# Equity In Allocating Identical Objects Through Reserve Categories

Özgür Yılmaz Koç University

August 2023 EEA-ESEM Barcelona

# A very simple problem

- Allocating identical objects to a set of agents such that
  - each agent receives at most one object,
  - each object is assigned to at most one agent.

# A very simple problem

- Allocating identical objects to a set of agents such that
  - each agent receives at most one object,
  - each object is assigned to at most one agent.
- Example: vaccines, ICU's or other medical units to patients

## A very simple solution

• Priority mechanisms

# A very simple solution

- Priority mechanisms
  - widely used
  - widely criticized: because they could leave certain groups of patients with no or very little access

### How to provide a wider access?

- Reserve systems:
  - units are divided into reserve categories, e.g. disadvantaged community member, essential worker, death likely within 1 year,
  - a certain number of units is reserved for each category and
  - each category has its own priority ordering of patients.

### The solution would be straightforward unless...

- patients belong to multiple categories in general, e.g. a patient could be an essential worker from a disadvantaged community.
- An example:
  - *i*: an essential worker  $(c_1)$  from a disadvantaged community  $(c_2)$
  - j: an essential worker
  - k: a disadvantaged community member
  - there are two units in total and one unit is reserved for each category

$$\begin{array}{ccc} \frac{\pi_{c_1}}{\{i\}} & \frac{\pi_{c_2}}{\{i\}}\\ \{j\} & \{k\} \end{array}$$

### Alternative solution: randomization

- The Department of Health, Pennysylvania
  - A weighted lottery mechanism for the allocation of medications to treat COVID-19
  - "all patients who meet clinical eligibility criteria should have a chance to receive treatment" ("Pandemic Guidelines for the Interim Pennsylvania Crisis Standards of Care")

### How does randomization work in Pennysylvania?

• *p*: general community changes (total available units divided by the estimated number of eligible patients)

| Group                              | Chances to receive treatment |
|------------------------------------|------------------------------|
| Disadv. community member $(c_1)$   | 1.25 x p                     |
| Essential worker (c <sub>2</sub> ) | 1.25 x p                     |
| Death likely within 1 year $(c_3)$ | 0.5 x p                      |
| c <sub>1</sub> and c <sub>2</sub>  | 1.5 x p                      |
| $c_1$ and $c_3$                    | 0.75 × p                     |
| $c_2$ and $c_3$                    | 0.75 x p                     |

# Our approach

- A general class of random allocation mechanisms under reserves to satisfy:
  - Efficiency and respecting priorities within any "wider access framework" (i.e. weak ordering of priorities)
- Specific mechanisms within this class to satisfy:
  - Fairness-egalitarianism

# Our model

- $\bullet \ \mathcal{I}: \mbox{ a set of } \mbox{ agents }$
- $\bullet \ \mathcal{C}:$  a set of reserve categories
- for each  $c \in C$ :
  - $q_c$  identical units are reserved, and
  - there is a weak priority order  $\pi_c$  over  $\mathcal I$

Given a problem  $R = (\mathcal{I}, \mathcal{C}, (\pi_c)_{c \in \mathcal{C}}, (q_c)_{c \in \mathcal{C}})$ , a random allocation is a stochastic  $|\mathcal{I}| \times |\mathcal{C}|$  matrix Z where for each i and c,  $z_{ic}$  is the probability with which agent i is assigned one unit from category c such that

i. for each 
$$i \in \mathcal{I}$$
,  $\sum_{c \in \mathcal{C}} z_{ic} \leq 1$ ,

ii. for each 
$$c \in C$$
,  $\sum_{i \in I} z_{ic} \leq q_c$ .

non-wastefulness: if a unit remains (partially) unassigned, then each agent receives a unit w/p 1  $\,$ 

### Definition

**respecting priorities**: if an agent receives a unit from a category with positive probability, then each strictly higher priority agent is assigned a unit  $w/p \ 1$  (not necessarily from that category)

- The simplest possible idea:
  - each agent has zero utility initially
  - If or each category, start with the agents at the top (of the priority ordering)
  - update the utility profile: (weakly) increase agents' utility *feasibly* by some amount
  - if an agent reaches utility one, then continue with the next agent in the priority ordering (*respecting priorities*)
  - Intil all units are allocated (non-wastefulness)

- But this idea is not easy to execute.
- Challenge: how to update the utility profile *feasibly* and *comprehensively*?

- But this idea is not easy to execute.
- Challenge: how to update the utility profile *feasibly* and *comprehensively*?
- First, comprehensiveness:

$$\begin{array}{l} \frac{\pi_{c_1}}{\{i\}} & \frac{\pi_{c_2}}{\{i,j\}}\\ \{k\} & \{k\} \end{array}$$

•  $\Gamma_c(v)$ : the set of **claimants** for category *c* under *v* 

• A clear exception:

$$\begin{array}{l} \frac{\pi_{c_1}}{\{i\}} & \frac{\pi_{c_2}}{\{j\}} \\ \{k\} & \{k\} \end{array}$$

- For the reservation profile  $v = (v_i, v_j, v_k) = (1, 1, 0)$ , all agents are claimants for all categories.
- But, any random allocation such that a unit is (probabilistically) assigned to k does not respect priorities.

