Rational Inattention via Ignorance Equivalence

Michèle Müller-Itten (University of St.Gallen)

joint with
Roc Armenter (Federal Reserve Bank of Philadelphia)
Zachary Stangebye (University of Notre Dame)

August 29, 2023

The views expressed here do not reflect those of the Federal Reserve Board.

Introduction

Main Contribution

- We propose the novel concept of the ignorance equivalent as a parsimonious summary of the RI decision problem and its properties.
- Ability to learn is 'equivalent' to access to a larger menu
- Learning analogue of the certainty equivalent for lotteries

Main Contribution

- We propose the novel concept of the ignorance equivalent as a parsimonious summary of the RI decision problem and its properties.
- Ability to learn is 'equivalent' to access to a larger menu
- Learning analogue of the certainty equivalent for lotteries
- The equivalence between learning ability and fictional payoffs simplifies analysis, including in multi-player settings.

Model Setup

- An agent is choosing an action from a finite menu \mathcal{A}.
- Action $\boldsymbol{a} \in \mathcal{A} \subseteq \mathbb{R}^{\prime}$ yields utility a_{i} in state $i \in \mathcal{I}=1, \ldots, l$.
- The agent has a prior belief $\boldsymbol{\pi} \in \Delta \mathcal{I}$ over states.
- Payoffs, states and actions

Model Setup

- An agent is choosing an action from a finite menu \mathcal{A}.
- Action $\boldsymbol{a} \in \mathcal{A} \subseteq \mathbb{R}^{\prime}$ yields utility a_{i} in state $i \in \mathcal{I}=1, \ldots, l$.
- The agent has a prior belief $\boldsymbol{\pi} \in \Delta \mathcal{I}$ over states.
state 2

- Payoffs, states and actions

Exogenous Information Baseline

- An agent is choosing an action from a finite menu \mathcal{A}.
- Action $\boldsymbol{a} \in \mathcal{A} \subseteq \mathbb{R}^{\prime}$ yields utility a_{i} in state $i \in \mathcal{I}=1, \ldots, l$.
- The agent has a prior belief $\boldsymbol{\pi} \in \Delta \mathcal{I}$ over states.
- No information
- Agent maximizes expected utility under prior belief π.

Exogenous Information Baseline

- An agent is choosing an action from a finite menu \mathcal{A}.
- Action $\boldsymbol{a} \in \mathcal{A} \subseteq \mathbb{R}^{\prime}$ yields utility a_{i} in state $i \in \mathcal{I}=1, \ldots, l$.
- The agent has a prior belief $\boldsymbol{\pi} \in \Delta \mathcal{I}$ over states.
- Incomplete information
- Agent observes signal draw s,
- updates belief to π^{s},
- maximizes expected utility under this belief.

Rational Inattention

- An agent is choosing an action from a finite menu \mathcal{A}.
- Action $\boldsymbol{a} \in \mathcal{A} \subseteq \mathbb{R}^{\prime}$ yields utility a_{i} in state $i \in \mathcal{I}=1, \ldots, l$.
- The agent has a prior belief $\boldsymbol{\pi} \in \Delta \mathcal{I}$ over states.
- Rational Inattention
- Agent chooses which costly signal to draw,
- ... and proceeds as before.

Welfare: $W(\mathcal{A}, \boldsymbol{\pi}, c)=\mathrm{E}[$ consumption utility $]$ - [cost of signal].

Learning Strategies

- Agent can choose any learning strategy $\mathcal{S}=\langle\mathcal{A}, \boldsymbol{q}\rangle$, where $q_{i}(\boldsymbol{a})$ denotes the likelihood of taking action a conditional on state i.

Learning Strategies

- Agent can choose any learning strategy $\mathcal{S}=\langle\mathcal{A}, \boldsymbol{q}\rangle$, where $q_{i}(\boldsymbol{a})$ denotes the likelihood of taking action \boldsymbol{a} conditional on state i.
- Cost $c(\mathcal{S}, \boldsymbol{\pi})$ satisfies five intuitive properties, which are shared by all smooth \& prior-concave UPS costs.

Prominent examples:

- Mutual Information (Sims JME'03),
- some Tsallis costs (Caplin-Dean-Leahy '19)
- Total Information (Bloedel-Zhong '20), which subsumes
- Wald costs (Morris-Strack '19), Fisher Information (Hébert-Woodford '20).

Ignorance Equivalent

The Ignorance Equivalent

Definition

Payoff vector $\boldsymbol{\alpha}$ is an ignorance equivalent of RI problem $(\mathcal{A}, \boldsymbol{\pi}, c)$ if

The Ignorance Equivalent

Definition

Payoff vector $\boldsymbol{\alpha}$ is an ignorance equivalent of RI problem $(\mathcal{A}, \boldsymbol{\pi}, c)$ if

- the agent is willing to commit to always implement $\boldsymbol{\alpha}$,

$$
W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c) \geq W(\mathcal{A}, \boldsymbol{\pi}, c)
$$

Agent is willing to forgo learning opportunities that are present in \mathcal{A}.

The Ignorance Equivalent

Definition

Payoff vector $\boldsymbol{\alpha}$ is an ignorance equivalent of RI problem $(\mathcal{A}, \boldsymbol{\pi}, c)$ if

- the agent is willing to commit to always implement $\boldsymbol{\alpha}$,

$$
W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c) \geq W(\mathcal{A}, \boldsymbol{\pi}, c)
$$

Agent is willing to forgo learning opportunities that are present in \mathcal{A}.

