Same Sex Marriage, The Great Equalizer

Aleksei Parakhonyak ${ }^{1} \quad$ Sergey V. Popov ${ }^{2}$

${ }^{1}$ Oxford University
${ }^{2}$ Cardiff Business School

Barcelona, August 28, 2023

Same Sex Marriage

■ People marry each other

Same Sex Marriage

- People marry each other

■ Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)

Same Sex Marriage

■ People marry each other
■ Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)

■ Some people are ardently against same sex marriage

Same Sex Marriage

- People marry each other

■ Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)

■ Some people are ardently against same sex marriage

- A prominent argument against revolves around people who could be in heterosexual marriage, but end up in same sex marriage

Same Sex Marriage

■ People marry each other
■ Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)

■ Some people are ardently against same sex marriage

- A prominent argument against revolves around people who could be in heterosexual marriage, but end up in same sex marriage
- There are silly arguments, too

Same Sex Marriage

- People marry each other

■ Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)

■ Some people are ardently against same sex marriage

- A prominent argument against revolves around people who could be in heterosexual marriage, but end up in same sex marriage
- There are silly arguments, too

Q: Why would someone lose from allowing same sex marriage?

Same Sex Marriage

- People marry each other

■ Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)

■ Some people are ardently against same sex marriage

- A prominent argument against revolves around people who could be in heterosexual marriage, but end up in same sex marriage
- There are silly arguments, too

Q: Why would someone lose from allowing same sex marriage?
A: Because same sex marriage changes the expectations of marriage market participants, changing the outcomes of everyone

Same Sex Marriage

- People marry each other

■ Reasons beyond sex (inheritance, tax benefits, citizenship and visa issues, consent for medical procedures, adoption, etc)

■ Some people are ardently against same sex marriage

- A prominent argument against revolves around people who could be in heterosexual marriage, but end up in same sex marriage
- There are silly arguments, too

Q: Why would someone lose from allowing same sex marriage?
A: Because same sex marriage changes the expectations of marriage market participants, changing the outcomes of everyone, making genders equal

Baseline Model

■ Continuum of types, generically denoted $x, y \in[0,1]$, total mass 1 , $\operatorname{cdf} G(\cdot)$

- Family production function $f(x, y)$, increasing in both arguments, symmetric, continuous
■ If married, output is shared by Nash bargaining:

$$
v(x)+\frac{\overbrace{f(x, y)-v(x)-v(y)}^{s(x, y)}}{2}
$$

■ If not married, pay search costs $c>0$. No time discount

$$
v(x)=-c+\int_{0}^{1} \max \left[v(x)+\frac{f(x, y)-v(x)-v(y)}{2}, v(x)\right] d G(y)
$$

Baseline Model

■ Continuum of types, generically denoted $x, y \in[0,1]$, total mass 1 , $\operatorname{cdf} G(\cdot)$

- Family production function $f(x, y)$, increasing in both arguments, symmetric, continuous
■ If married, output is shared by Nash bargaining:

$$
v(x)+\frac{\overbrace{f(x, y)-v(x)-v(y)}^{s(x, y)}}{2}
$$

- If not married, pay search costs $c>0$. No time discount

$$
\begin{gathered}
v(x)=-c+\int_{0}^{1} \max \left[v(x)+\frac{f(x, y)-v(x)-v(y)}{2}, v(x)\right] d G(y) \Rightarrow \\
2 c=\int_{0}^{1} \max [s(x, y), 0] d G(y)=\int_{\{y: s(x, y) \geq 0\}} s(x, y) d G(y)
\end{gathered}
$$

Results of Atakan (2006)

$$
2 c=\int_{0}^{1} \max [s(x, y), 0] d G(y)=\int_{y: s(x, y) \geq 0} s(x, y) d G(y)
$$

■ Under regularity conditions, equilibrium $v(x):[0,1] \rightarrow R$ exists, generically not unique; $v(x)$ is continuous
■ Under supermodularity of $f(x, y)$:

- $\{y: s(x, y) \geq 0\}$ is an interval, contains x, increases in x
- Positive assortative matching

Results of Atakan (2006)

$$
2 c=\int_{0}^{1} \max [s(x, y), 0] d G(y)=\int_{y: s(x, y) \geq 0} s(x, y) d G(y)
$$

■ Under regularity conditions, equilibrium $v(x):[0,1] \rightarrow R$ exists, generically not unique; $v(x)$ is continuous

- Under supermodularity of $f(x, y)$:
- $\{y: s(x, y) \geq 0\}$ is an interval, contains x, increases in x
- Positive assortative matching
- However, total disregard for gender.

