North-South Trade: The Impact of Robotization

European Economic Association, Barcelona 2023

Andreas Baur ^{1,2} Lisandra Flach ^{1,2,4,5} Isabella Gourevich ^{1,2} Florian Unger ^{3,4}

¹ifo Institute ²LMU Munich ³University of Göttingen ⁴CESifo ⁵CEPR

Introduction

- Automation, which takes place predominantly in advanced economies, has caused debate on potentially disruptive effects in domestic markets

 Graetz and Michaels (2018), Dauth et al. (2021), Acemoglu et al. (2020)
- Nevertheless, automation also impacts trading partners in a globalized and interconnected world
- Reorganization of global value chains? Formerly labor intensive production in Global South might be reshored to Global North

Channels

Two potential effects of automation in Northern countries onto North-South trade:

1. Shift in **relative production costs** reduces comparative advantage of Southern countries in (labor-intensive) manufacturing \rightarrow reduces demand for imports from the South

```
Kugler et al. (2020), Faber (2020), Krenz et al. (2021)
```

Channels

Two potential effects of automation in Northern countries onto North-South trade:

1. Shift in **relative production costs** reduces comparative advantage of Southern countries in (labor-intensive) manufacturing \rightarrow reduces demand for imports from the South

```
Kugler et al. (2020), Faber (2020), Krenz et al. (2021)
```

2. Firms in the North **improve efficiency** \rightarrow increases demand for intermediate inputs from the South

```
Artuc et al. (2020), Stapleton and Webb (2020), Cilekoglu et al. (2021)
```

This Project

Research question:

What is the effect of robotization in the global North on firm-level exports from Latin America?

What we do

- 1. Develop theoretical model yielding different predictions on **within-industry** and **between-industry** trade effects of robotization
- Novel combination of data sources: firm-level customs data (firm-productdestination-year), robotization in destination (sector-destination-year) and value chain linkages
- 3. Estimate **effect of shock on southern firms** in different industries across destination countries and along the value chain

Preview of Results

- Theoretical model predicts negative within-industry and positive between-industry effects on trade flows from South to North
- Empirically, negative effect on trade flows of robotization in the same industry
- Accounting for shocks along the entire **value chain reverses** the effect
- → Important to account for **value chain linkages** when evaluating exposure of southern firms to robotization shocks

Outline

Theoretical Model

• Data and Stylized Facts

• Empirical Analysis

Theoretical Model

Model Setup

- Setup is based on Antràs & Helpman (2004, 2007)
- Two countries North and South with $w^N > w^S$ and multiple sectors
- Heterogeneous final-goods firms in the North require two intermediate inputs:
 - 1. $m_j(i)$ from same industry j: Production with **vertical integration** in North w^N or **sourcing** from South at $w^S \tau < w^N$; with fixed costs $f_O^S > f_V^N$
 - 2. $m_k(i)$ from other industry $k \neq j$: Always sourced from the South

Model Setup

- Setup is based on Antràs & Helpman (2004, 2007)
- Two countries North and South with $w^N > w^S$ and multiple sectors
- Heterogeneous final-goods firms in the North require two intermediate inputs:
 - 1. $m_j(i)$ from same industry j: Production with **vertical integration** in North w^N or **sourcing** from South at $w^S \tau < w^N$; with fixed costs $f_O^S > f_V^N$
 - 2. $m_k(i)$ from other industry $k \neq j$: Always sourced from the South

 \longrightarrow Decision on sourcing of same industry input m_j depends on firm productivity θ

Automation Shock and Trade Effect

- We introduce an endogenous automation choice
- ullet Industry-specific shock o positive automation shock reduces cost of automation
- Automation shock reduces profitability of sourcing from the S relative to N

Automation Shock and Trade Effect

- We introduce an endogenous automation choice
- ullet Industry-specific shock o positive automation shock reduces cost of automation
- Automation shock reduces profitability of sourcing from the S relative to N

Prediction 1: A reduction in automation costs in industry j reduces trade flows from South to North within industry j

Automation Shock and Trade Effect

- We introduce an endogenous automation choice
- ullet Industry-specific shock o positive automation shock reduces cost of automation
- Automation shock reduces profitability of sourcing from the S relative to N

Prediction 1: A reduction in automation costs in industry j reduces trade flows from South to North within industry j

Prediction 2: A reduction in automation costs in industry j increases trade flows of between-industry inputs k from South to North