- the agent is willing to commit to never implement $\boldsymbol{\alpha}$,

$$
W(\mathcal{A}, \boldsymbol{\pi}, c) \geq W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)
$$

Agent is willing to forgo learning opportunities that arise when $\boldsymbol{\alpha}$ is added to \mathcal{A}.

The Ignorance Equivalent

Definition

Payoff vector $\boldsymbol{\alpha}$ is an ignorance equivalent of RI problem $(\mathcal{A}, \boldsymbol{\pi}, c)$ if

- the agent is willing to commit to always implement $\boldsymbol{\alpha}$,

$$
W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c) \geq W(\mathcal{A}, \boldsymbol{\pi}, c)
$$

- the agent is willing to commit to never implement $\boldsymbol{\alpha}$,

$$
W(\mathcal{A}, \boldsymbol{\pi}, c) \geq W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)
$$

Since larger menus are always better,

$$
\{\boldsymbol{\alpha}\} \sim \mathcal{A} \sim \mathcal{A} \cup\{\boldsymbol{\alpha}\}
$$

in terms of the agent's preference over menus given cost c and prior $\boldsymbol{\pi}$.

Existence and Uniqueness

Theorem 1

Each RI problem $(\mathcal{A}, \boldsymbol{\pi}, c)$ admits a unique ignorance equivalent $\boldsymbol{\alpha}$. The ignorance equivalent can be constructed from any optimal signal \mathcal{S}.

Locating the Ignorance Equivalent

Locating the Ignorance Equivalent

- Strategy \mathcal{S} always implements the high-payoff action with $q_{i}\left(\boldsymbol{a}^{i}\right)=0.9$.
- In each state i, the expected consumption payoff is $a_{i}^{\mathcal{S}}=\sum_{\boldsymbol{a} \in \mathcal{A}} q_{i}(\boldsymbol{a}) a_{i}$.

Locating the Ignorance Equivalent

- Following \mathcal{S} yields net utility $\boldsymbol{\pi} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\pi})$ under prior $\boldsymbol{\pi}$.

Locating the Ignorance Equivalent

- The same construction shows net utility from \mathcal{S} under any belief ρ.

Locating the Ignorance Equivalent

- Dominance: $\boldsymbol{x} \precsim \mathcal{S} \Longleftrightarrow \boldsymbol{\rho} \cdot \boldsymbol{x} \leq \boldsymbol{\rho} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\rho}) \forall \rho$.

Locating the Ignorance Equivalent

- Unconditional implementation of the ignorance equivalent $\boldsymbol{\alpha}$
- is just as good as the optimal \mathcal{S} under the prior.
- is no better than \mathcal{S} under any belief.

Identifying optimal signals

- Optimal signals are exactly those that beat $\boldsymbol{\alpha}$ under any belief.

A suboptimal signal

- Optimal signals are exactly those that beat $\boldsymbol{\alpha}$ under any belief.

Properties of the Ignorance Equivalent

The ignorance equivalent $\boldsymbol{\alpha}$ of RI problem $(\mathcal{A}, \boldsymbol{\pi}, c) \ldots$

- characterizes all optimal learning strategies w/o reference to beliefs. Corollary 1: If $\boldsymbol{\alpha}$ is also the ignorance equivalent of $\left(\mathcal{A}, \boldsymbol{\pi}^{\prime}, c\right)$, then the two RI problems have the same set of optimal learning strategies.

Properties of the Ignorance Equivalent

The ignorance equivalent $\boldsymbol{\alpha}$ of RI problem $(\mathcal{A}, \boldsymbol{\pi}, c) \ldots$

- characterizes all optimal learning strategies w / o reference to beliefs. Corollary 1: If $\boldsymbol{\alpha}$ is also the ignorance equivalent of $\left(\mathcal{A}, \boldsymbol{\pi}^{\prime}, c\right)$, then the two RI problems have the same set of optimal learning strategies.
\star is sufficient to identify which menu additions $\boldsymbol{a}^{+} \in \mathbb{R}^{\prime}$ are welfare enhancing, $W\left(\mathcal{A} \cup\left\{\boldsymbol{a}^{+}\right\}, \boldsymbol{\pi}, c\right)>W(\mathcal{A}, \boldsymbol{\pi}, c)$.
Theorem 3: \boldsymbol{a}^{+}adds welfare to $\mathcal{A} \Longleftrightarrow \boldsymbol{a}^{+}$adds welfare to $\{\boldsymbol{\alpha}\}$.

Properties of the Ignorance Equivalent

The ignorance equivalent $\boldsymbol{\alpha}$ of RI problem $(\mathcal{A}, \boldsymbol{\pi}, c) \ldots$

- characterizes all optimal learning strategies w/o reference to beliefs. Corollary 1: If $\boldsymbol{\alpha}$ is also the ignorance equivalent of $\left(\mathcal{A}, \boldsymbol{\pi}^{\prime}, c\right)$, then the two RI problems have the same set of optimal learning strategies.
\star is sufficient to identify which menu additions $\boldsymbol{a}^{+} \in \mathbb{R}^{\prime}$ are welfare enhancing, $W\left(\mathcal{A} \cup\left\{\mathbf{a}^{+}\right\}, \boldsymbol{\pi}, c\right)>W(\mathcal{A}, \boldsymbol{\pi}, c)$.
Theorem 3: \boldsymbol{a}^{+}adds welfare to $\mathcal{A} \Longleftrightarrow \boldsymbol{a}^{+}$adds welfare to $\{\boldsymbol{\alpha}\}$.
\star can be verified using binary strategies only.
Corollary 5: $\boldsymbol{\alpha}$ is always chosen from each menu $\{\boldsymbol{\alpha}, \boldsymbol{a}\}$ for all $\boldsymbol{a} \in \mathcal{A}$ $\Longleftrightarrow \boldsymbol{\alpha}$ is always chosen from menu $\mathcal{A} \cup\{\boldsymbol{\alpha}\}$.

