Green finance and deforestation reduction in Brazil: a PVAR analysis of the Amazon Fund

Ł. André[†] J. Ramos-Tallada[‡]

[†]Paris School of Economics and École nationale des ponts et chaussées

[‡]Banque de France

European Economic Association - Annual Congress August 31th, 2023

Disclaimer: the views expressed in this document are those of the authors and do not necessarily reflect those of Banque de France, the Eurosystem or the Amazon Fund

(□) (□) (□) (○) (

Outline

The paper in a nutshell

The field and the main player: Legal Amazon and the Amazon Fund

The other players: law enforcers (IBAMA) and agricultural producers

Methodology

Results

Motivation: Green finance effectiveness to fight deforestation is often controversial

- The Amazon Fund is the largest REDD+ fund in the world (529 USD Mn disbursed since 2009) List of the funds
- In 2019, the president of the fund stated: "Although there is clear evidence that the Amazon Fund has contributed to reducing deforestation in the Amazon rainforest, it is a great challenge to estimate this contribution quantitatively"

Goal: Estimate the effectiveness of the largest REDD+ fund

How effective has the Amazon Fund been at reducing deforestation?

What are the most efficient types of projects?

Methodology

Tracking the Fund's disbursements: time and spatial distribution

- ► Using web scrapping...
- ▶ ... and the BNDES' help

Panel dataset :

- ▶ 760 municipalities of the Brazilian "Legal Amazon"
- ▶ 19 years (2002-2020)

Panel-VAR :

- ► Inspired from Macroeconometrics
- It enables to set a system of endogenous variables that can influence each other

Results

The Amazon Fund's action is **effective** and **efficient** (low mean abatement cost)

The efficiency (per invested $\mathsf{BRL})$ varies over the different types of $\mathsf{projects}$

- By recipient body: projects led by the Federal Government are more efficient than those led by states and municipalities
- By theme: combating illegal fires helps reduce deforestation more than the other projects
- ► By axis: land use planning is the most efficient category

Contribution of the paper and related literature

1. Quantitative analysis of the Amazon Fund

- Political and organizational qualitative studies: Bidone (2021), Correa et al. (2019), Hoff, Rajão, and Leroy (2018)
- ► Very few quantitative studies: Correa et al. (2020)

2. Large scale empirical assessment of a REDD+ finance scheme

- ▶ In Brazil, Carrilho et al. (2022) or West et al. (2020)
- Jayachandran et al. (2017) in Uganda, Ellis et al. (2020) in Mexico or Roopsind, Sohngen, and Brandt (2019) in Guyana

3. Role of key factors in the amazonian deforestation

- Economic and financial determinants: prices (Assunção, Gandour, and Rocha (2015) and Silva et al. (2010)); agricultural credit (Assunção et al. (2020))
- Public policies: blacklisting municipalities (Assunção and Rocha (2019) and Cisneros, Zhou, and Börner (2015)), land registration (Alix-Garcia et al. (2018)), protected areas (Soares-Filho et al. (2010)) and law enforcement (Assunção, Gandour, and Rocha (2014))

Outline

The paper in a nutshell

The field and the main player: Legal Amazon and the Amazon Fund

The other players: law enforcers (IBAMA) and agricultural producers

Methodology

Results

<□ > < @ > < 분 > < 분 > 분 = ♡ < ♡ 8/31

The Legal Amazon

Source: Oliveira Bezerra (2019)

Loss of forest cover: -7,4% in 18 years

Amazon rainforest density (remaining share of primary forest)

Source: INPE and authors calculations

< □ > < @ > < 분 > < 분 > 분 | = ∽ < ♡ 10/31

Amazon Fund: the largest REDD+ fund in the world

Exhaustive list of REDD+ funds over the world (amounts in USD Mn)