• C(i, v): the set of reserve categories, for which agent *i* is a *claimant* under the reservation profile *v*.

• 
$$C(I, v) = \bigcup_{i \in I} C(i, v).$$

### Definition

Given a reservation profile  $v = (v_i)_{i \in \mathcal{I}}$ , agents in I have exclusive rights over the set of reserve categories C(I, v) if  $\sum_{i \in I} v_i = \sum_{c \in C(I, v)} q_c$ .

#### Theorem

(The Supply-Demand Theorem (Gale, 1957)) Let  $v = (v_i)_{i \in \mathcal{I}}$  be a reservation profile. There is a random allocation Z such that (i) for each  $i \in \mathcal{I}$ ,  $u_z(i) \ge v_i$ , and (ii)  $z_{ic} > 0$  implies  $i \in \Gamma_c(v)$ , if and only if, for each subset I of agents

$$\sum_{i\in I} v_i \leq \sum_{c \in C(I,v)} q_c.$$
(1)

Step 0. Let the reservation profile be  $v^0 = 0$ .

For each  $n \ge 1$  and the reservation profile  $v^{n-1}$ , the following steps are executed.

Step n.1 For each set of agents I with exclusive rights over  $C(I, v^{n-1})$ ,

i. for each  $i \in I$ , let  $v_i^n = v_i^{n-1}$ , and

ii. mark each reserve category in the set  $C(I, v^{n-1})$  as unavailable.

Let  $A_n$  denote the set of available reserve categories.

Step n.2 If  $A_n = \emptyset$ , then let  $Z^*$  with  $u_{Z^*} = v^{n-1}$  be the outcome. Otherwise, proceed to Step *n*.3.

Step n.3 (Welfare improvement) Select a feasible reservation profile  $v^n \neq v^{n-1}$  such that for each i,  $v_i^n = v_i^{n-1} + \lambda_i^n$ where  $\lambda_i^n \in [0, 1]$ , and for each  $i \notin \bigcup_{c \in A_n} \Gamma_c(v^{n-1}), \lambda_i^n = 0$ .



A random allocation  $Z \in \mathcal{Z}^{a}(R)$  is **egalitarian** if it is Lorenz dominant in the set  $\mathcal{Z}^{a}(R)$ .



A random allocation  $Z \in \mathcal{Z}^{a}(R)$  is **egalitarian** if it is Lorenz dominant in the set  $\mathcal{Z}^{a}(R)$ .

Theorem

No rule is egalitarian.



• More interestingly...

$$\begin{array}{ll} \frac{\pi_{c_1}}{\{i,j\}} & \frac{\pi_{c_2}}{\{i,j\}} \\ \{i_1,i_2\} & \{j_1,j_2\} \\ \{k,l\} & \{k,l\} \end{array}$$

A random allocation is procedurally fair if it obtained as a sequence of feasible reservation profiles such that, at each step, the selected reservation profile Lorenz dominates any other feasible reservation profile that can be selected at that step.

A random allocation is procedurally fair if it obtained as a sequence of feasible reservation profiles such that, at each step, the selected reservation profile Lorenz dominates any other feasible reservation profile that can be selected at that step.

## The Priority-Based Rawlsian (PBR) rule

- Rawlsian principle: Maximizing the minimum welfare.
- At each step: utilities of the most disadvantaged agents are increased continuously as long as the constraints embedded through *claimants* and *reservation profile* are not binding.

## The Priority-Based Rawlsian (PBR) rule

**Step n.3** (Welfare improvement selection rule of the *PBR*) The agents with the minimum reservation value are *selected* among agents, who are *claimants* for at least one *available* category. Their reservation values are increased equally up to the minimum of the following two, while other agents' reservation values do not change:

- The reservation value of a *non-selected* agent, who is a *claimant* for at least one *available* category.
- The level at which a subset of *claimants* for at least one *available* category has *exclusive rights* over the categories for which they are *claimant*.



#### Theorem

A rule is procedurally fair if and only if  $\varphi$  is welfare-equivalent to the PBR.

### Proof

- At each step: construct a particular network to find out the bottleneck set with the maximum increase of the least advantaged agents
- By an extension of the Max-flow Min-cut Theorem (Ford, Fulkerson, 1956)

#### Theorem

Let (V, A, I, k) be a supply-demand network such that there exists a flow f. Then, the maximum value of a flow is equal to the minimum value of

$$k(\delta^{out}(V')) - l(\delta^{in}(V'))$$

taken over  $V' \subseteq V$  with  $s \in V'$  and  $t \notin V'$ .