Responsible Demand: Irresponsible Lobbying?

Olimpia Cutinelli-Rendina¹ Sonja Dobkowitz² Antoine Mayerowitz³

¹Collège de France - Paris School of Economics

²University of Bonn

³Collège de France - Paris School of Economics

EEA Congress - August 28th 2023

1

Motivation

- Environmental concerns are rising potentially lowering demand for dirty goods. (Bénabou and Tirole, 2010; Bartling et al., 2015)
- One possible reaction of firms is to innovate in cleaner technologies. (Aghion et al., 2022)
- Potential challenge: Less revenue from dirty products.
 More anti-environmental lobbying as an alternative response?

This paper

How do firms react to greener household preferences?

This paper

How do firms react to greener household preferences?

Methodology: Shift-share IV based on different exposure of automotive firms to markets and different changes in household preferences across markets.

- Google trends data to proxy green preferences.
- Natural catastrophes to instrument shifts in green preferences.
- ► U.S. automotive industry, 2006-2019.

This paper

How do firms react to greener household preferences?

Methodology: Shift-share IV based on different exposure of automotive firms to markets and different changes in household preferences across markets.

- Google trends data to proxy green preferences.
- Natural catastrophes to instrument shifts in green preferences.
- ► U.S. automotive industry, 2006-2019.

Findings: Greener preferences imply

- 1. No impact on total lobbying expenditures.
- 2. Reallocation of lobbying expenditures towards environmental topics.
- 3. Reallocation of lobbying is driven by dirtier firms.
- 4. Positive impact on 'clean' innovation and negative impact on 'dirty' innovation.

Table of Contents

Data

Empirical Strategy

Results

Conclusion

Overview of the Data

- Environmental interest at the state-quarter level built from Google Trends.
- Vehicle registration from S&P Global.
- Data on wildfire from the NASA Fire Information for Resource Management System (FIRMS).
- ▶ Lobbying data from the Senate Office of Public Records cleaned by Kim (2018).
- Patent data from the United States Patent and Trademark Office (USPTO).

Sample: Groups of makes in the automotive sector with more than 30'000 registered cars over the period (17 groups).

Index of Environmental Interest

Google Trends: free tool providing time-series indices of percentage of searches with a given term made in a certain area.

- Advantage with respect to surveys: high frequency and geographic desegregation, larger scale.
- Disadvantage with respect to surveys: No intention with which a term is search (eg. concern versus skepticism).

Trends.

Wildfires

Fire exposure of state I, in time t to all the fires f:

Fire
$$Exposure_{lt} = \log \left(\sum_{f} intensity_{ft} * surface_{ft} / distance_{flt}^2 \right)$$

- intensity: fires radiative power (in Megawatts)
- surface: size of the fires
- distance: distance between the center of gravity of the fire and the state

Maps

Innovation

Lobbying data

Different variables measuring lobbying efforts:

- Total lobbying expenditures
- Lobbying expenditures by group of topics (Environment, Taxation, Trade...)
- Lobbying expenditures by main targeted institutions (House of Representatives, Department of Energy, Environmental Protection Agency (EPA)...)
 - \rightarrow gathering institutions related to environmental issues

Summary Statistics

Group	Clean Patents	Dirty Patents	Grey Patents	Lobbying (k\$)	Market Share (avg,%)
BMW	10.71	2.52	3.02	131.45	2.32
Daimler	5.12	0.92	2.29	438.45	2.09
FCA	4.46	1.15	1.90	1271.57	11.61
Ford	63.58	25.17	47.96	1786.18	15.03
Geely Automobile Hld.	3.19	0.88	1.83	334.69	0.52
General Motors	47.40	15.48	30.56	2773.49	19.61
Honda	41.50	16.02	11.35	769.56	9.82
Hyundai Kia Automotive Group	79.77	15.35	26.31	437.90	7.01
lsuzu	0.42	0.59	3.76		0.03
Mazda Motors Gr.	2.00	2.46	9.15	35.57	1.85
Renault-Nissan-Mitsubishi	33.79	6.35	12.58	1115.96	8.46
Subaru Gr.	4.00	0.38	1.00	2.50	2.45
Suzuki	3.69	2.28	0.79		0.38
Tata Gr.	4.56	0.68	1.26	127.92	0.45
Tesla	3.21			161.07	0.10
Toyota Group	116.10	19.15	43.31	1577.17	15.00
Volkswagen	21.77	3.46	6.67	381.64	3.34