Fund	Fund Type	Pledge	Deposit	Approval	Disbursement	Nb proj.
Amazon Fund	Multi Donor National	1288.23	1288.23	719.69	528.89	103
BioCarbon Fund ISFL	Multilateral	349.898	219.35	107	0	5
Central African Forest Initiative (CAFI)	Multi Donor Regional	478.76	319.59	182.24	182.24	11
Congo Basin Forest Fund (CBFF)	Multi Donor Regional	186.021	164.6525	83.11	58.91	37
FCPF-RF	Multilateral	466.54	466.54	311.24	253.47	46
FCPF-CF	Multilateral	874.5	874.5	0	0	0
Forest Investment Program (FIP)	Multilateral	735.86	735.86	573.73	249.18	48
UN-REDD Programme	Multilateral	329.04	323.94	323.52	315.56	35

Breakdown of REDD+ funds disbursed in Brazil since 2009

Source: Climate Funds Update (May 2022)

The Amazon Fund and green finance in Brazil

The AF in Brazil: main figures and facts

- ▶ Goal: fighting deforestation in Legal Amazon (91% of 103 projects) and other biomes
- ▶ Since its creation in 2009, 1,3 USD Bn in pledges (donations), 529 USD Mn disbursed
- ▶ Main owners: Norway Gov. (93.8%), Germany KfW (5.7%)
- Manager: Brazilian National Development Bank (BNDES)
- During Bolsonaro's government, in 2019-2022, the Fund stopped new pledges and kept on disbursements just for projects already contracted.

Amazon Fund projects (www.amazonfund.gov.br)

리로 서로에서로에서 좋아 사람에 사고에

Other green finance providers in Brazil: MDBs (WB, IADB, EIB, NDB)

- Larger scope of projects than the AF: energy, low carbon agriculture, sustainable infrastructures and water solutions, technical assistance, etc.
- Since 2015 MDBs disbursed 6.8 USD Bn (AF 328 USD Mn)

Categories of projects supported by the Amazon Fund

AXIS	Monitoring and control systems	42
	Science, innovation and economic instruments	25
	Land use planning	27
	Sustainable production	59
THEME	Rural Environmental Registry (CAR)	19
	Settlement	16
	Indigenous lands	28
	Conservation units	28
	Combat to illegal fires and burn-offs	6
RECIPIENT	Third Sector	58
	Federal Government	8
	States	22
	Municipalities	7
	Universities	6
	International	1

Huge drop of Amazon Fund disbursements since 2018

Deforestation and disbursements of the Amazon Fund in the legal Amazon between 2002 and 2020

Sources: INPE for deforestation rates; BNDES and authors calculations for Amazon Fund's disbursements.

<□ > < @ > < 클 > < 클 > 트∣ = ∽ < ♡ < ♡ < 14/31

Amazon Fund disbursements are focused on the arc of deforestation

Source: INPE and authors calculations for defore station; BNDES and authors calculations for Amazon Fund disbursements

Outline

The paper in a nutshell

The field and the main player: Legal Amazon and the Amazon Fund

The other players: law enforcers (IBAMA) and agricultural producers

Methodology

Results

Law enforcement: weakening in recent years

Number of IBAMA's sanctions

(a) Number of infractions per $k\,m^2$ between 2010 and 2020

(b) Number of infractions in the legal Amazon between 2002 and 2020

Source: IBAMA and authors calculations

Disclaimer: according to the IBAMA, the data on infractions committed in 2019 and 2020 are not complete due to a change in the data collection application

Agricultural production: large rise since 2018

Growth of agricultural production between 2001 and 2020 Agriculture GDP real growth by municipality (Average/year over 2003-2020) .15 ····· Deforestation in Amazonia (SqKm per year) -L-Agriculture GDP in Amazonia (% real growth per year) -R-