- Firms with $\theta_V^N \leq \theta < \theta_O^S$ demand more **between-industry inputs** $m_k(i)$
- Additionally, a higher share of active firms produces under vertical integration and benefits from automation

Data and Stylized Facts

Data Sources

Firm-Level Exports

- Sources: World Bank Export Dynamics Database & SECEX
- Coverage: Brazil, Mexico, Peru and Uruguay for 2000 2007
- Universe of firm-level exports by HS6 product, destination country and year

Data Sources

Firm-Level Exports

- Sources: World Bank Export Dynamics Database & SECEX
- Coverage: Brazil, Mexico, Peru and Uruguay for 2000 2007
- Universe of firm-level exports by HS6 product, destination country and year

Robotization

- Source: International Federation of Robotics IFR
- Coverage: 75 countries (we focus on OECD countries)
- Robots stock in 14 broad industry sectors

Data Sources

Firm-Level Exports

- Sources: World Bank Export Dynamics Database & SECEX
- Coverage: Brazil, Mexico, Peru and Uruguay for 2000 2007
- Universe of firm-level exports by HS6 product, destination country and year

Robotization

- Source: International Federation of Robotics IFR
- Coverage: 75 countries (we focus on OECD countries)
- Robots stock in 14 broad industry sectors

Input-Output Tables

- Source: Bureau of Economic Analysis (US for the year 1997)
- Coverage: Trace technology-based input-output-flows across 341 industries

Export Shares

Table 1: Export Shares (in %) in 2001

	BRA	MEX	PER	URY
A: By Destination Region				
OECD	66.75	96.22	76.64	42.17
Rest Latin America	17.13	3.77	11.95	44.50
RoW	16.12	1.01	11.41	13.33
B: By Sector Group				
Agriculture & Mining	18.17	10.99	20.75	14.07
High Manufacturing	25.54	60.65	0.74	0.93
Other Manufacturing	56.29	28.35	78.50	85.00
Total Observations	236,451	202,646	40,985	8,731

Empirical Analysis

Empirical Strategy

Same Industry Mapping

$$X_{fpdt}^{o} = \exp\left[\zeta_{fpd} + \delta_{pt} + \pi_{sot} + \gamma_{odt} + \beta_{1}asinh(robots_{sdt}) + \beta_{2}\ln imp_{pdt}\right] \times \epsilon_{fpdt}$$

where f - firm in country of origin, p - product, s - sector, d - destination country, o - origin country, t - year

Empirical Strategy

Same Industry Mapping

$$X_{\mathit{fpdt}}^{o} = \exp\left[\zeta_{\mathit{fpd}} + \delta_{\mathit{pt}} + \pi_{\mathit{sot}} + \gamma_{\mathit{odt}} + \beta_{1} \mathit{asinh}(\mathit{robots}_{\mathit{sdt}}) + \beta_{2} \ln \mathit{imp}_{\mathit{pdt}}\right] \times \epsilon_{\mathit{fpdt}}$$

where f - firm in country of origin, p - product, s - sector, d - destination country, o - origin country, t - year

Value Chain Linkage Mapping

$$X_{\mathit{fpdt}}^{o} = \exp\left[\zeta_{\mathit{fpd}} + \delta_{\mathit{pt}} + \pi_{\mathit{sot}} + \nu_{\mathit{sdt}} + \gamma_{\mathit{odt}} + \beta_{1} \mathit{asinh}(\mathit{robots}_{\mathit{pdt}}^{\mathit{IO}}) + \beta_{2} \ln \mathit{imp}_{\mathit{pdt}}\right] \times \epsilon_{\mathit{fpdt}}$$

Robots shock: $robots_{pdt}^{IO} = \sum_{s} \omega_{ps} \ robots_{sdt}$,

• $\omega_{ps} \in [0,1]$ are allocation coefficients: the share products p's total sales which are used as inputs in the production of sector s

In the preferred specification robots stock is weighted by industry's value-added and the estimator is Poisson Pseudo Maximum Likelihood

Baseline Effect

Table 2: PPML Baseline Results: Same industry vs. value chain linkages

	Same industry linkages				
Dependent Var: X_{fpdt}	(1)	(2)			
$asinh(robots)_{sdt}$	-0.162***	-0.165***			
	(0.0503)	(0.0478)			
asinh(robots ¹⁰) _{pdt}					
Total Imp of Dest _{pdt}	0.794***	0.825***			
, , , ,	(0.105)	(0.109)			
Number of Observations	93,886	93,884			
FPD FE	Yes	Yes			
ODT FE	Yes	Yes			
PT FE	Yes	Yes			
SOT FE		Yes			
SDT FE					