Properties of the Ignorance Equivalent

The ignorance equivalent $\boldsymbol{\alpha}$ of RI problem $(\mathcal{A}, \boldsymbol{\pi}, c) \ldots$

- characterizes all optimal learning strategies w / o reference to beliefs. Corollary 1: If $\boldsymbol{\alpha}$ is also the ignorance equivalent of $\left(\mathcal{A}, \boldsymbol{\pi}^{\prime}, c\right)$, then the two RI problems have the same set of optimal learning strategies.
\star is sufficient to identify which menu additions $\boldsymbol{a}^{+} \in \mathbb{R}^{\prime}$ are welfare enhancing, $W\left(\mathcal{A} \cup\left\{\boldsymbol{a}^{+}\right\}, \boldsymbol{\pi}, c\right)>W(\mathcal{A}, \boldsymbol{\pi}, c)$.
Theorem 3: \boldsymbol{a}^{+}adds welfare to $\mathcal{A} \Longleftrightarrow \boldsymbol{a}^{+}$adds welfare to $\{\boldsymbol{\alpha}\}$.
\star can be verified using binary strategies only.
Corollary 5: $\boldsymbol{\alpha}$ is always chosen from each menu $\{\boldsymbol{\alpha}, \boldsymbol{a}\}$ for all $\boldsymbol{a} \in \mathcal{A}$ $\Longleftrightarrow \boldsymbol{\alpha}$ is always chosen from menu $\mathcal{A} \cup\{\boldsymbol{\alpha}\}$.
- does not distort learning under any prior.

Corollary 3: If learning strategy $\langle\mathcal{A}, \boldsymbol{q}\rangle$ is optimal in RI problem $\left(\mathcal{A}, \boldsymbol{\pi}^{\prime}, c\right)$, then it is also optimal in $\left(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}^{\prime}, c\right)$.

Self-selection Property

- Stopping at $\boldsymbol{\alpha}^{\prime}$ is no better than continuing with \mathcal{S}^{\prime}.

Learning-Proof Menu

- Together, ignorance equivalents form the Learning-Proof menu $\overline{\mathcal{A}}$.

Learning-Proof Menu

- The learning-proof menu can also be constructed from the signals.

Learning-Proof Menu

The Learning-Proof Menu is a EU representation of the RI problem: Ability to learn is as if agent has access to $\overline{\mathcal{A}}$ rather than \mathcal{A}.

Learning-Proof Menu

For high costs, $\overline{\mathcal{A}}$ approaches the boundary of the convex hull.

Learning-Proof Menu

For low costs, $\overline{\mathcal{A}}$ approaches the boundary of the hypercube.

Certainty Equivalent vs Ignorance Equivalent

Certainty equivalent:

- Condenses the appeal of a lottery into a scalar.
- Useful for comparisons across lotteries given a fixed belief.

Certainty Equivalent vs Ignorance Equivalent

Certainty equivalent:

- Condenses the appeal of a lottery into a scalar.
- Useful for comparisons across lotteries given a fixed belief.
- 'Too' parsimonious for situations with learning:
- The ignorance equivalent abstracts away from all state dependence.
- An agent who learns seeks to tailor the choice to the realized state.

Certainty Equivalent vs Ignorance Equivalent

Certainty equivalent:

- Condenses the appeal of a lottery into a scalar.
- Useful for comparisons across lotteries given a fixed belief.
- 'Too' parsimonious for situations with learning:
- The ignorance equivalent abstracts away from all state dependence.
- An agent who learns seeks to tailor the choice to the realized state.

Ignorance equivalent:

- Condenses the entire menu \mathcal{A} into one payoff vector $\boldsymbol{\alpha}$.
- Retains enough detail to capture learning opportunities.
- Useful for comparisons across signals, menus, and beliefs.

Economic Relevance

Economic Relevance

The ignorance equivalent and the learning proof menu are not just 'mental shortcuts' for tractability.

Economic Relevance

The ignorance equivalent and the learning proof menu are not just 'mental shortcuts' for tractability. They arise naturally in economic settings where the menu is designed strategically.

Economic Relevance

The ignorance equivalent and the learning proof menu are not just 'mental shortcuts' for tractability. They arise naturally in economic settings where the menu is designed strategically.

Toy example. A risk-neutral RI investor (she) wants to purchase one of the portfolios in \mathcal{A}.

Economic Relevance

The ignorance equivalent and the learning proof menu are not just 'mental shortcuts' for tractability. They arise naturally in economic settings where the menu is designed strategically.

Toy example. A risk-neutral RI investor (she) wants to purchase one of the portfolios in \mathcal{A}.

- Investor learns before investing.

Economic Relevance

The ignorance equivalent and the learning proof menu are not just 'mental shortcuts' for tractability. They arise naturally in economic settings where the menu is designed strategically.

Toy example. A risk-neutral RI investor (she) wants to purchase one of the portfolios in \mathcal{A}.

- Investor learns before investing.
- $\boldsymbol{\alpha}$ describes a portfolio that
- is purchased unconditionally
- makes her no better off.

Economic Relevance

The ignorance equivalent and the learning proof menu are not just 'mental shortcuts' for tractability. They arise naturally in economic settings where the menu is designed strategically.

