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Michèle Müller-Itten, 2 / 19

Introduction
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Main Contribution

• We propose the novel concept of the ignorance equivalent as a
parsimonious summary of the RI decision problem and its properties.
• Ability to learn is ‘equivalent’ to access to a larger menu
• Learning analogue of the certainty equivalent for lotteries

• The equivalence between learning ability and fictional payoffs
simplifies analysis, including in multi-player settings.
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Model Setup

• An agent is choosing an action from a finite menu A.

• Action a ∈ A ⊆ RI yields utility ai in state i ∈ I = 1, ..., I .

• The agent has a prior belief π ∈ ∆I over states.

• Payoffs, states and actions

Investor Example
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Welfare: W (A,π, c) = E[consumption utility] - [cost of signal].
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Exogenous Information Baseline

• An agent is choosing an action from a finite menu A.

• Action a ∈ A ⊆ RI yields utility ai in state i ∈ I = 1, ..., I .

• The agent has a prior belief π ∈ ∆I over states.

• No information
• Agent maximizes expected

utility under prior belief π.
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Exogenous Information Baseline

• An agent is choosing an action from a finite menu A.

• Action a ∈ A ⊆ RI yields utility ai in state i ∈ I = 1, ..., I .

• The agent has a prior belief π ∈ ∆I over states.

• Incomplete information
• Agent observes signal draw s,
• updates belief to πs ,
• maximizes expected utility

under this belief.

state 2

state 1

portfolios

market conditions

payoff if market ↑

p
ay

off
if

m
ar

ke
t
↓ π

π+

π−

π+

π−

a1
a2

a3

Welfare: W (A,π, c) = E[consumption utility] - [cost of signal].
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Rational Inattention

• An agent is choosing an action from a finite menu A.

• Action a ∈ A ⊆ RI yields utility ai in state i ∈ I = 1, ..., I .

• The agent has a prior belief π ∈ ∆I over states.

• Rational Inattention
• Agent chooses which costly

signal to draw,
• ... and proceeds as before.
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Learning Strategies

• Agent can choose any learning strategy S = 〈A,q〉, where qi (a)
denotes the likelihood of taking action a conditional on state i .

• Cost c(S,π) satisfies five intuitive properties, formal statements

which are shared by all smooth & prior-concave UPS costs.

Prominent examples:

• Mutual Information (Sims JME’03),
• some Tsallis costs (Caplin-Dean-Leahy ’19)
• Total Information (Bloedel-Zhong ’20), which subsumes

• Wald costs (Morris-Strack ’19), Fisher Information (Hébert-Woodford ’20).

Notation: c(S,π) cost of signal S under prior belief π | UPS : uniformly posterior separable
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Ignorance Equivalent
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The Ignorance Equivalent

Definition

Payoff vector α is an ignorance equivalent of RI problem (A,π, c) if

• the agent is willing to commit to always implement α,

W ({α} ,π, c) ≥W (A,π, c).

Agent is willing to forgo learning opportunities that are present in A.
• the agent is willing to commit to never implement α,

W (A,π, c) ≥W (A ∪ {α} ,π, c).

Agent is willing to forgo learning opportunities that arise when α is added to A.

Since larger menus are always better,

{α} ∼ A ∼ A ∪ {α}

in terms of the agent’s preference over menus given cost c and prior π.
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Existence and Uniqueness

Theorem 1

Each RI problem (A,π, c) admits a unique ignorance equivalent α.
The ignorance equivalent can be constructed from any optimal signal S.

Ignorance equivalence: W ({α} ,π, c) = W (A,π, c) = W (A ∪ {α} ,π, c).
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Locating the Ignorance Equivalent
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Locating the Ignorance Equivalent

a1
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• Strategy S always implements the high-payoff action with qi (ai )=0.9.

