹ Sergey V. Popov²

¹Oxford University

²Cardiff Business School

Barcelona, August 28, 2023

People marry each other

- People marry each other
- Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)

- People marry each other
- Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)
- Some people are ardently against same sex marriage

- People marry each other
- Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)
- Some people are ardently against same sex marriage
- A prominent argument against revolves around people who *could* be in heterosexual marriage, but end up in same sex marriage

- People marry each other
- Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)
- Some people are ardently against same sex marriage
- A prominent argument against revolves around people who *could* be in heterosexual marriage, but end up in same sex marriage
- There are silly arguments, too

- People marry each other
- Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)
- Some people are ardently against same sex marriage
- A prominent argument against revolves around people who *could* be in heterosexual marriage, but end up in same sex marriage
- There are silly arguments, too
- Q: Why would someone lose from allowing same sex marriage?

- People marry each other
- Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)
- Some people are ardently against same sex marriage
- A prominent argument against revolves around people who *could* be in heterosexual marriage, but end up in same sex marriage
- There are silly arguments, too
- Q: Why would someone lose from allowing same sex marriage?
- A: Because same sex marriage changes the *expectations* of marriage market participants, changing the outcomes of everyone

- People marry each other
- Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)
- Some people are ardently against same sex marriage
- A prominent argument against revolves around people who *could* be in heterosexual marriage, but end up in same sex marriage
- There are silly arguments, too
- Q: Why would someone lose from allowing same sex marriage?
- A: Because same sex marriage changes the *expectations* of marriage market participants, changing the outcomes of everyone, **making genders equal**

Baseline Model

- Continuum of *types*, generically denoted x, y ∈ [0, 1], total mass 1, cdf G(·)
- Family production function f(x, y), increasing in both arguments, symmetric, continuous
- If married, output is shared by Nash bargaining:

$$v(x) + \frac{\overbrace{f(x,y) - v(x) - v(y)}^{s(x,y)}}{2}$$

If not married, pay search costs c > 0. No time discount

$$v(x) = -c + \int_0^1 \max\left[v(x) + \frac{f(x,y) - v(x) - v(y)}{2}, v(x)\right] dG(y)$$

Baseline Model

- Continuum of *types*, generically denoted $x, y \in [0, 1]$, total mass 1, cdf $G(\cdot)$
- Family production function f(x, y), increasing in both arguments, symmetric, continuous
- If married, output is shared by Nash bargaining:

$$v(x) + \underbrace{\frac{f(x,y) - v(x) - v(y)}{2}}^{s(x,y)}$$

If not married, pay search costs c > 0. No time discount

$$v(x) = -c + \int_0^1 \max\left[v(x) + \frac{f(x,y) - v(x) - v(y)}{2}, v(x)\right] dG(y) \Rightarrow$$

$$2c = \int_0^1 \max \left[s(x, y), 0 \right] dG(y) = \int_{\{y: s(x, y) \ge 0\}} s(x, y) dG(y)$$

Results of Atakan (2006)

$$2c = \int_0^1 \max[s(x, y), 0] \, dG(y) = \int_{y:s(x, y) \ge 0} s(x, y) \, dG(y)$$

- Under regularity conditions, equilibrium v(x) : [0, 1] → R exists, generically not unique; v(x) is continuous
- Under supermodularity of f(x, y):
 - $\{y : s(x, y) \ge 0\}$ is an interval, contains x, increases in x
 - Positive assortative matching

Results of Atakan (2006)

$$2c = \int_0^1 \max[s(x, y), 0] \, dG(y) = \int_{y:s(x, y) \ge 0} s(x, y) \, dG(y)$$

- Under regularity conditions, equilibrium v(x) : [0, 1] → R exists, generically not unique; v(x) is continuous
- Under supermodularity of f(x, y):
 - $\{y : s(x, y) \ge 0\}$ is an interval, contains x, increases in x
 - Positive assortative matching
- However, total disregard for gender.