Toy example. A risk-neutral RI investor (she) wants to purchase one of the portfolios in \mathcal{A}.

An informed fund manager (he) can offer any payouts $\boldsymbol{a} \in \mathbb{R}^{\prime}$.

Economic Relevance

The ignorance equivalent and the learning proof menu are not just 'mental shortcuts' for tractability. They arise naturally in economic settings where the menu is designed strategically.

Toy example. A risk-neutral RI investor (she) wants to purchase one of the portfolios in \mathcal{A}.
An informed fund manager (he) can offer any payouts $\boldsymbol{a} \in \mathbb{R}^{\prime}$.

- α is what he wants to offer!
- Unconditional acceptance.

- Avoids adverse selection.
- Reveals no free information.
- Socially optimal.

Economic Relevance

The ignorance equivalent and the learning proof menu are not just 'mental shortcuts' for tractability. They arise naturally in economic settings where the menu is designed strategically.

Toy example. A risk-neutral RI investor (she) wants to purchase one of the portfolios in \mathcal{A}.

An informed fund manager (he) can offer any payouts $\boldsymbol{a} \in \mathbb{R}^{\prime}$.

- What if prior π is unknown?

Economic Relevance

The ignorance equivalent and the learning proof menu are not just 'mental shortcuts' for tractability. They arise naturally in economic settings where the menu is designed strategically.

Toy example. A risk-neutral RI investor (she) wants to purchase one of the portfolios in \mathcal{A}.

An informed fund manager (he) can offer any payouts $\boldsymbol{a} \in \mathbb{R}^{\prime}$.

- What if prior $\boldsymbol{\pi}$ is unknown?
- The manager can offer $\overline{\mathcal{A}}$.

Optimal Allocation

Task: Allocate a single choice opportunity to one of several RI-agents.

Optimal Allocation

Task: Allocate a single choice opportunity to one of several RI-agents.
Examples: Investment opportunity, technology acquisition opportunity.

Optimal Allocation

Task: Allocate a single choice opportunity to one of several RI-agents.
Examples: Investment opportunity, technology acquisition opportunity.
Question: Can agents achieve the first best surplus through trade?

Optimal Allocation

Task: Allocate a single choice opportunity to one of several RI-agents.
Examples: Investment opportunity, technology acquisition opportunity.
Question: Can agents achieve the first best surplus through trade?
Key complication: Agents can learn and selectively participate only in those contingencies that are most favorable for them.

Optimal Allocation

Task: Allocate a single choice opportunity to one of several RI-agents.
Examples: Investment opportunity, technology acquisition opportunity.
Question: Can agents achieve the first best surplus through trade?
Key complication: Agents can learn and selectively participate only in those contingencies that are most favorable for them.

- If there is a 'most able' agent (investor example), we construct the full set of terms that implement the first best.
- Crémer\&Khalil'92, but with flexible learning

Optimal Allocation

Task: Allocate a single choice opportunity to one of several RI-agents.
Examples: Investment opportunity, technology acquisition opportunity.
Question: Can agents achieve the first best surplus through trade?
Key complication: Agents can learn and selectively participate only in those contingencies that are most favorable for them.

- If there is a 'most able' agent (investor example), we construct the full set of terms that implement the first best.
- Crémer\&Khalil'92, but with flexible learning
- If agents can access different menus and have comparative advantages in learning (technology acquisition example), the first best typically involves learning by multiple agents (teams problem).

Optimal Allocation

Task: Allocate a single choice opportunity to one of several RI-agents.
Examples: Investment opportunity, technology acquisition opportunity.
Question: Can agents achieve the first best surplus through trade?
Key complication: Agents can learn and selectively participate only in those contingencies that are most favorable for them.

- If there is a 'most able' agent (investor example), we construct the full set of terms that implement the first best.
- Crémer\&Khalil'92, but with flexible learning
- If agents can access different menus and have comparative advantages in learning (technology acquisition example), the first best typically involves learning by multiple agents (teams problem).
- We construct a PBE that achieves the first best through repeated trades.

Main Contribution

'Ignorance Equivalent' approach to Rational Inattention

- Simplifies intuition

Main Contribution

'Ignorance Equivalent' approach to Rational Inattention

- Simplifies intuition
- Yields novel insights

Main Contribution

'Ignorance Equivalent' approach to Rational Inattention

- Simplifies intuition
- Yields novel insights
- Economically relevant

Main Contribution

'Ignorance Equivalent' approach to Rational Inattention

- Simplifies intuition
- Yields novel insights
- Economically relevant
- when learning is to be avoided.

Main Contribution

'Ignorance Equivalent' approach to Rational Inattention

- Simplifies intuition
- Yields novel insights
- Economically relevant
- not only when learning is to be avoided.

Appendix

Admissible cost functions

Notation:

- Signal $\mathcal{S}=\langle S, \boldsymbol{q}\rangle$ returns $s \in S$ with probability $q_{i}(s)$ in state i.
- $c(\mathcal{S}, \boldsymbol{\rho}) \in[0, \infty)$ denotes the cost of that signal under belief ρ.

Admissible cost functions

Notation:

- Signal $\mathcal{S}=\langle S, \boldsymbol{q}\rangle$ returns $s \in S$ with probability $q_{i}(s)$ in state i.
- $c(\mathcal{S}, \boldsymbol{\rho}) \in[0, \infty)$ denotes the cost of that signal under belief ρ.

We impose five conditions on c :
(1) The cost function is continuous.