• In each state i , the expected consumption payoff is aSi =
∑
a∈A

qi (a)ai .
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Locating the Ignorance Equivalent
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• Following S yields net utility π · aS − c(S,π) under prior π.
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Locating the Ignorance Equivalent
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• The same construction shows net utility from S under any belief ρ.
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Locating the Ignorance Equivalent
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• Dominance: x - S ⇐⇒ ρ · x ≤ ρ · aS − c(S,ρ) ∀ρ.
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Locating the Ignorance Equivalent
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• Unconditional implementation of the ignorance equivalent α
• is just as good as the optimal S under the prior.
• is no better than S under any belief.
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Identifying optimal signals
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• Optimal signals are exactly those that beat α under any belief.
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A suboptimal signal
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• Optimal signals are exactly those that beat α under any belief.
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Properties of the Ignorance Equivalent

The ignorance equivalent α of RI problem (A,π, c) ...

• characterizes all optimal learning strategies w/o reference to beliefs.

Corollary 1: If α is also the ignorance equivalent of (A,π′, c), then
the two RI problems have the same set of optimal learning strategies.

? is sufficient to identify which menu additions a+ ∈ RI are welfare
enhancing, W (A ∪ {a+} ,π, c) >W (A,π, c).

Theorem 3: a+ adds welfare to A ⇐⇒ a+ adds welfare to {α}.

? can be verified using binary strategies only.

Corollary 5: α is always chosen from each menu {α, a} for all a ∈ A
⇐⇒ α is always chosen from menu A ∪ {α}.

• does not distort learning under any prior.

Corollary 3: If learning strategy 〈A,q〉 is optimal in RI problem
(A,π′, c), then it is also optimal in (A ∪ {α} ,π′, c).
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Self-selection Property
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• Stopping at α′ is no better than continuing with S ′.
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Learning-Proof Menu
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• Together, ignorance equivalents form the Learning-Proof menu Ā.
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Learning-Proof Menu

a1

a2

α

aS′

π′
α′

• The learning-proof menu can also be constructed from the signals.
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Learning-Proof Menu

c ↑

π′

α′

∆

The Learning-Proof Menu is a EU representation of the RI problem:
Ability to learn is as if agent has access to Ā rather than A.
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Learning-Proof Menu

c ↑

π′

α′
∆

For high costs, Ā approaches the boundary of the convex hull.
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Learning-Proof Menu

c ↑

c ↓

π′
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∆

For low costs, Ā approaches the boundary of the hypercube.
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Certainty Equivalent vs Ignorance Equivalent

Certainty equivalent:

• Condenses the appeal of a lottery into a scalar.

• Useful for comparisons across lotteries given a fixed belief.

• ‘Too’ parsimonious for situations with learning:
• The ignorance equivalent abstracts away from all state dependence.
• An agent who learns seeks to tailor the choice to the realized state.

Ignorance equivalent:

• Condenses the entire menu A into one payoff vector α.

• Retains enough detail to capture learning opportunities.

• Useful for comparisons across signals, menus, and beliefs.
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Economic Relevance
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Economic Relevance

The ignorance equivalent and the learning proof menu are not just
‘mental shortcuts’ for tractability.

They arise naturally in economic
settings where the menu is designed strategically.

Toy example. A risk-neutral RI
investor (she) wants to purchase
one of the portfolios in A.
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Ā

a1
a2

a3
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Ā

a1
a2

a3



Michèle Müller-Itten, 17 / 19

Economic Relevance

The ignorance equivalent and the learning proof menu are not just
‘mental shortcuts’ for tractability. They arise naturally in economic
settings where the menu is designed strategically.

Toy example. A risk-neutral RI
investor (she) wants to purchase
one of the portfolios in A.

An informed fund manager (he)
can offer any payouts a ∈ RI .

• What if prior π is unknown?

• The manager can offer Ā.
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Optimal Allocation skip

Task: Allocate a single choice opportunity to one of several RI-agents.

Examples: Investment opportunity, technology acquisition opportunity.

Question: Can agents achieve the first best surplus through trade?

Key complication: Agents can learn and selectively participate only in
those contingencies that are most favorable for them.