• With two genders, $\{m, f\}$, eqm conditions are

$$2c = \int_0^1 [f(x, y) - v_m(x) - v_f(y)]^+ \, dG(y)$$

$$2c = \int_0^1 \left[f(x, y) - v_f(x) - v_m(y) \right]^+ dG(y)$$

Take $\overline{v}(x)$, eqm from Atakan (2006)

• With two genders, $\{m, f\}$, eqm conditions are

$$2c = \int_0^1 [f(x, y) - v_m(x) - v_f(y)]^+ \, dG(y)$$

$$2c = \int_0^1 [f(x, y) - v_f(x) - v_m(y)]^+ \, dG(y)$$

Take $\bar{v}(x)$, eqm from Atakan (2006), let

$$v_m(x) = \overline{v}(x) + \varepsilon, \quad v_f(x) = \overline{v}(x) - \varepsilon.$$

• With two genders, $\{m, f\}$, eqm conditions are

$$2c = \int_0^1 [f(x, y) - v_m(x) - v_f(y)]^+ \, dG(y)$$

$$2c = \int_0^1 [f(x, y) - v_f(x) - v_m(y)]^+ \, dG(y)$$

Take $\overline{v}(x)$, eqm from Atakan (2006), let

$$v_m(x) = \overline{v}(x) + \varepsilon, \quad v_f(x) = \overline{v}(x) - \varepsilon.$$

It is an equilibrium for every $\varepsilon!$

• With two genders, $\{m, f\}$, eqm conditions are

$$2c = \int_0^1 [f(x, y) - v_m(x) - v_f(y)]^+ \, dG(y)$$

$$2c = \int_0^1 \left[f(x, y) - v_f(x) - v_m(y) \right]^+ dG(y)$$

Take $\bar{v}(x)$, eqm from Atakan (2006), let

$$v_m(x) = \overline{v}(x) + \varepsilon, \quad v_f(x) = \overline{v}(x) - \varepsilon.$$

It is an equilibrium for every ε !

• (Conditional) asymmetry: $v_m(x) \neq v_f(x)$.

Equilibrium

We generalize over sexual orientations $t \in T$:

 $a(t_1, t_2) = 0 \Leftrightarrow t_1 \text{ can't marry } t_2.$

 $a(t_1, t_2) = 1 \Leftrightarrow t_1 \text{ can marry } t_2.$

Under Lipschitz continuity, equilibrium exists and satisfies the constant surplus condition:

$$2c = \sum_{j} a(t,j)q_{j} \int_{y} [f(x,y) - v_{t}(x) - v_{j}(y)]^{+} dG_{j}(y).$$

Easiest Way

Everyone can marry everyone:

$$2c = \int_0^1 \left[f(x, y) - v_m(x) - v_f(y) \right]^+ dG(y)$$

$$2c = \int_0^1 [f(x, y) - v_f(x) - v_m(y)]^+ \, dG(y)$$

Easiest Way

Everyone can marry everyone:

$$2c = \int_0^1 [f(x, y) - v_m(x) - v_f(y)]^+ dG(y) + \int_0^1 [f(x, y) - v_m(x) - v_m(y)]^+ dG(y),$$

$$2c = \int_0^1 [f(x, y) - v_f(x) - v_m(y)]^+ dG(y) + \int_0^1 [f(x, y) - v_f(x) - v_f(y)]^+ dG(y).$$

Easiest Way

Everyone can marry everyone:

$$2c = \int_0^1 [f(x, y) - v_m(x) - v_f(y)]^+ dG(y) + \int_0^1 [f(x, y) - v_m(x) - v_m(y)]^+ dG(y),$$

$$2c = \int_0^1 [f(x, y) - v_f(x) - v_m(y)]^+ dG(y) + \int_0^1 [f(x, y) - v_f(x) - v_f(y)]^+ dG(y).$$

Proposition

In every equilibrium, $v_m(x) = v_f(x)$.

If there is x_0 where $v_m(x_0) > v_f(x_0)$:

If there is x_0 where $v_m(x_0) > v_f(x_0)$:

• for every
$$y$$
, $f(x, y) - v_m(x) - v_f(y) < f(x, y) - v_f(x) - v_f(y)$

If there is x_0 where $v_m(x_0) > v_f(x_0)$:

• for every y,
$$f(x, y) - v_m(x) - v_f(y) < f(x, y) - v_f(x) - v_f(y)$$

and therefore

$$\mathsf{E}\left[f(x,y)-v_m(x)-v_f(y)\right]^+ < \mathsf{E}\left[f(x,y)-v_f(x)-v_f(y)\right]^+$$