Baseline Effect

Table 2: PPML Baseline Results: Same industry vs. value chain linkages

	Same indus	ne industry linkages Value chain linkages			Value chain linkages			
Dependent Var: X_{fpdt}	(1)	(2)	(3)	(4)	(5)	(6)		
asinh(robots) _{sdt}	-0.162***	-0.165***						
	(0.0503)	(0.0478)						
asinh(robots ^{IO}) _{pdt}			0.360***	0.201***	0.481***	0.297***		
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(0.119)	(0.0500)	(0.150)	(0.0446)		
Total Imp of Dest _{pdt}	0.794***	0.825***	0.851***	0.852***	0.930***	0.911***		
	(0.105)	(0.109)	(0.110)	(0.112)	(0.124)	(0.123)		
Number of Observations	93,886	93,884	87,916	87,914	87,848	87,846		
FPD FE	Yes	Yes	Yes	Yes	Yes	Yes		
ODT FE	Yes	Yes	Yes	Yes	Yes	Yes		
PT FE	Yes	Yes	Yes	Yes	Yes	Yes		
SOT FE		Yes		Yes		Yes		
SDT FE					Yes	Yes		

Robustness Checks

Results remain robust when:

- Accounting for market entry and exit Regression Results
- Controlling for firm level robot adoption over time Regression Results
- Using **OLS** regression Regression Results

Conclusion

- We evaluate the effects of robot adoption in OECD countries on exports from Latin America to the OECD along the value chain
- Novel combination of firm-level data with data on robot adoption and input-output linkages
- Exports in the same industry decrease but increase along the value chain
- Theoretical model explains negative within-industry and positive between-industry effects on trade flows from South to North
- Important to account for supply chain linkages when drawing policy conclusions

Thank you for your attention

References

- Acemoglu, D., Lelarge, C., and Restrepo, P. (2020). Competing with robots: Firm-level evidence from france. In *AEA Papers and Proceedings*, volume 110, pages 383–388. American Economic Association 2014 Broadway, Suite 305, Nashville, TN 37203.
- Artuc, E., Bastos, P., and Rijkers, B. (2020). Robots, tasks, and trade.
- Cilekoglu, A., Moreno, R., and Ramos, R. (2021). The impact of robot adoption on global sourcing.
- Dauth, W., Findeisen, S., Suedekum, J., and Woessner, N. (2021). The adjustment of labor markets to robots. 19(6):3104–3153.
- Faber, M. (2020). Robots and reshoring: Evidence from Mexican labor markets. 127:103384.

- Graetz, G. and Michaels, G. (2018). Robots at work. *Review of Economics and Statistics*, 100(5):753–768.
- Krenz, A., Prettner, K., and Strulik, H. (2021). Robots, reshoring, and the lot of low-skilled workers. 136:103744.
- Kugler, A. D., Kugler, M., Ripani, L., and Rodrigo, R. (2020). Us robots and their impacts in the tropics: Evidence from colombian labor markets.
- Stapleton, K. and Webb, M. (2020). Automation, trade and multinational activity: Micro evidence from Spain.

Scope for Quality Upgrading

Table 3: Effect on South to North Trade depending on the Scope for Quality Differentiation

	Same indus	stry linkages	Value chain linkages			
Dependent Var: X_{fpdt}	(1)	(2)	(3)	(4)	(5)	(6)
asinh(robots) _{sdt}	0.0957	0.0731				
	(0.0816)	(0.0860)				
$asinh(robots^{IO})_{pdt}$			0.132	0.123	0.172	0.164
			(0.119)	(0.122)	(0.108)	(0.116)
\times Ladder _{pdt}	-0.145***	-0.132***	0.0961*	0.107*	0.0997*	0.111*
	(0.0310)	(0.0321)	(0.0513)	(0.0606)	(0.0530)	(0.0644)
Total Imp of Dest $_{pdt}$	1.061***	1.065***	1.067***	1.082***	1.146***	1.165***
	(0.142)	(0.143)	(0.148)	(0.151)	(0.145)	(0.145)
Number of Observations	58,776	58,772	56,366	56,362	56,294	56,290
FPD FE	Yes	Yes	Yes	Yes	Yes	Yes
ODT FE	Yes	Yes	Yes	Yes	Yes	Yes
PT FE	Yes	Yes	Yes	Yes	Yes	Yes
SOT FE		Yes		Yes		Yes
SDT FE					Yes	Yes

Note: Robust standard errors clustered by SD in parentheses: *** p<0.01, ** p<0.05, * p<0.1

Quality ladder measure is taken from Khandelwal (2010). A quality ladder is assigned to each product and represents the vertical differentiation possibility of a product. A higher ladder indicates a large scope for quality differentiation.