With Different Genders

■ With two genders, $\{m, f\}$, eqm conditions are

$$
\begin{aligned}
& 2 c=\int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+} d G(y) \\
& 2 c=\int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{m}(y)\right]^{+} d G(y)
\end{aligned}
$$

- Take $\bar{v}(x)$, eqm from Atakan (2006)

With Different Genders

- With two genders, $\{m, f\}$, eqm conditions are

$$
\begin{aligned}
& 2 c=\int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+} d G(y) \\
& 2 c=\int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{m}(y)\right]^{+} d G(y)
\end{aligned}
$$

- Take $\bar{v}(x)$, eqm from Atakan (2006), let

$$
v_{m}(x)=\bar{v}(x)+\varepsilon, \quad v_{f}(x)=\bar{v}(x)-\varepsilon .
$$

With Different Genders

- With two genders, $\{m, f\}$, eqm conditions are

$$
\begin{aligned}
2 c & =\int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+} d G(y) \\
2 c & =\int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{m}(y)\right]^{+} d G(y)
\end{aligned}
$$

- Take $\bar{v}(x)$, eqm from Atakan (2006), let

$$
v_{m}(x)=\bar{v}(x)+\varepsilon, \quad v_{f}(x)=\bar{v}(x)-\varepsilon .
$$

It is an equilibrium for every ε !

With Different Genders

- With two genders, $\{m, f\}$, eqm conditions are

$$
\begin{aligned}
& 2 c=\int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+} d G(y) \\
& 2 c=\int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{m}(y)\right]^{+} d G(y)
\end{aligned}
$$

- Take $\bar{v}(x)$, eqm from Atakan (2006), let

$$
v_{m}(x)=\bar{v}(x)+\varepsilon, \quad v_{f}(x)=\bar{v}(x)-\varepsilon .
$$

It is an equilibrium for every ε !

- (Conditional) asymmetry: $v_{m}(x) \neq v_{f}(x)$.

Equilibrium

We generalize over sexual orientations $t \in T$:

$$
\begin{aligned}
& a\left(t_{1}, t_{2}\right)=0 \Leftrightarrow t_{1} \text { can't marry } t_{2} . \\
& a\left(t_{1}, t_{2}\right)=1 \Leftrightarrow t_{1} \text { can marry } t_{2} .
\end{aligned}
$$

Under Lipschitz continuity, equilibrium exists and satisfies the constant surplus condition:

$$
2 c=\sum_{j} a(t, j) q_{j} \int_{y}\left[f(x, y)-v_{t}(x)-v_{j}(y)\right]^{+} d G_{j}(y)
$$

Easiest Way

Everyone can marry everyone:

$$
2 c=\int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+} d G(y)
$$

$$
2 c=\int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{m}(y)\right]^{+} d G(y)
$$

Easiest Way

Everyone can marry everyone:

$$
\begin{aligned}
2 c= & \int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+} d G(y) \\
& +\int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{m}(y)\right]^{+} d G(y), \\
2 c= & \int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{m}(y)\right]^{+} d G(y) \\
& +\int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{f}(y)\right]^{+} d G(y) .
\end{aligned}
$$

Easiest Way

Everyone can marry everyone:

$$
\begin{aligned}
2 c= & \int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+} d G(y) \\
& +\int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{m}(y)\right]^{+} d G(y) \\
2 c= & \int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{m}(y)\right]^{+} d G(y) \\
& +\int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{f}(y)\right]^{+} d G(y)
\end{aligned}
$$

Proposition
In every equilibrium, $v_{m}(x)=v_{f}(x)$.