Source: IBGE and authors calculations

(□) (□) (□) (○) (

Agricultural production: cattle ahead of soybean

Growth of agricultural production between 2001 and 2020

Source: IBGE and authors calculations

Table of Contents

The paper in a nutshell

The field and the main player: Legal Amazon and the Amazon Fund

The other players: law enforcers (IBAMA) and agricultural producers

Methodology

Results

Panel VAR approach

System of linear equations (with p=1 lags for the benchmark case):

$$Y_{it} = \mathbf{A}_{p}(L)Y_{it} + \mathbf{B}X_{t} + f_{i} + e_{it}$$
$$i \in \{1, ..., 760\}$$
$$t \in \{2002,, 2020\}$$

Where,

- ► Y_{it} is 1 × k vector of endogenous variables (k=4): Amazon Fund, Ibama, deforestation, agricultural GDP
- ► X_{it} is 1 × l vector of exogenous covariates (l=3): rural credit, steer price, soybean price
- ► f_i and e_{it} are 1 × k vectors of unobserved panel specific fixed-effects and idiosyncratic errors

Estimation through GMM (Arellano and Bover, 1995)

SVAR identification scheme: policy - deforestation - agriculture

Table of Contents

The paper in a nutshell

The field and the main player: Legal Amazon and the Amazon Fund

The other players: law enforcers (IBAMA) and agricultural producers

Methodology

Results

Baseline results

Response: Deforestation rate $(ratio/km^2)$	(1)	(2)	(3)
Endogenous variables [lags]:			
Deforestation rate (ratio/km ²) [-1]	0.0299***	0.0297***	0.313***
	(3.42)	(3.34)	(7.00)
Amazon Fund disbursements (BRL/ $km^2)$ [-1]	-0.00271***	-0.00271***	-0.00130***
	(-8.11)	(-8.15)	(-4.63)
Ibama fines (BRL/km ²) [-1]		-0.00000472*** (-3.21)	-0.00000203* (-1.85)
Local agricultural GDP (growth) [-1]			0.000415*** (3.73)
Exogenous variables:			
Credit to agriculture (real growth)	0.0165***	0.0165***	0.00234***
	(15.46)	(15.45)	(4.26)
Steer price (real growth)	-0.00109***	-0.00110***	0.00115***
	(-2.83)	(-2.84)	(2.83)
Soybean price (real growth)	-0.00133***	-0.00134***	-0.00195***
	(-4.58)	(-4.60)	(-9.03)
N. observations.	13680	13608	12090
N. municipalities	760	756	756

Estimation sample: 2002-2020

t statistics in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

OIRFs: the Amazon Fund and the IBAMA are effective in curbing deforestation

Response of deforestation after a 1 SD disbursement shock

OIRFs: Projects led by the Federal Government are more effective than those of states and municipalities

Number of projects . Overlapping across categories of projects

OIRFs: Land use planning projects are the most effecient

Impact of +1BRL/Km2 of Amazon Fund disbursements on % deforestation/Km2

Number of projects Overlapping across categories of projects

OIRFs: Combatting illegal fires pays off

BY THEME

Number of projects) Overlapping across categories of projects

Estimating an abatement cost

Conventionally, clearing one hectare of primary forest releases 367 tCO2

Estimation through counterfactual analysis Counterfactual

- Between 2009 and 2020, the Amazon Fund has disbursed 1 280
 Mn BRL in the Legal Amazon
- Using the GMM estimation and setting disbursements of the Fund to 0 results in a simulated increase of deforestation of 1.424 Mn Ha between 2009 and 2020 GMM. This makes 523 Mn tCO₂ saved by the Fund (ceteris paribus)
- This leads to an abatement cost of 2.45 BRL/tCO₂ (0.5 USD/tCO₂)

Key takeaways

- ► The Amazon Fund is effective and efficient : less than 1 USD makes it possible to avoid the release of 1 tCO₂.
- Its impact depends on the type of project supported. Federal Government-led projects and those aimed at combating illegal fires or protecting indigenous lands are particularly efficient.
- Results robust to other specifications: using 2 lags VAR, using cattle and soybean instead of Agri GDP, replacing exogenous macro variables by a time effect.

- Additional robustness checks: using ratios over population or over forest cover.
- Further research: spillover effects across municipalities, role of agricultural productivity.