- $\forall S, \forall \hat{c} \geq 0$, the pre-image $\left\{(\boldsymbol{q}, \boldsymbol{\pi}) \in(\Delta S)^{\mathcal{I}} \times \Delta \mathcal{I} \mid c(\langle S, \boldsymbol{q}\rangle, \pi) \gtrless \hat{c}\right\}$ is open.

Admissible cost functions

Notation:

- Signal $\mathcal{S}=\langle S, \boldsymbol{q}\rangle$ returns $s \in S$ with probability $q_{i}(s)$ in state i.
- $c(\mathcal{S}, \rho) \in[0, \infty)$ denotes the cost of that signal under belief ρ.

We impose five conditions on c :
(1) The cost function is continuous.
(2) The agent can freely dispose of information.

- $c(\cdot, \boldsymbol{\pi})$ is non-decreasing in the Blackwell order $\forall \pi$.
- $c(\mathcal{S}, \cdot)$ is weakly concave in the prior $\forall \mathcal{S}$.

Admissible cost functions

Notation:

- Signal $\mathcal{S}=\langle S, \boldsymbol{q}\rangle$ returns $s \in S$ with probability $q_{i}(s)$ in state i.
- $c(\mathcal{S}, \boldsymbol{\rho}) \in[0, \infty)$ denotes the cost of that signal under belief ρ.

We impose five conditions on c :
(1) The cost function is continuous.
(2) The agent can freely dispose of information.
(3) Ties are broken through learning:

- $\forall \boldsymbol{\pi} \in \Delta \mathcal{I}, \forall \boldsymbol{a} \in \mathbb{R}^{\prime}$ with $\boldsymbol{\pi} \cdot \boldsymbol{a}=0$ and $\boldsymbol{\pi} \cdot|\boldsymbol{a}|>0$, $\exists \mathcal{S}=\langle\{0,1\}, \boldsymbol{q}\rangle$ such that $c(\mathcal{S}, \boldsymbol{\pi})<\sum_{i \in \mathcal{I}} \pi_{i} q_{i}(1) a_{i}$.

Admissible cost functions

Notation:

- Signal $\mathcal{S}=\langle S, \boldsymbol{q}\rangle$ returns $s \in S$ with probability $q_{i}(s)$ in state i.
- $c(\mathcal{S}, \boldsymbol{\rho}) \in[0, \infty)$ denotes the cost of that signal under belief ρ.

We impose five conditions on c :
(1) The cost function is continuous.
(2) The agent can freely dispose of information.

3 Ties are broken through learning:
(4) Sequential information acquisition brings no cost savings.

- For any contingency plan
draw $\langle S, \boldsymbol{q}\rangle \longrightarrow$ observe $s \longrightarrow$ update belief to $\pi^{s} \longrightarrow \operatorname{draw}\left\langle S^{s}, q^{s}\right\rangle$, the one-shot implementation

$$
\tilde{\mathcal{S}}=\left\langle S \times \bigcup_{s \in S} S^{s}, \tilde{\boldsymbol{q}}\right\rangle \text { with } \tilde{q}_{i}(s, \tilde{s})=q_{i}(s) q_{i}^{s}(\tilde{s})
$$

is no more costly in expectation,

$$
c(\tilde{\mathcal{S}}, \boldsymbol{\pi}) \leq c(\langle S, \boldsymbol{q}\rangle, \boldsymbol{\pi})+\sum_{s \in S}(\boldsymbol{\pi} \cdot \boldsymbol{q}(s)) c\left(\left\langle S^{s}, q^{s}\right\rangle, \boldsymbol{\pi}^{s}\right) .
$$

Admissible cost functions

Notation:

- Signal $\mathcal{S}=\langle S, \boldsymbol{q}\rangle$ returns $s \in S$ with probability $q_{i}(s)$ in state i.
- $c(\mathcal{S}, \rho) \in[0, \infty)$ denotes the cost of that signal under belief ρ.

We impose five conditions on c :
(1) The cost function is continuous.
(2) The agent can freely dispose of information.
(3) Ties are broken through learning:
(4) Sequential information acquisition brings no cost savings.

* Sequential information acquisition brings no extra costs.
- As above, but with the opposite inequality,

$$
c(\tilde{\mathcal{S}}, \boldsymbol{\pi}) \leq c(\langle S, \boldsymbol{q}\rangle, \boldsymbol{\pi})+\sum_{\boldsymbol{s} \in S}(\boldsymbol{\pi} \cdot \boldsymbol{q}(s)) c\left(\left\langle S^{s}, q^{s}\right\rangle, \boldsymbol{\pi}^{s}\right) .
$$

Optimal Allocation: Setup

Task: Allocate a single opportunity to one RI agent $k \in\{1, \ldots, K\}$.

Optimal Allocation: Setup

Task: Allocate a single opportunity to one RI agent $k \in\{1, \ldots, K\}$.

- Agent k then executes the opportunity by selecting an action $\boldsymbol{a} \in \mathcal{A}^{k}$ and enjoys payoff a_{i}.
- All other agents receive payoff zero.

Optimal Allocation: Setup

Task: Allocate a single opportunity to one RI agent $k \in\{1, \ldots, K\}$.

- Agent k then executes the opportunity by selecting an action $\boldsymbol{a} \in \mathcal{A}^{k}$ and enjoys payoff a_{i}.
- All other agents receive payoff zero.

Game Setup:

- All agents share a common prior π^{0} about the state i.
- Initially, the opportunity rests with agent 1.

It remains transferable as long as it has not been executed.

- Agents can learn at any time
- each according to a (possibly distinct) cost function c^{k},
- regardless of whether they currently own the opportunity,
- without 'executing' the opportunity.