Proof

If there is x_{0} where $v_{m}\left(x_{0}\right)>v_{f}\left(x_{0}\right)$:

Proof

If there is x_{0} where $v_{m}\left(x_{0}\right)>v_{f}\left(x_{0}\right)$:
■ for every $y, f(x, y)-v_{m}(x)-v_{f}(y)<f(x, y)-v_{f}(x)-v_{f}(y)$

Proof

If there is x_{0} where $v_{m}\left(x_{0}\right)>v_{f}\left(x_{0}\right)$:
\square for every $y, f(x, y)-v_{m}(x)-v_{f}(y)<f(x, y)-v_{f}(x)-v_{f}(y)$

- and therefore

$$
\mathbf{E}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+}<\mathbf{E}\left[f(x, y)-v_{f}(x)-v_{f}(y)\right]^{+}
$$

Proof

If there is x_{0} where $v_{m}\left(x_{0}\right)>v_{f}\left(x_{0}\right)$:
\square for every $y, f(x, y)-v_{m}(x)-v_{f}(y)<f(x, y)-v_{f}(x)-v_{f}(y)$

- and therefore

$$
\mathbf{E}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+}<\mathbf{E}\left[f(x, y)-v_{f}(x)-v_{f}(y)\right]^{+}
$$

- for the same reason

$$
\mathbf{E}\left[f(x, y)-v_{m}(x)-v_{m}(y)\right]^{+}<\mathbf{E}\left[f(x, y)-v_{f}(x)-v_{m}(y)\right]^{+}
$$

If the total expected surplus of m gender is $2 c$, the total expected surplus of f must be above $2 c$!

A Bit Harder Way

Everyone can marry opposite gender

$$
2 c=\int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+} d G(y)
$$

$$
2 c=\int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{m}(y)\right]^{+} d G(y)
$$

A Bit Harder Way

Everyone can marry opposite gender and there is a chance you can marry same gender

$$
\begin{aligned}
2 c= & \int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+} d G(y)+ \\
& +p \int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{m}(y)\right]^{+} d G(y) \\
2 c= & \int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{m}(y)\right]^{+} d G(y)+ \\
& +p \int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{f}(y)\right]^{+} d G(y)
\end{aligned}
$$

A Bit Harder Way

Everyone can marry opposite gender and there is a chance you can marry same gender

$$
\begin{aligned}
2 c= & \int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+} d G(y)+ \\
& +p \int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{m}(y)\right]^{+} d G(y) \\
2 c= & \int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{m}(y)\right]^{+} d G(y)+ \\
& +p \int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{f}(y)\right]^{+} d G(y)
\end{aligned}
$$

Proposition

In every equilibrium with $p>0, v_{m}(x)=v_{f}(x)$.

Proof

$$
\begin{aligned}
2 c= & \int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{f}(y)\right]^{+} d G(y)+ \\
& +p \int_{0}^{1}\left[f(x, y)-v_{m}(x)-v_{m}(y)\right]^{+} d G(y) \\
2 c= & \int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{m}(y)\right]^{+} d G(y)+ \\
& +p \int_{0}^{1}\left[f(x, y)-v_{f}(x)-v_{f}(y)\right]^{+} d G(y)
\end{aligned}
$$

Take $\Delta_{0}=\max _{x} v_{m}(x)-v_{f}(x)$, and x_{0} is the maximand. Assume

$$
\Delta(x)
$$

$\Delta_{0} \geq \max _{x}\left(v_{f}(x)-v_{m}(x)\right) ;$ rename genders otherwise.

Proof

$$
\begin{gathered}
\int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta(y)\right]^{+} d G(y) \geq \\
\geq \int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta_{0}\right]^{+} d G y \\
p \int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)\right]^{+} d G(y) \geq \\
\geq p \int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta_{0}-\Delta(y)\right]^{+} d G y
\end{gathered}
$$

Can there be $=$?

Not $=$

$$
\begin{aligned}
& \int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta(y)\right]^{+} d G(y)= \\
& \quad=\int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta_{0}\right]^{+} d G y
\end{aligned}
$$

Not $=$

$$
\begin{gathered}
\int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta(y)\right]^{+} d G(y)= \\
=\int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta_{0}\right]^{+} d G y \\
\Rightarrow \Delta(y)=\Delta_{0} .
\end{gathered}
$$

Not $=$

$$
\begin{gathered}
\int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta(y)\right]^{+} d G(y)= \\
=\int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta_{0}\right]^{+} d G y \\
\Rightarrow \Delta(y)=\Delta_{0} \\
p \int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)\right]^{+} d G(y)= \\
=p \int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta_{0}-\Delta(y)\right]^{+} d G y
\end{gathered}
$$