Thank you !

loris.andre@psemail.eu Website

A theoretical approach

s.t.

The constrained intertemporal maximization problem can be written as:

$$\max_{\{d_t\}_t} \sum_{t=0}^{\infty} \beta^t \left[pr D_t \left(1 - \frac{D_t}{\overline{T}} \right) - c(1+s)d_t + R\left(\overline{d} - d_t\right) \right]$$
$$\forall t \ge 0, d_t \ge 0$$

A theoretical approach

$$\sum_{\tau=0}^{\infty} d_{\tau} \sum_{q=\tau}^{\infty} \beta^{q} = \frac{\overline{T}}{2} \left(\frac{1}{1-\beta} - \frac{1}{\rho r} \left(R + \lambda_{0} + c(1+s) \right) \right)$$

At the optimum, the (adjusted) discounted sum of deforestation areas are:

- an increasing function of the total stock of land T
 (provided β is high enough), the agricultural prices p and the intrinsic yields r;
- a decreasing function of the international donation amount per year *R*, and unit *production* cost of deforestation *c* and the stringency of law enforcement *s*.

A theoretical approach

<ロ > < 部 > < 書 > < 書 > 是 = の Q @ 3/22

An example of project

PROJECTS			
Amazonas Sustainable Foundation (FA	rogram + sj		
PRESENTATION DESCRIPTION	EVOLUTION FINAL EVALUATION COL	LECTION	
EVOLUTION			status Contracted
Date of approval		04.05.2016	ORGANIZATION TYPE Third Sector
Date of contract		05.25.2016	
Disbursement period	54 months (from the o	date the contract was signed)	Axis Land use planning Sustainable production THEMES Conservation units
DISBURSEMENT			total project value R\$31,518,490.00
1° disbursements	07.12.2016	R\$10,235,460.00	total project support R\$31,518,490.00
2° disbursements	12.26.2017	R\$10,362,738.00	(USD8,786,621.50
3 ^e disbursements	05.28.2018	R\$1,974,387.00	project website
4° disbursements	12.26.2018	R\$8,394,935.00	
5° disbursements	11.23.2020	R\$550,970.00	
Total amount disbursed		R\$31,518,490.00	

Categories of projects

Recovering disbursements from the Amazon Fund An example

An example

An allocation process

An allocation process

How focused is the fund's action across municipalities?

Source: BNDES and authors calculations

Main variables and data sources

- Amazon Fund disbursements: Banco National de Desenvolvimento Economico (BNDES)
- Deforestation rates: Instituto Nacional de Pesquisas Espaciais (INPE)
- ► Law enforcement: Instituto Brasileiro do Meio Ambiente (IBAMA)
- Agricultural production: Instituto Brasileiro de Geografia e Estatística (IBGE)
- Agricultural prices: Centro de Estudos Avançados em Economia Aplicada (CEPEA)
- ► Rural credit: Banco Central do Brasil (BCB)