• If there is a ‘most able’ agent (investor example), we construct the
full set of terms that implement the first best.
I Crémer&Khalil’92, but with flexible learning

• If agents can access different menus and have comparative
advantages in learning (technology acquisition example), the first best
typically involves learning by multiple agents (teams problem).
I We construct a PBE that achieves the first best through repeated trades. visuals
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Michèle Müller-Itten, 18 / 19

Optimal Allocation skip

Task: Allocate a single choice opportunity to one of several RI-agents.

Examples: Investment opportunity, technology acquisition opportunity.

Question: Can agents achieve the first best surplus through trade?

Key complication: Agents can learn and selectively participate only in
those contingencies that are most favorable for them.

• If there is a ‘most able’ agent (investor example), we construct the
full set of terms that implement the first best.
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• If agents can access different menus and have comparative
advantages in learning (technology acquisition example), the first best
typically involves learning by multiple agents (teams problem).
I We construct a PBE that achieves the first best through repeated trades. visuals
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Main Contribution

‘Ignorance Equivalent’ approach to Rational Inattention

• Simplifies intuition

• Yields novel insights
• Economically relevant

• when learning is to be avoided.
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‘Ignorance Equivalent’ approach to Rational Inattention

• Simplifies intuition

• Yields novel insights
• Economically relevant
• not only when learning is to be avoided.
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Michèle Müller-Itten, 2 / 17

Admissible cost functions back

Notation:

• Signal S = 〈S , q〉 returns s ∈ S with probability qi (s) in state i .

• c(S,ρ) ∈ [0,∞) denotes the cost of that signal under belief ρ.

We impose five conditions on c:

1 The cost function is continuous.

2 The agent can freely dispose of information.

3 Ties are broken through learning:

4 Sequential information acquisition brings no cost savings.

? Sequential information acquisition brings no extra costs.
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• ∀S ,∀ĉ ≥ 0, the pre-image

{
(q,π) ∈ (∆S)I ×∆I | c(〈S ,q〉,π) ≷ ĉ

}
is open.
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• c(S,ρ) ∈ [0,∞) denotes the cost of that signal under belief ρ.

We impose five conditions on c:

1 The cost function is continuous.

2 The agent can freely dispose of information.
• c(·,π) is non-decreasing in the Blackwell order ∀π.
• c(S, ·) is weakly concave in the prior ∀S.

3 Ties are broken through learning:

4 Sequential information acquisition brings no cost savings.

? Sequential information acquisition brings no extra costs.
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• c(S,ρ) ∈ [0,∞) denotes the cost of that signal under belief ρ.

We impose five conditions on c:

1 The cost function is continuous.

2 The agent can freely dispose of information.

3 Ties are broken through learning:
• ∀π ∈ ∆I,∀a ∈ RI with π · a = 0 and π · |a| > 0,
∃S = 〈{0, 1} ,q〉 such that c(S,π) <

∑
i∈I πiqi (1)ai .
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• c(S,ρ) ∈ [0,∞) denotes the cost of that signal under belief ρ.

We impose five conditions on c:

1 The cost function is continuous.

2 The agent can freely dispose of information.

3 Ties are broken through learning:
4 Sequential information acquisition brings no cost savings.

• For any contingency plan

draw 〈S ,q〉 −→ observe s −→ update belief to πs −→ draw 〈S s , qs〉,

the one-shot implementation

S̃ = 〈S ×
⋃

s∈S S
s , q̃〉 with q̃i (s, s̃) = qi (s)qsi (s̃)

is no more costly in expectation,

c(S̃,π) ≤ c(〈S ,q〉,π) +
∑

s∈S(π · q(s)) c(〈S s , qs〉,πs).

? Sequential information acquisition brings no extra costs.
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Notation:

• Signal S = 〈S , q〉 returns s ∈ S with probability qi (s) in state i .

• c(S,ρ) ∈ [0,∞) denotes the cost of that signal under belief ρ.

We impose five conditions on c:

1 The cost function is continuous.

2 The agent can freely dispose of information.

3 Ties are broken through learning:

4 Sequential information acquisition brings no cost savings.

? Sequential information acquisition brings no extra costs.
• As above, but with the opposite inequality,

c(S̃,π) ≤ c(〈S ,q〉,π) +
∑

s∈S(π · q(s)) c(〈S s , qs〉,πs).