Table 4: PPML Baseline w/ Control for Market Entry and Exit & Firm Level Robot Adoption

	Same indus	stry linkages	Value chain linkages			
Dependent Var: X_{fpdt}	(1)	(2)	(3)	(4)	(5)	(6)
asinh(robots) _{sdt}	-0.269** (0.112)	-0.269** (0.113)				
$asinh(robots^{IO})_{pdt}$			0.207*** (0.0732)	0.209*** (0.0733)	0.222*** (0.0590)	0.226*** (0.0577)
Total Imp of Dest _{pdt}	1.046*** (0.0983)	1.050*** (0.0988)	1.100*** (0.0938)	1.102*** (0.0950)	1.141*** (0.101)	1.147*** (0.103)
Number of Observations FPD FE FT FE	657,152 Yes Yes	656,980 Yes Yes	602,262 Yes Yes	602,168 Yes Yes	601,994 Yes Yes	601,942 Yes Yes
ODT FE PT FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
SOT FE SDT FE		Yes		Yes	Yes	Yes Yes

Table 5: PPML Baseline w/ Control for Market Entry and Exit

	Same indus	try linkages	Value chain linkages			
Dependent Var: X_{fpdt}	(1)	(2)	(3)	(4)	(5)	(6)
asinh(robots) _{sdt}	-0.143 (0.0899)	-0.153* (0.0863)				
asinh(robots ^{IO}) _{pdt}			0.167*** (0.0619)	0.153** (0.0660)	0.156** (0.0744)	0.144* (0.0818)
Total Imp of Dest _{pdt}	0.859*** (0.101)	0.879*** (0.103)	0.896*** (0.0971)	0.909*** (0.0999)	0.961*** (0.111)	0.965*** (0.112)
Number of Observations FPD FE ODT FE PT FE SOT FE	1,485,012 Yes Yes Yes	1,485,012 Yes Yes Yes Yes	1,380,924 Yes Yes Yes	1,380,922 Yes Yes Yes Yes	1,380,914 Yes Yes Yes	1,380,908 Yes Yes Yes Yes
SDT FE		. 00		. 00	Yes	Yes

Table 6: Robustness with linear regression - Baseline: Same industry vs. value chain linkages

	Same industry linkages Value cha			Value chai	n linkages	
Dependent Var: X_{fpdt}	(1)	(2)	(3)	(4)	(5)	(6)
asinh(robots) _{sdt}	-0.0690 (0.0423)	-0.0891** (0.0422)				
asinh(robots ^{IO}) _{pdt}			0.0340 (0.0248)	0.0578*** (0.0214)	0.0375 (0.0291)	0.0565** (0.0252)
Total Imp of Dest _{pdt}	0.323*** (0.0382)	0.333*** (0.0378)	0.346*** (0.0408)	0.356*** (0.0403)	0.344*** (0.0359)	0.348*** (0.0357)
Number of Observations	93,886	93,884	87,916	87,914	87,848	87,846
FPD FE	Yes	Yes	Yes	Yes	Yes	Yes
ODT FE	Yes	Yes	Yes	Yes	Yes	Yes
PT FE	Yes	Yes	Yes	Yes	Yes	Yes
SOT FE		Yes		Yes		Yes
SDT FE					Yes	Yes

North-South Model of International Trade

Model setup

- Two countries: North and South
- Heterogeneous final-good firms located in North
- Sourcing of inputs from South or vertical integration in North
- Production of inputs with one unit of labor per unit of output
- Perfectly elastic supply of labor in both regions with wages $w^N > w^S$

Preferences

• Inverse demand function for one differentiated variety *i* in sector *j*:

$$p_{j}(i) = X_{j}^{\mu-\alpha} x_{j}(i)^{\alpha-1}, \quad 0 < \alpha < 1$$

• $\alpha > \mu$: substitutability of varieties higher within sector than across sectors