Table of Contents

Data

Empirical Strategy

Results

Conclusion

Empirical Strategy

Shift-share instrumental variable approach:

$$\Delta y_{it} = \lambda_t + \alpha_i + \beta_{it} \Delta ENV_{it}^{GT} + \gamma X_{it} + \varepsilon_{it}.$$

Empirical Strategy

Shift-share instrumental variable approach:

$$\Delta y_{it} = \lambda_t + \alpha_i + \beta_{it} \Delta ENV_{it}^{GT} + \gamma X_{it} + \varepsilon_{it}.$$

• ΔENV_{it} : change in environmental interest of the consumers of firm *i* between *t* and t - h constructed as:

$$\Delta ENV_{it}^{GT} = \sum_{l}^{L} s_{ilt-8} \left(ENV_{lt}^{GT} - ENV_{lt-8}^{GT} \right).$$

		12	
_			

Empirical Strategy

Shift-share instrumental variable approach:

$$\Delta y_{it} = \lambda_t + \alpha_i + \beta_{it} \Delta ENV_{it}^{GT} + \gamma X_{it} + \varepsilon_{it}.$$

• ΔENV_{it} : change in environmental interest of the consumers of firm *i* between *t* and t - h constructed as:

$$\Delta ENV_{it}^{GT} = \sum_{l}^{L} s_{ilt-8} \left(ENV_{lt}^{GT} - ENV_{lt-8}^{GT} \right).$$

Shares

• To capture a demand-led mechanism, ΔENV is instrumented by:

$$Z_{it} = \sum_{l}^{L} s_{il,t-h}$$
 (Fire Exposure_{lt} – Fire Exposure_{lt-8}).

SSIV Research Design: Identification

Identification stems from the exogeneity of the shocks (Borusyak, Hull and Jaravel, 2022).

- Conditional quasi-random shock assignment: $E[\Delta FIRE_{lt} | \bar{\varepsilon}_{lt}, \tilde{X}_{lt} s_{t-h}] = \tilde{X}'_{lt} \cdot \mu$.
- Many uncorrelated shocks: Shocks are not to be concentrated in few observations. Inverse of the HHI of weights > 700 and largest importance weight < 1%.</p>
- *Relevance Condition:* The instrument has power, that is $E[\Delta Y_{it} \cdot Z_{it} | X_{it}] \neq 0$.

Table of Contents

Data

Empirical Strategy

Results

Conclusion

Main Results (1/2)

Δ_8 Lobbying Expenditures (Total)	0.67	0.66	0.70	0.70
	(0.81)	(0.85)	(0.84)	(0.83)
Δ_8 Lobbying Environment Topics	3.10***	3.08***	3.06***	3.09***
	(0.83)	(0.82)	(0.81)	(0.80)
Δ_8 Lobbying Environmental Insitutions	7.47***	7.53***	7.49***	7.47***
	(2.04)	(1.98)	(2.00)	(2.00)
Lagged Demographic Controls		Х	Х	Х
Lagged Transportation Controls			Х	X
First-Stage F	46	49	50	50

Note: all equation include year-quarter fixed effects, firm fixed effects and the lagged market share of the firm as control. N=2000 (states-periods) in all regressions. Se clustered at the state level.

Main Results (2/2)

Δ_8 Clean Knowledge Capital	2.27***	2.37***	2.33***	2.36***
	(0.71)	(0.65)	(0.66)	(0.64)
Δ_8 Dirty Knowledge Capital	-1.09***	-1.11***	-1.09***	-1.08**
	(0.39)	(0.39)	(0.40)	(0.41)
Δ_8 Grey Knowledge Capital	0.79	0.77	0.70	0.70
	(0.92)	(0.74)	(0.71)	(0.72)
Lagged Demographic Controls Lagged Transportation Controls Lagged Political Controls First-Stage F	46	X 49	X X 50	X X X 50

Path Dependency and Heterogeneity (1/2)

Do firms behave differently depending on their initial mix of innovation?

$$\Delta y_{it} = \lambda_t + \alpha_i + \beta \Delta ENV_{it}^{GT} + \delta Dirty_Ratio_{it-k} + \gamma \Delta ENV_{it}^{GT} \times Dirty_Ratio_{it-k} + X_{it} + \varepsilon_{it}.$$

Dirty_Ratio: share of dirty technology in the stock of knowledge of the firm.