Michèle Müller-Itten, 3 / 17

Optimal Allocation: Setup back

Task: Allocate a single opportunity to one RI agent k ∈ {1, ...,K}.

• Agent k then executes the opportunity by selecting an action a ∈ Ak

and enjoys payoff ai .

• All other agents receive payoff zero.

Game Setup:

• All agents share a common prior π0 about the state i .

• Initially, the opportunity rests with agent 1.
It remains transferable as long as it has not been executed.
• Agents can learn at any time

• each according to a (possibly distinct) cost function ck ,
• regardless of whether they currently own the opportunity,
• without ‘executing’ the opportunity.
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Optimal Allocation: Questions back

First-best allocation: Consider a social planner who

• has access to all actions in AP =
⋃K

k=1Ak .

• has access to all learning technologies in
{
c1, ..., cK

}
.

• Bloedel & Zhong (2020): The planner faces the indirect cost cP that
arises from sequential optimization over the direct cost mink c

k .

The planner can generate social surplus

∆ = W (AP , cP ,π0)−W (A1, c1,π0)

relative to autarky.

Question: Can agents achieve this same surplus through trade? How?

Trade: A trade between agents k and ` at terms t ∈ RI

• requires the agreement of both agents.

• means that agent k releases the opportunity to agent `,
who in turn pays the former ti once the state i realizes.
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Optimal Allocation: Example back

• Teams. A firm buys a new technology that will affect many
stakeholders. Some workers are uniquely qualified to learn about
specific characteristics of the technology. Can they achieve the
optimal sequence of cost-benefit investigations across all workers?
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Comparative Advantage back

• If there is no ‘most capable’ agent, the first-best is typically a
contingency plan with learning by multiple agents.

• Assumption: Learning produces hard information (Yoder ’22)

• Focus on learning incentives rather than truth-telling.
• Ensures that agents always share a common, public belief.

• Can agents emulate the planner’s strategy through trade?
• Yes. The following is (part of) a PBE:

• At belief π, all agents are willing to trade at terms arg maxt∈Ā0 π · t,
where Ā0 denotes the the learning-proof menu of AP under cP .

• All agents are willing to learn or execute if and only if it is socially
efficient for them to do so.
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Comparative Advantage: Visual back

Payoff possibilities for agent 1
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Comparative Advantage: Visual back

Payoff possibilities for agent 2
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Comparative Advantage: Visual back

Payoff possibilities for social planner
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Absolute Advantage back

• Consider first the situation where agent K has an absolute advantage
over everyone else, AK = AP and cK = cP .

• Unconditional trade is socially optimal.

• Are there terms t ∈ RI that can avoid pre-trade learning?
• Agent 1:

• Possibilities: t (accept trade) or A1 (execute opportunity).
• Corollary 5: t is always chosen from menu A1 ∪ {t} ⇐⇒ t is always

chosen from each menu {t, a} for all a ∈ A1 .
• Each action a ∈ A1 imposes a lower bound on t.

• Agent K:

• Possibilities: AK − t (accept trade and execute) or 0 (decline trade).
• Shift payoffs: AK (accept) or t (decline).
• Never decline trade ⇐⇒ t does not add welfare to AK .
• Theorem 3: t adds welfare to AK ⇐⇒ t adds welfare to

{
αK
}

• Agent K’s ignorance equivalent αK imposes an upper bound on t.
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Michèle Müller-Itten, 8 / 17

Absolute Advantage back

• Consider first the situation where agent K has an absolute advantage
over everyone else, AK = AP and cK = cP .

• Unconditional trade is socially optimal.

• Are there terms t ∈ RI that can avoid pre-trade learning?
• Agent 1:

• Possibilities: t (accept trade) or A1 (execute opportunity).
• Corollary 5: t is always chosen from menu A1 ∪ {t} ⇐⇒ t is always

chosen from each menu {t, a} for all a ∈ A1 .