Production and Sourcing Decision

• Final-good producer with productivity θ located in the North uses two variety-specific inputs:

$$x_{j}(i) = \theta\left(\frac{m_{j}(i)}{\eta_{j}}\right)^{\eta_{j}}\left(\frac{m_{k}(i)}{1-\eta_{j}}\right)^{1-\eta_{j}}, \quad 0 < \eta_{j} < 1,$$

- Intermediate input $m_i(i)$ from same industry j:
 - Production with **vertical integration** in North at wage w^N
 - or sourcing from South at $w^{S}\tau$, with trade costs $\tau > 0$
 - Marginal cost of sourcing lower than under vertical integration (without automation): $w^N > w^S \tau$
 - ullet Fixed cost of sourcing larger than for vertical integration: $f_O^S > f_V^N$
- Intermediate input $m_k(i)$ from other industry $k \neq j$:
 - Production only in South at wage w^S
 - Always sourcing

Automation Choice with Vertical Integration

- Automation of production under vertical integration in North
 - reduces marginal cost of within-industry inputs: $\frac{w^N}{a_i(i)}$,
 - leads to additional innovation costs per unit of input: $\frac{\kappa_j}{\xi_j} a_j (i)^{\xi_j}$
- Cost minimization leads to optimal automation choice:

$$a_j = \left(\frac{w^N}{\kappa_j}\right)^{\frac{1}{1+\xi_j}},$$

- increasing in Northern wage rate w^N ,
- decreasing in automation cost parameters κ_j , $\xi_j > 0$
- We consider an industry-specific automation shock: reduction in cost parameter $\kappa_j \Rightarrow$ increase in automation a_j

Effect of Automation on Sourcing Decision (1)

• Reduction in marginal cost of production (lower κ_j) with vertical integration:

$$c_{j,V}^{N} \equiv \left[\frac{\xi_{j}+1}{\xi_{j}} \left(w^{N}\right)^{\frac{\xi_{j}}{1+\xi_{j}}} \kappa_{j}^{\frac{1}{1+\xi_{j}}}\right]^{\eta_{j}} \left(w^{S}\right)^{1-\eta_{j}}$$

- Marginal cost with sourcing of both inputs: $c_{j,O}^S \equiv w^S au^{\eta_j}$
- Relative cost advantage of sourcing: $\hat{w} \equiv \frac{w^N}{\tau w^S} > 1$
- But higher fixed costs of sourcing: $f_O^S > f_V^N$
- Productivity cutoff of sourcing θ_O^S determined by $\pi_j \left(\theta_O^S\right)_O^S = \pi_j \left(\theta_O^S\right)_V^N$

 \longrightarrow Automation shock reduces profitability of sourcing from South relative to vertical integration in the North

Effect of Automation on Sourcing Decision (2)

If relative fixed costs of sourcing are larger than cost advantage of sourcing (taking into account automation),

$$\frac{f_O^S}{f_V^N} > \left(\frac{\xi_j + 1}{\xi_j} \frac{\hat{w}}{a_j}\right)^{\frac{\alpha \eta_j}{1 - \alpha}} \implies \theta_O^S > \theta_V^N,$$

then only the most productive firms source within-industry inputs from South.

Prediction 1: Automation and Within-Industry Trade

A reduction in automation costs in industry j reduces trade flows from South to North within industry j.

- Only firms with productivity $\theta \geq \theta_O^S$ source within-industry inputs $m_j(\theta)$.
- With increasing automation the share of outsourcing firms declines.
- \longrightarrow Within-industry trade flows from South to North, $T_j = M_e \int_{\theta_O^S}^{\infty} \tau w^S m_j(\theta) g(\theta)$, decline in the degree of automation in industry j.

Prediction 2: Automation and Between-Industry Trade

A reduction in automation costs in industry j increases trade flows of **between-industry inputs** k from South to North.

- Automation reduces marginal cost $c_{i,V}^N$ under vertical integration.
- Firms with $\theta_V^N \leq \theta < \theta_O^S$ demand more **between-industry inputs** $m_k(i)$.
- Additionally, a higher share of active firms produces under vertical integration and benefits from automation.

 \longrightarrow Between-industry trade flows from South to North, $T_k = M_e \int_{\theta_N^S}^{\theta_O^S} w^S m_k(\theta) g(\theta)$, increase in the degree of automation in industry j.