Optimal Allocation: Questions

First-best allocation: Consider a social planner who

- has access to all actions in $\mathcal{A}^{P}=\bigcup_{k=1}^{K} \mathcal{A}^{k}$.

Optimal Allocation: Questions

First-best allocation: Consider a social planner who

- has access to all actions in $\mathcal{A}^{P}=\bigcup_{k=1}^{K} \mathcal{A}^{k}$.
- has access to all learning technologies in $\left\{c^{1}, \ldots, c^{K}\right\}$.

Optimal Allocation: Questions

First-best allocation: Consider a social planner who

- has access to all actions in $\mathcal{A}^{P}=\bigcup_{k=1}^{K} \mathcal{A}^{k}$.
- has access to all learning technologies in $\left\{c^{1}, \ldots, c^{K}\right\}$.
- Bloedel \& Zhong (2020): The planner faces the indirect cost c^{P} that arises from sequential optimization over the direct cost $\min _{k} c^{k}$.

Optimal Allocation: Questions

First-best allocation: Consider a social planner who

- has access to all actions in $\mathcal{A}^{P}=\bigcup_{k=1}^{K} \mathcal{A}^{k}$.
- has access to all learning technologies in $\left\{c^{1}, \ldots, c^{K}\right\}$.
- Bloedel \& Zhong (2020): The planner faces the indirect cost c^{P} that arises from sequential optimization over the direct cost $\min _{k} c^{k}$.
The planner can generate social surplus

$$
\Delta=W\left(\mathcal{A}^{P}, c^{P}, \pi^{0}\right)-W\left(\mathcal{A}^{1}, c^{1}, \pi^{0}\right)
$$

relative to autarky.

Optimal Allocation: Questions

First-best allocation: Consider a social planner who

- has access to all actions in $\mathcal{A}^{P}=\bigcup_{k=1}^{K} \mathcal{A}^{k}$.
- has access to all learning technologies in $\left\{c^{1}, \ldots, c^{K}\right\}$.
- Bloedel \& Zhong (2020): The planner faces the indirect cost c^{P} that arises from sequential optimization over the direct cost $\min _{k} c^{k}$.
The planner can generate social surplus

$$
\Delta=W\left(\mathcal{A}^{P}, c^{P}, \pi^{0}\right)-W\left(\mathcal{A}^{1}, c^{1}, \pi^{0}\right)
$$

relative to autarky.
Question: Can agents achieve this same surplus through trade? How?

Optimal Allocation: Questions

First-best allocation: Consider a social planner who

- has access to all actions in $\mathcal{A}^{P}=\bigcup_{k=1}^{K} \mathcal{A}^{k}$.
- has access to all learning technologies in $\left\{c^{1}, \ldots, c^{K}\right\}$.
- Bloedel \& Zhong (2020): The planner faces the indirect cost c^{P} that arises from sequential optimization over the direct cost $\min _{k} c^{k}$.
The planner can generate social surplus

$$
\Delta=W\left(\mathcal{A}^{P}, c^{P}, \pi^{0}\right)-W\left(\mathcal{A}^{1}, c^{1}, \pi^{0}\right)
$$

relative to autarky.
Question: Can agents achieve this same surplus through trade? How?

Trade: A trade between agents k and ℓ at terms $\boldsymbol{t} \in \mathbb{R}^{\prime}$

- requires the agreement of both agents.
- means that agent k releases the opportunity to agent ℓ, who in turn pays the former t_{i} once the state i realizes.

Optimal Allocation: Example

- Teams. A firm buys a new technology that will affect many stakeholders. Some workers are uniquely qualified to learn about specific characteristics of the technology. Can they achieve the optimal sequence of cost-benefit investigations across all workers?

Comparative Advantage

- If there is no 'most capable' agent, the first-best is typically a contingency plan with learning by multiple agents.

Comparative Advantage

- If there is no 'most capable' agent, the first-best is typically a contingency plan with learning by multiple agents.
- Assumption: Learning produces hard information (Yoder '22)

Comparative Advantage

- If there is no 'most capable' agent, the first-best is typically a contingency plan with learning by multiple agents.
- Assumption: Learning produces hard information (Yoder '22)
- Focus on learning incentives rather than truth-telling.

Comparative Advantage

- If there is no 'most capable' agent, the first-best is typically a contingency plan with learning by multiple agents.
- Assumption: Learning produces hard information (Yoder '22)
- Focus on learning incentives rather than truth-telling.
- Ensures that agents always share a common, public belief.

Comparative Advantage

- If there is no 'most capable' agent, the first-best is typically a contingency plan with learning by multiple agents.
- Assumption: Learning produces hard information (Yoder '22)
- Focus on learning incentives rather than truth-telling.
- Ensures that agents always share a common, public belief.
- Can agents emulate the planner's strategy through trade?

Comparative Advantage

- If there is no 'most capable' agent, the first-best is typically a contingency plan with learning by multiple agents.
- Assumption: Learning produces hard information (Yoder '22)
- Focus on learning incentives rather than truth-telling.
- Ensures that agents always share a common, public belief.
- Can agents emulate the planner's strategy through trade?
- Yes. The following is (part of) a PBE:

Comparative Advantage

- If there is no 'most capable' agent, the first-best is typically a contingency plan with learning by multiple agents.
- Assumption: Learning produces hard information (Yoder '22)
- Focus on learning incentives rather than truth-telling.
- Ensures that agents always share a common, public belief.
- Can agents emulate the planner's strategy through trade?
- Yes. The following is (part of) a PBE:
- At belief $\boldsymbol{\pi}$, all agents are willing to trade at terms $\arg \max _{\boldsymbol{t} \in \overline{\mathcal{A}} 0} \boldsymbol{\pi} \cdot \boldsymbol{t}$, where $\overline{\mathcal{A}}^{0}$ denotes the the learning-proof menu of \mathcal{A}^{P} under c^{P}.