Path Dependency and Heterogeneity (2/2)

	Total Lobbying Expenditures	Environmental Topics	Environmental Institutions
$\Delta_8 ENV^{GT}$	-0.950	3.235***	8.317***
	(0.801)	(1.045)	(3.067)
$Ratio_dirty_{t=8}$	-0.121	0.327*	0.604
	(0.216)	(0.189)	(0.454)
$\Delta_8 ENV^{GT}$ * Ratio_dirty _{t-8}	3.022	40.06+	113.0***
	(33.99)	(24.70)	(42.90)
FE: year-quarter	Х	Х	Х
Firm-Trend	Х	Х	X
State-level controls	Х	Х	×
Effective Sample (1/HHI)	720	720	720
First stage F-stat	12.47	12.47	12.47

Table of Contents

Data

Empirical Strategy

Results

Conclusion

Conclusion

- ► A shift in demand towards clean goods spurs clean innovation,
- but also results in a reallocation of lobbying expenditures towards environmental topics.
- > Dirty firms drive the increase in environmental lobbying expenditures.

Possible interpretation:

- Shift in preferences \Rightarrow Firms want to innovate in cleaner technologies
- Clean innovation is costly \Rightarrow Incentive to avoid additional costs.
- Dirty firms use anti-environmental lobbying to lessen costs from environmental protection.

Thank you!

Table of Contents

Appendix

1

Literature

Competition, innovation and lobbying: Firms innovate to escape competitive pressures (Aghion et al. 2005; Aghion et al., 2009). Empirical validation from the trade literature (Bloom et al. 2016; Brandt et al., 2017; Hombert and Matray, 2018; Autor et al., 2020). Lobbying can be an alternative to innovation (Akcigit et al., 2022; Bombardini et al., 2021).

- \rightarrow Analysis on the impact of a demand shock.
- \rightarrow Possible complementarity of lobbying and clean innovation.

Environmental lobbying: Lobbying has the capacity to shift environmental regulations (Giger and Klüver, 2016; Kang, 2016; Meng and Rode 2019).

 \rightarrow Environmental lobbying is driven by 'dirty' firms.

Individual social responsibility: Bénabou and Tirole, 2010; Bartling et al., 2005; Falk et al., 2021. Obstacles for social responsability to impact the allocation of resources: income inequality (Vona and Patriarca, 2011; Dobkowitz, 2022), low availability (Vermeir and Verbeke, 2006) or lack of trust in sustainability (Meis-Harris et al., 2021).

 \rightarrow Lobbying as a barrier to the effectiveness of individual social responsability.

Trends of Index of Environmental Interest

Back.

Gallup Survey

Back.

Firms' exposure

Acura	Audi	BMW	Buick	Cadillac

Chevrolet	Chrysler	Dodge	Fiat	Ford
~~//				
GMC	Honda	Hummer	Hyundai	Infiniti
Jaguar	Jeep	Kia	Land Rover	Lexus
		2000		
Lincoln	Mazda	Mercedes-Benz	Mercury	Mini
Mitsubishi	Nissan	Pontiac	Porsche	Ram
Saab	Saturn	Scion	Smart	Subaru
Suzuki	Tesla	Toyota	Volkswagen	Volvo
Rel	ative Market Sha	re (Log Odds Ratio)		

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Correlation between share of non-clean patents and lobbying

Controls

Firm-level control: lagged market-share of the firm.

State-level controls:

- 1. Demographics controls: share of active in the labor market, share of young, share of rural population, GDP/capita.
- 2. Transportation controls: pct of population commuting by: personal car, public transportation and by bike; pct of the population working remotely; number of alternative fueling stations.
- 3. Major political preferences: share of votes for Republicans in the last presidential election.

Back

Summary Statistics of Shocks and Shares

	Mean	Std. dev.	р5	p95
$\Delta FIRE_{lt}$	-0.04	0.01	-0.02	0.03
$\Delta FIRE_{lt}$ (w. period FE)	0.00	0.01	-0.01	0.01

Panel A: Shocks Summary Statistics

	Mean	Max
1/ <i>HHI</i>	719.56	719.56
s_{lt} (pct)	0.05	0.44
Treatment Groups	50.00	50.00

Panel B: Shares Summary Statistics

First-stage estimation

Additional Analysis: Topics Lobbied

Additional Analysis: Institutions Lobbied