Disbursements - Recipient

Disbursements - Axis

590

Disbursements - Theme

Overlapping matrix across categories of projects

		AXIS			THEME				RECIRENT							
		Monitoring an	Science, Innova	Land use plann	Sustainable pri	Rural Environm	Settlement	indigenous lan	Conservation u	Combat to Ille	ThirdSector	Federal Gover	Sates	Municipalities	Universities	Internatio ral
AXIS	Monitoring and control systems	100,0%	19,0%	16,7%	28,6%	45,2%	2,4%	2,4%	9,5%	14,3%	16,7%	14,3%	50,0%	16,7%	0,0%	2,4%
	Science, innovation and economic instruments	32,0%	100,0%	12,0%	40,0%	4,0%	16,0%	12,0%	32,0%	do/r	48,0%	20,0%	4,0%	0,0%	24,0%	4,0%
	Landuse planning	25,9%	11,1%	100,0%	77,8%	7,4%	7,4%	35,6%	44,4%	Q0%	81,5%	oph:	14,8%	3,7%	0,0%	0,0%
	Sustainable production	20,3%	16,9%	35,6%	100,0%	8,5%	27,1%	44,1%	35,6%	doy?	84,7%	0,0%	5,2%	10,2%	0,0%	0,0%
THEME	Rural Environmental Registry (CAR)	100,0%	5,3%	10,3%	26,3%	100,0%	0,0%	0,0%	5,3%	Q0%	15,8%	0,0%	73,7%	10,5%	0,0%	0,0%
	Settlement	6,3%	25,0%	12,5%	100,0%	0,0%	200,0%	31,3%	sqols	qo's	100,0%	opts	0,0%	0,0%	0,0%	0,0%
	Indigenous lands	3,6%	10,7%	53,dk	92,9%	0,0%	17,9%	100,0%	39,3%	do/r	92,9%	0,0%	3,05	0,0%	3,6%	0,0%
	Conservation units	14,3%	28,6%	42,9%	75,0%	3,6%	28,6%	39,3%	1000%	Q0%	82,1%	3,6%	10,7%	0,0%	3,6%	0,0%
	Combat to llegal fires and burn-offs	100,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	00%	100,0%	0,0%	16,7%	83,3%	0,0%	0,0%	0,0%
	Third Sector	12,1%	20,7%	37,9%	85,2%	5,2%	27,6%	44,8%	39,7%	Q0%	100,0%	opts	0,0%	0,0%	0,0%	0,0%
	Federal Government	75,0%	62,5%	0,0%	0,0%	0,0%	0,0%	0,0%	12,5%	12,5%	oph:	200,0%	0,0%	0,0%	0,0%	0,0%
RECIPIENT	States	95,5%	4,5%	18,2%	13,6%	63,6%	0,0%	4,5%	13,6%	22,7%	0,0%	oph:	100,0%	0,0%	0,0%	0,0%
	Municipalities	100,0%	0,0%	14,3%	85,7%	28,6%	0,0%	0,0%	doy?	doy?	0,0%	0,0%	0,0%	100,0%	0,0%	0,0%
	Universities	0,0%	100,0%	0,0%	0,0%	0,0%	0,0%	16,7%	167%	QON	0,0%	0,0%	0,0%	0,0%		0,0%
	International	100,0%	100,0%	0,0%	0,0%	0,0%	0,0%	0,0%	Q0%	Q0%	opts	opts	0,0%	0,0%	0,0%	200,0%

All aggregate OIRFs

Counterfactual analysis

Estimating an abatement cost

<ロ> < (日) < (日) > (日) < (日) < (日) < (日) < (日) < (日) < (16/22)</p>

Descriptive statistics

Variables used in estimations and main descriptive statistics of the dataset (2000-2020)

	(1)	(2)	(3)	(4)	(5)
Variables	N. obs	Mean	S.D.	Min	Max
Deforestation rate (% ratio/km ² per Year)	15,960	0.451	3.137	0	97.50
Amazon Fund disbursement (BRL/km ² per Year)	15,960	9.791	26.01	0	615.5
Ibama fines (BRL/km ² per Year)	15,876	353.8	2,486	0	122,215
Agriculture GDP (% Y/Y real growth)	13,674	8.218	43.49	-96.34	1,805
Steer stock (heads, % Y/Y growth)	15,893	170.2	7,702	-100	720,528
Soybean production (tons, $\% Y/Y$ growth)	15,960	25.58	1,251	-100	155,803
Credit to agriculture (BRL, % Y/Y real growth)	20	5.230	8.793	-12.77	21.94
Steer price (BRL, % Y/Y real growth)	20	2.221	12.66	-15.30	33.02
Soybean price (BRL, % Y/Y real growth)	20	3.516	19.10	-30.88	44.34

Note: The table displays the transformation of variables used in our regressions. While the descriptive statistics refer to the whole available dataset, a lower number of observations are used in estimation due to lags in the VAR system