Comparative Advantage

- If there is no 'most capable' agent, the first-best is typically a contingency plan with learning by multiple agents.
- Assumption: Learning produces hard information (Yoder '22)
- Focus on learning incentives rather than truth-telling.
- Ensures that agents always share a common, public belief.
- Can agents emulate the planner's strategy through trade?
- Yes. The following is (part of) a PBE:
- At belief $\boldsymbol{\pi}$, all agents are willing to trade at terms $\arg \max _{\boldsymbol{t} \in \overline{\mathcal{A}} 0} \boldsymbol{\pi} \cdot \boldsymbol{t}$, where $\overline{\mathcal{A}}^{0}$ denotes the the learning-proof menu of \mathcal{A}^{P} under c^{P}.
- All agents are willing to learn or execute if and only if it is socially efficient for them to do so.

Comparative Advantage: Visual

Payoff possibilities for agent 1

Comparative Advantage: Visual

Payoff possibilities for agent 2

Comparative Advantage: Visual

Payoff possibilities for social planner

Absolute Advantage

- Consider first the situation where agent K has an absolute advantage over everyone else, $\mathcal{A}^{K}=\mathcal{A}^{P}$ and $c^{K}=c^{P}$.

Absolute Advantage

- Consider first the situation where agent K has an absolute advantage over everyone else, $\mathcal{A}^{K}=\mathcal{A}^{P}$ and $c^{K}=c^{P}$.
- Unconditional trade is socially optimal.

Absolute Advantage

- Consider first the situation where agent K has an absolute advantage over everyone else, $\mathcal{A}^{K}=\mathcal{A}^{P}$ and $c^{K}=c^{P}$.
- Unconditional trade is socially optimal.
- Are there terms $\boldsymbol{t} \in \mathbb{R}^{I}$ that can avoid pre-trade learning?

Absolute Advantage

- Consider first the situation where agent K has an absolute advantage over everyone else, $\mathcal{A}^{K}=\mathcal{A}^{P}$ and $c^{K}=c^{P}$.
- Unconditional trade is socially optimal.
- Are there terms $\boldsymbol{t} \in \mathbb{R}^{I}$ that can avoid pre-trade learning?
- Agent 1:
- Possibilities: \boldsymbol{t} (accept trade) or \mathcal{A}^{1} (execute opportunity).

Absolute Advantage

- Consider first the situation where agent K has an absolute advantage over everyone else, $\mathcal{A}^{K}=\mathcal{A}^{P}$ and $c^{K}=c^{P}$.
- Unconditional trade is socially optimal.
- Are there terms $\boldsymbol{t} \in \mathbb{R}^{I}$ that can avoid pre-trade learning?
- Agent 1:
- Possibilities: \boldsymbol{t} (accept trade) or \mathcal{A}^{1} (execute opportunity).
- Corollary 5: \boldsymbol{t} is always chosen from menu $\mathcal{A}^{1} \cup\{\boldsymbol{t}\} \Longleftrightarrow \boldsymbol{t}$ is always chosen from each menu $\{\boldsymbol{t}, \boldsymbol{a}\}$ for all $\boldsymbol{a} \in \mathcal{A}^{1}$.

Absolute Advantage

- Consider first the situation where agent K has an absolute advantage over everyone else, $\mathcal{A}^{K}=\mathcal{A}^{P}$ and $c^{K}=c^{P}$.
- Unconditional trade is socially optimal.
- Are there terms $\boldsymbol{t} \in \mathbb{R}^{I}$ that can avoid pre-trade learning?
- Agent 1:
- Possibilities: \boldsymbol{t} (accept trade) or \mathcal{A}^{1} (execute opportunity).
- Corollary 5: \boldsymbol{t} is always chosen from menu $\mathcal{A}^{1} \cup\{\boldsymbol{t}\} \Longleftrightarrow \boldsymbol{t}$ is always chosen from each menu $\{\boldsymbol{t}, \boldsymbol{a}\}$ for all $\boldsymbol{a} \in \mathcal{A}^{1}$.
- Each action $\boldsymbol{a} \in \mathcal{A}^{1}$ imposes a lower bound on \boldsymbol{t}.

Absolute Advantage

- Consider first the situation where agent K has an absolute advantage over everyone else, $\mathcal{A}^{K}=\mathcal{A}^{P}$ and $c^{K}=c^{P}$.
- Unconditional trade is socially optimal.
- Are there terms $\boldsymbol{t} \in \mathbb{R}^{\prime}$ that can avoid pre-trade learning?
- Agent 1:
- Possibilities: \boldsymbol{t} (accept trade) or \mathcal{A}^{1} (execute opportunity).
- Corollary 5: \boldsymbol{t} is always chosen from menu $\mathcal{A}^{1} \cup\{\boldsymbol{t}\} \Longleftrightarrow \boldsymbol{t}$ is always chosen from each menu $\{\boldsymbol{t}, \boldsymbol{a}\}$ for all $\boldsymbol{a} \in \mathcal{A}^{1}$.
- Each action $\boldsymbol{a} \in \mathcal{A}^{1}$ imposes a lower bound on \boldsymbol{t}.
- Agent K:
- Possibilities: $\mathcal{A}^{K}-\boldsymbol{t}$ (accept trade and execute) or $\mathbf{0}$ (decline trade).