Not $=$

$$
\begin{gathered}
\int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta(y)\right]^{+} d G(y)= \\
=\int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta_{0}\right]^{+} d G y \\
\Rightarrow \Delta(y)=\Delta_{0} . \\
p \int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)\right]^{+} d G(y)= \\
=p \int\left[f(x, y)-v_{f}\left(x_{0}\right)-v_{f}(y)-\Delta_{0}-\Delta(y)\right]^{+} d G y \\
\Rightarrow \Delta(y)=-\Delta_{0} .
\end{gathered}
$$

Even Harder Way

All can marry opposite gender

$$
\begin{aligned}
& 2 c=\int_{0}^{1}\left[f(x, y)-v_{m h}(x)-v_{f h}(y)\right]^{+} d G(y) \\
& 2 c=\int_{0}^{1}\left[f(x, y)-v_{m b}(x)-v_{f h}(y)\right]^{+} d G(y)
\end{aligned}
$$

Even Harder Way

All can marry opposite gender, some can marry same gender

$$
\begin{aligned}
2 c= & \int_{0}^{1}\left[f(x, y)-v_{m h}(x)-v_{t h}(y)\right]^{+} d G(y)+ \\
& +q \int_{0}^{1}\left[f(x, y)-v_{m h}(x)-v_{t b}(y)\right]^{+} d G(y) \\
2 c= & \int_{0}^{1}\left[f(x, y)-v_{m b}(x)-v_{t h}(y)\right]^{+} d G(y)+ \\
& +q \int_{0}^{1}\left[f(x, y)-v_{m b}(x)-v_{f b}(y)\right]^{+} d G(y)
\end{aligned}
$$

Even Harder Way

All can marry opposite gender, some can marry same gender

$$
\begin{aligned}
2 c= & \int_{0}^{1}\left[f(x, y)-v_{m h}(x)-v_{t h}(y)\right]^{+} d G(y)+ \\
& +q \int_{0}^{1}\left[f(x, y)-v_{m h}(x)-v_{t b}(y)\right]^{+} d G(y) \\
2 c= & \int_{0}^{1}\left[f(x, y)-v_{m b}(x)-v_{t h}(y)\right]^{+} d G(y)+ \\
& +q \int_{0}^{1}\left[f(x, y)-v_{m b}(x)-v_{t b}(y)\right]^{+} d G(y)+ \\
& +q \int_{0}^{1}\left[f(x, y)-v_{m b}(x)-v_{m b}(y)\right]^{+} d G(y)
\end{aligned}
$$

Even Harder Way

All can marry opposite gender, some can marry same gender

$$
\begin{aligned}
2 c= & \int_{0}^{1}\left[f(x, y)-v_{m h}(x)-v_{t h}(y)\right]^{+} d G(y)+ \\
& +q \int_{0}^{1}\left[f(x, y)-v_{m h}(x)-v_{t b}(y)\right]^{+} d G(y) \\
2 c= & \int_{0}^{1}\left[f(x, y)-v_{m b}(x)-v_{t h}(y)\right]^{+} d G(y)+ \\
+ & q \int_{0}^{1}\left[f(x, y)-v_{m b}(x)-v_{t b}(y)\right]^{+} d G(y)+ \\
& +q \int_{0}^{1}\left[f(x, y)-v_{m b}(x)-v_{m b}(y)\right]^{+} d G(y)
\end{aligned}
$$

Proposition

In equilibrium with $q>0, v_{m h}(x)=v_{t h}(x) \leq v_{m b}(x)=v_{t b}(x)$.

Conclusion

■ We show that the baseline search model for marriage markets allows conditionally nonsymmetric equilibria

Conclusion

■ We show that the baseline search model for marriage markets allows conditionally nonsymmetric equilibria

■ We show that allowing for same sex marriage leaves only symmetric equilibria

■ Easy to achieve if everyone can partake in same sex marriage
■ Somewhat harder to achieve if it is harder to partake in same sex marriage
■ Even harder if some people cannot partake in same sex marriage

Conclusion

■ We show that the baseline search model for marriage markets allows conditionally nonsymmetric equilibria
■ We show that allowing for same sex marriage leaves only symmetric equilibria

■ Easy to achieve if everyone can partake in same sex marriage

- Somewhat harder to achieve if it is harder to partake in same sex marriage
■ Even harder if some people cannot partake in same sex marriage
- Mathematically, requires symmetry across distributions
- Hard to hope for equality without symmetry