• Each action a ∈ A1 imposes a lower bound on t.

• Agent K:

• Possibilities: AK − t (accept trade and execute) or 0 (decline trade).
• Shift payoffs: AK (accept) or t (decline).
• Never decline trade ⇐⇒ t does not add welfare to AK .
• Theorem 3: t adds welfare to AK ⇐⇒ t adds welfare to

{
αK
}

• Agent K’s ignorance equivalent αK imposes an upper bound on t.
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• Possibilities: AK − t (accept trade and execute) or 0 (decline trade).
• Shift payoffs: AK (accept) or t (decline).
• Never decline trade ⇐⇒ t does not add welfare to AK .
• Theorem 3: t adds welfare to AK ⇐⇒ t adds welfare to

{
αK
}

• Agent K’s ignorance equivalent αK imposes an upper bound on t.
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Absolute Advantage: Visuals back

?
α1

?α
K

π0

A1 = {•, •} ,AK = {•, •, ◦}

• Agent 1’s favorite terms are αK , Agent K ’s favorite terms are α1.

• State-independent transfers cannot achieve the first-best.

• Diversity of options for Agent K does not make trade easier or harder.
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RI patterns of behavior

• Agents consider only actions in a (small) consideration set.
Caplin-Dean-Leahy (REStud’18), Jung-Kim-Matějka-Sims (REStud’19)

• Learning generates payoff complementarities between actions.

• Positive weight on (ex-ante) unattractive actions.
Caplin-Dean-Leahy (REStud’18)

• Adding a new action may ‘activate’ a previously unchosen action.
Matějka & McKay (AER’15)

π
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Matějka & McKay (AER’15)

π
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• Limited integration of Rational Inattention in multiplayer settings.

• Yes/no decisions become “sometimes”.
• One player’s “sometimes” yields information to other players.
• Yet, even crude learning ability influences contract terms, security

design, information design, location choice, ...
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Michèle Müller-Itten, 10 / 17

RI patterns of behavior

• Agents consider only actions in a (small) consideration set.
Caplin-Dean-Leahy (REStud’18), Jung-Kim-Matějka-Sims (REStud’19)
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Peng&Xiong (JFE’06), Van Nieuwerburgh&Veldkamp (JFE’09,REStud’10), ...

• Limited integration of Rational Inattention in multiplayer settings.
• Yes/no decisions become “sometimes”.
• One player’s “sometimes” yields information to other players.

• Yet, even crude learning ability influences contract terms, security
design, information design, location choice, ...
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• Learning generates payoff complementarities between actions.
• Positive weight on (ex-ante) unattractive actions.

Caplin-Dean-Leahy (REStud’18)

• Adding a new action may ‘activate’ a previously unchosen action.
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Anchor Actions

π

π′

π

Theorem

Anchors a ∈ A ∩ Ā form a ‘latent’ consideration set:

• A subset of them is chosen at any given prior π.

• Changes in π can activate any of them.

• Menu expansion can activate any of them for a fixed prior π. details
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Menu Expansion ? back

Consider an RI problem (A,π, c).

Question: What happens if we add action a+ ∈ RI to the menu A?

Theorem (Welfare consequences of menu expansion)

• a+ adds welfare to A ⇐⇒ a+ adds welfare to {α}.

• a+ adds welfare to some A′ ⊆ A ⇐⇒ a+ /∈ Ā.

... and the ‘right’ complement a+ can activate any anchor action.

Theorem (Activation of anchor actions)

For any anchor action a ∈ A ∩ Ā, there exists a+ ∈ RI such that

p(a) > 0 in RI problem (A ∪ a+,π, c).

? Results apply if the agent is indifferent across all sequential learning strategies (e.g. UPS costs).
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Michèle Müller-Itten, 13 / 17

Proof Sketch: Uniqueness back

• Suppose there are two ignorance equivalents α1 6= α2.

• Both achieve expected utility π ·αk ≡W (A,π, c) = π · aS − c(S,π).