Bibliography I

- Jennifer Alix-Garcia et al. "Avoided Deforestation Linked to Environmental Registration of Properties in the Brazilian Amazon". In: *Conservation Letters* (2018). DOI: 10.1111/conl.12414.
- Juliano Assunção, Clarissa Gandour, and Romero Rocha.
 "Deterring deforestation in the Brazilian Amazon: Environmental monitoring and law enforcement". In: *null* (2014). DOI: null.
- Juliano Assunção, Clarissa Gandour, and Rudi Rocha.
 "Deforestation slowdown in the Brazilian Amazon: prices or policies?" In: *Environment and Development Economics* (2015). DOI: 10.1017/s1355770x15000078.
- Juliano Assunção and Romero Rocha. "Getting greener by going black: the effect of blacklisting municipalities on Amazon deforestation". In: *Environment and Development Economics* (2019). DOI: 10.1017/s1355770x18000499.

Bibliography II

- [5] Juliano Assunção et al. "The Effect of Rural Credit on Deforestation: Evidence from the Brazilian Amazon". In: *The Economic Journal* (2020). DOI: 10.1093/ej/uez060.
- [6] Francisco Bidone. "Driving governance beyond ecological modernization: REDD+ and the Amazon Fund". In: *Environmental Policy and Governance* (2021). DOI: 10.1002/eet.1969.
- [7] Cauê Carrilho et al. "Permanence of avoided deforestation in a Transamazon REDD+ project (Pará, Brazil)". In: *Ecological Economics* (2022). DOI: 10.1016/j.ecolecon.2022.107568.
- [8] Elias Cisneros, Sophie Lian Zhou, and Jan Börner. "Naming and Shaming for Conservation: Evidence from the Brazilian Amazon.". In: *PLOS ONE* (2015). DOI: 10.1371/journal.pone.0136402.
- Juliano Correa et al. "Amazon Fund 10 Years Later: Lessons from the World's Largest REDD+ Program". In: *Forests* (2019). DOI: 10.3390/f10030272.

Bibliography III

- [10] Juliano Correa et al. "Evaluating REDD+ at subnational level: Amazon fund impacts in Alta Floresta, Brazil". In: Forest Policy and Economics (2020). DOI: 10.1016/j.forpol.2020.102178.
- [11] Edward A. Ellis et al. "Mixed Effectiveness of REDD+ Subnational Initiatives after 10 Years of Interventions on the Yucatan Peninsula, Mexico". In: *Forests* (2020). DOI: 10.3390/f11091005.
- [12] Richard van der Hoff, Raoni Rajão, and Pieter Leroy. "Clashing interpretations of REDD+ "results" in the Amazon Fund". In: *Climatic Change* (2018). DOI: 10.1007/s10584-018-2288-x.
- [13] Seema Jayachandran et al. "Cash for carbon: A randomized trial of payments for ecosystem services to reduce deforestation". In: *Science* (2017). DOI: 10.1126/science.aan0568.

Bibliography IV

- [14] Anand Roopsind, Brent Sohngen, and Jodi S. Brandt. "Evidence that a national REDD+ program reduces tree cover loss and carbon emissions in a high forest cover, low deforestation country.". In: Proceedings of the National Academy of Sciences of the United States of America (2019). DOI: 10.1073/pnas.1904027116.
- [15] Jorge Hargrave Gonçalves da Silva et al. "Economic causes of deforestation in the Brazilian Amazon: A panel data analysis for the 2000s". In: *Environmental and Resource Economics* (2010). DOI: 10.1007/s10640-012-9610-2.
- [16] Britaldo Soares-Filho et al. "Role of Brazilian Amazon protected areas in climate change mitigation". In: Proceedings of the National Academy of Sciences of the United States of America (2010). DOI: 10.1073/pnas.0913048107.

Bibliography V

[17] Thales A.P. West et al. "Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon.". In: *Proceedings of the National Academy of Sciences of the United States of America* (2020). DOI: 10.1073/pnas.2004334117.