If there is x_0 where $v_m(x_0) > v_f(x_0)$:

for every
$$y$$
, $f(x, y) - v_m(x) - v_f(y) < f(x, y) - v_f(x) - v_f(y)$

and therefore

$$\mathsf{E}\left[f(x,y)-v_m(x)-v_f(y)\right]^+ < \mathsf{E}\left[f(x,y)-v_f(x)-v_f(y)\right]^+$$

for the same reason

$${\sf E}\left[f(x,y) - v_m(x) - v_m(y)
ight]^+ < {\sf E}\left[f(x,y) - v_f(x) - v_m(y)
ight]^+$$

If the total expected surplus of m gender is 2c, the total expected surplus of f must be above 2c!

A Bit Harder Way

Everyone can marry opposite gender

$$2c = \int_0^1 [f(x, y) - v_m(x) - v_f(y)]^+ \, dG(y)$$

$$2c = \int_0^1 \left[f(x, y) - v_f(x) - v_m(y) \right]^+ dG(y)$$

A Bit Harder Way

Everyone can marry opposite gender and there is a *chance* you can marry same gender

$$2c = \int_0^1 \left[f(x, y) - v_m(x) - v_f(y) \right]^+ dG(y) +$$

+
$$p \int_0^1 [f(x,y) - v_m(x) - v_m(y)]^+ dG(y)$$

$$2c = \int_0^1 \left[f(x, y) - v_f(x) - v_m(y) \right]^+ dG(y) +$$

+
$$p \int_0^1 [f(x,y) - v_f(x) - v_f(y)]^+ dG(y)$$

A Bit Harder Way

Everyone can marry opposite gender and there is a *chance* you can marry same gender

$$2c = \int_0^1 \left[f(x, y) - v_m(x) - v_f(y) \right]^+ dG(y) +$$

+
$$p \int_0^1 [f(x,y) - v_m(x) - v_m(y)]^+ dG(y)$$

$$2c = \int_0^1 [f(x, y) - v_f(x) - v_m(y)]^+ dG(y) + + \rho \int_0^1 [f(x, y) - v_f(x) - v_f(y)]^+ dG(y)$$

Proposition

In every equilibrium with p > 0, $v_m(x) = v_f(x)$.

$$2c = \int_{0}^{1} \left[f(x, y) - v_{m}(x) - v_{f}(y) \right]^{+} dG(y) +$$

+ $p \int_{0}^{1} \left[f(x, y) - v_{m}(x) - v_{m}(y) \right]^{+} dG(y)$
$$2c = \int_{0}^{1} \left[f(x, y) - v_{f}(x) - v_{m}(y) \right]^{+} dG(y) +$$

+ $p \int_{0}^{1} \left[f(x, y) - v_{f}(x) - v_{f}(y) - v_{f}(y) \right]^{+} dG(y)$

Take $\Delta_0 = \max_x \underbrace{v_m(x) - v_f(x)}_{\Delta(x)}$, and x_0 is the maximand. Assume $\Delta_0 \ge \max_x (v_f(x) - v_m(x))$; rename genders otherwise.

$$\int [f(x, y) - v_f(x_0) - v_f(y) - \Delta(y)]^+ dG(y) \ge$$

$$\geq \int [f(x, y) - v_f(x_0) - v_f(y) - \Delta_0]^+ dGy.$$

$$p \int [f(x, y) - v_f(x_0) - v_f(y)]^+ dG(y) \ge$$

$$\geq p \int [f(x, y) - v_f(x_0) - v_f(y) - \Delta_0 - \Delta(y)]^+ dGy.$$

Can there be =?

$$\int [f(x,y) - v_f(x_0) - v_f(y) - \Delta(y)]^+ dG(y) =$$
$$= \int [f(x,y) - v_f(x_0) - v_f(y) - \Delta_0]^+ dGy$$

$$\int [f(x,y) - v_f(x_0) - v_f(y) - \Delta(y)]^+ dG(y) =$$

=
$$\int [f(x,y) - v_f(x_0) - v_f(y) - \Delta_0]^+ dGy$$

$$\Rightarrow \Delta(y) = \Delta_0.$$

$$\int [f(x,y) - v_f(x_0) - v_f(y) - \Delta(y)]^+ dG(y) =$$
$$= \int [f(x,y) - v_f(x_0) - v_f(y) - \Delta_0]^+ dGy$$
$$\Rightarrow \Delta(y) = \Delta_0.$$