• Since α1 6= α2, ∃ prior ρ such that ρ ·α1 = ρ ·α2 + ∆ with ∆ > 0.

• Pick a signal S0 that updates beliefs towards or away from ρ with equal probability.

π

(1− ε)π + ερ (1 + ε)π − ερ
πε

+ πε
−

← prior

→

← beliefs

→

← strategy

→

← welfare

→

α1 α2

W (A,π, c) + ε∆− c(S0,π)

feasible in (A ∪
{
α1

}
,π, c)

π

πε
+ πε

−

S S

≥W (A,π, c)− c(S0,π)

feasible in (A ∪
{
α2

}
,π, c)

total welfare > 2W (A,π, c)

• By 3 , total welfare is > 2W (A,π, c) for small ε.

• Now switch contingency plans without affecting total welfare.

• Hence W (A ∪
{
αk

}
,π, c) > W (A,π, c) for at least one k.

Ignorance Equivalence: W ({α} ,π, c) = W (A,π, c) = W (A ∪ {α} ,π, c).
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• Since α1 6= α2, ∃ prior ρ such that ρ ·α1 = ρ ·α2 + ∆ with ∆ > 0.

• Pick a signal S0 that updates beliefs towards or away from ρ with equal probability.

π

(1− ε)π + ερ (1 + ε)π − ερ
πε

+ πε
−

← prior →

← beliefs →
← strategy →α1 S

W (A,π, c) + ε∆− c(S0,π)

feasible in (A ∪
{
α1

}
,π, c)

π

πε
+ πε

−

S α2

≥W (A,π, c)− c(S0,π)

feasible in (A ∪
{
α2

}
,π, c)

total welfare > 2W (A,π, c)

• By 3 , total welfare is > 2W (A,π, c) for small ε.

• Now switch contingency plans without affecting total welfare.

• Hence W (A ∪
{
αk

}
,π, c) > W (A,π, c) for at least one k.

Ignorance Equivalence: W ({α} ,π, c) = W (A,π, c) = W (A ∪ {α} ,π, c).
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Proof Sketch: Necessity of Dominance back

• Suppose α beats S under some posterior, ρ ·α = ρ · aS − c(S,ρ) + ∆ with ∆ > 0.

• By 2 , α beats S by at least ε∆ at πε
+ = (1− ε)π + ερ.

• Pick a signal S0 that updates beliefs towards or away from ρ with equal probability.

π

(1− ε)π + ερ (1 + ε)π − ερ
πε

+ πε
−

← prior

← beliefs

← strategyS S

welfare ≥W (A,π, c)− c(S0,π)

+ ε∆

feasible in (A ∪ {α} ,π, c)

• Implement α when advantageous.

• By 3 , welfare is > W (A,π, c) for small ε.

Dominance: α - S ⇐⇒ ρ · α ≤ ρ · aS − c(S,ρ) ∀ρ.

Ignorance Equivalence: W ({α} ,π, c) = W (A,π, c) = W (A ∪ {α} ,π, c) .
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ρK

The learning-proof menu AK ∪ {t} determines under which posterior ρK Agent K accepts.
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For a particular transfer t,

×t

ρK

×t1

Given Agent K ’s strategy, offer t is payoff-equivalent to certain trade at t1.
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For a particular transfer t,

×t

ρK

×t1

ρ1

The learning-proof menu A1 ∪ {t1} determines under which posterior ρ1 Agent 1 offers.
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Unverifiable states (2) back

For a particular transfer t,

×t

ρK

×t1

ρ1

?

The ignorance equivalent of (A1 ∪
{
t1
}
,π, c1) determines Agent 1’s payoff.
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Unverifiable states (3) back

Using this construction, we can determine Agent 1’s payoff for any
constant transfer,

where

• t maximal transfer that Agent K accepts unconditionally,

• t̄ maximal transfer that Agent K rejects unconditionally,

• t the one plotted previously, apparently optimal.
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Unverifiable states (solution) back

Finding: The equilibrium TIOLI offer from Agent 1 involves
partial trade and pre-trade learning by both.
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