$$p \int [f(x, y) - v_f(x_0) - v_f(y)]^+ dG(y) =$$

= $p \int [f(x, y) - v_f(x_0) - v_f(y) - \Delta_0 - \Delta(y)]^+ dGy$

$$\int [f(x,y) - v_f(x_0) - v_f(y) - \Delta(y)]^+ dG(y) =$$
$$= \int [f(x,y) - v_f(x_0) - v_f(y) - \Delta_0]^+ dGy$$
$$\Rightarrow \Delta(y) = \Delta_0.$$

$$p \int [f(x, y) - v_f(x_0) - v_f(y)]^+ dG(y) =$$

= $p \int [f(x, y) - v_f(x_0) - v_f(y) - \Delta_0 - \Delta(y)]^+ dGy$

$$\Rightarrow \Delta(y) = -\Delta_0.$$

All can marry opposite gender

$$2c = \int_0^1 \left[f(x, y) - v_{mh}(x) - v_{fh}(y) \right]^+ dG(y)$$

$$2c = \int_0^1 [f(x, y) - v_{mb}(x) - v_{fh}(y)]^+ \, dG(y)$$

All can marry opposite gender, some can marry same gender

$$2c = \int_{0}^{1} \left[f(x, y) - v_{mh}(x) - v_{fh}(y) \right]^{+} dG(y) + + q \int_{0}^{1} \left[f(x, y) - v_{mh}(x) - v_{fb}(y) \right]^{+} dG(y) 2c = \int_{0}^{1} \left[f(x, y) - v_{mb}(x) - v_{fh}(y) \right]^{+} dG(y) + + q \int_{0}^{1} \left[f(x, y) - v_{mb}(x) - v_{fb}(y) \right]^{+} dG(y)$$

All can marry opposite gender, some can marry same gender

$$2c = \int_{0}^{1} [f(x, y) - v_{mh}(x) - v_{fh}(y)]^{+} dG(y) + + q \int_{0}^{1} [f(x, y) - v_{mh}(x) - v_{fb}(y)]^{+} dG(y) 2c = \int_{0}^{1} [f(x, y) - v_{mb}(x) - v_{fh}(y)]^{+} dG(y) + + q \int_{0}^{1} [f(x, y) - v_{mb}(x) - v_{fb}(y)]^{+} dG(y) + + q \int_{0}^{1} [f(x, y) - v_{mb}(x) - v_{mb}(y)]^{+} dG(y)$$

All can marry opposite gender, some can marry same gender

$$2c = \int_{0}^{1} [f(x, y) - v_{mh}(x) - v_{fh}(y)]^{+} dG(y) + + q \int_{0}^{1} [f(x, y) - v_{mh}(x) - v_{fb}(y)]^{+} dG(y) 2c = \int_{0}^{1} [f(x, y) - v_{mb}(x) - v_{fh}(y)]^{+} dG(y) + + q \int_{0}^{1} [f(x, y) - v_{mb}(x) - v_{fb}(y)]^{+} dG(y) + + q \int_{0}^{1} [f(x, y) - v_{mb}(x) - v_{mb}(y)]^{+} dG(y)$$

Proposition

In equilibrium with
$$q>0$$
, $v_{mh}(x)=v_{fh}(x)\leq v_{mb}(x)=v_{fb}(x).$

Conclusion

We show that the baseline search model for marriage markets allows conditionally nonsymmetric equilibria

Conclusion

- We show that the baseline search model for marriage markets allows conditionally nonsymmetric equilibria
- We show that allowing for same sex marriage leaves only symmetric equilibria
 - Easy to achieve if everyone can partake in same sex marriage
 - Somewhat harder to achieve if it is *harder* to partake in same sex marriage
 - Even harder if some people *cannot* partake in same sex marriage

Conclusion

- We show that the baseline search model for marriage markets allows conditionally nonsymmetric equilibria
- We show that allowing for same sex marriage leaves only symmetric equilibria
 - Easy to achieve if everyone can partake in same sex marriage
 - Somewhat harder to achieve if it is *harder* to partake in same sex marriage
 - Even harder if some people *cannot* partake in same sex marriage
- Mathematically, requires symmetry across distributions
 - Hard to hope for equality without symmetry