Absolute Advantage

- Consider first the situation where agent K has an absolute advantage over everyone else, $\mathcal{A}^{K}=\mathcal{A}^{P}$ and $c^{K}=c^{P}$.
- Unconditional trade is socially optimal.
- Are there terms $\boldsymbol{t} \in \mathbb{R}^{\prime}$ that can avoid pre-trade learning?
- Agent 1:
- Possibilities: \boldsymbol{t} (accept trade) or \mathcal{A}^{1} (execute opportunity).
- Corollary 5: \boldsymbol{t} is always chosen from menu $\mathcal{A}^{1} \cup\{\boldsymbol{t}\} \Longleftrightarrow \boldsymbol{t}$ is always chosen from each menu $\{\boldsymbol{t}, \boldsymbol{a}\}$ for all $\boldsymbol{a} \in \mathcal{A}^{1}$.
- Each action $\boldsymbol{a} \in \mathcal{A}^{1}$ imposes a lower bound on \boldsymbol{t}.
- Agent K:
- Possibilities: $\mathcal{A}^{K}-\boldsymbol{t}$ (accept trade and execute) or $\mathbf{0}$ (decline trade).
- Shift payoffs: \mathcal{A}^{K} (accept) or \boldsymbol{t} (decline).

Absolute Advantage

- Consider first the situation where agent K has an absolute advantage over everyone else, $\mathcal{A}^{K}=\mathcal{A}^{P}$ and $c^{K}=c^{P}$.
- Unconditional trade is socially optimal.
- Are there terms $\boldsymbol{t} \in \mathbb{R}^{I}$ that can avoid pre-trade learning?
- Agent 1:
- Possibilities: \boldsymbol{t} (accept trade) or \mathcal{A}^{1} (execute opportunity).
- Corollary 5: \boldsymbol{t} is always chosen from menu $\mathcal{A}^{1} \cup\{\boldsymbol{t}\} \Longleftrightarrow \boldsymbol{t}$ is always chosen from each menu $\{\boldsymbol{t}, \boldsymbol{a}\}$ for all $\boldsymbol{a} \in \mathcal{A}^{1}$.
- Each action $\boldsymbol{a} \in \mathcal{A}^{1}$ imposes a lower bound on \boldsymbol{t}.
- Agent K:
- Possibilities: $\mathcal{A}^{K}-\boldsymbol{t}$ (accept trade and execute) or $\mathbf{0}$ (decline trade).
- Shift payoffs: \mathcal{A}^{K} (accept) or \boldsymbol{t} (decline).
- Never decline trade $\Longleftrightarrow \boldsymbol{t}$ does not add welfare to \mathcal{A}^{K}.

Absolute Advantage

- Consider first the situation where agent K has an absolute advantage over everyone else, $\mathcal{A}^{K}=\mathcal{A}^{P}$ and $c^{K}=c^{P}$.
- Unconditional trade is socially optimal.
- Are there terms $\boldsymbol{t} \in \mathbb{R}^{\prime}$ that can avoid pre-trade learning?
- Agent 1:
- Possibilities: \boldsymbol{t} (accept trade) or \mathcal{A}^{1} (execute opportunity).
- Corollary 5: \boldsymbol{t} is always chosen from menu $\mathcal{A}^{1} \cup\{\boldsymbol{t}\} \Longleftrightarrow \boldsymbol{t}$ is always chosen from each menu $\{\boldsymbol{t}, \boldsymbol{a}\}$ for all $\boldsymbol{a} \in \mathcal{A}^{1}$.
- Each action $\boldsymbol{a} \in \mathcal{A}^{1}$ imposes a lower bound on \boldsymbol{t}.
- Agent K:
- Possibilities: $\mathcal{A}^{K}-\boldsymbol{t}$ (accept trade and execute) or $\mathbf{0}$ (decline trade).
- Shift payoffs: \mathcal{A}^{K} (accept) or \boldsymbol{t} (decline).
- Never decline trade $\Longleftrightarrow \boldsymbol{t}$ does not add welfare to \mathcal{A}^{K}.
- Theorem 3: \boldsymbol{t} adds welfare to $\mathcal{A}^{K} \Longleftrightarrow \boldsymbol{t}$ adds welfare to $\left\{\boldsymbol{\alpha}^{K}\right\}$

Absolute Advantage

- Consider first the situation where agent K has an absolute advantage over everyone else, $\mathcal{A}^{K}=\mathcal{A}^{P}$ and $c^{K}=c^{P}$.
- Unconditional trade is socially optimal.
- Are there terms $\boldsymbol{t} \in \mathbb{R}^{\prime}$ that can avoid pre-trade learning?
- Agent 1:
- Possibilities: \boldsymbol{t} (accept trade) or \mathcal{A}^{1} (execute opportunity).
- Corollary 5: \boldsymbol{t} is always chosen from menu $\mathcal{A}^{1} \cup\{\boldsymbol{t}\} \Longleftrightarrow \boldsymbol{t}$ is always chosen from each menu $\{\boldsymbol{t}, \boldsymbol{a}\}$ for all $\boldsymbol{a} \in \mathcal{A}^{1}$.
- Each action $\boldsymbol{a} \in \mathcal{A}^{1}$ imposes a lower bound on \boldsymbol{t}.
- Agent K:
- Possibilities: $\mathcal{A}^{K}-\boldsymbol{t}$ (accept trade and execute) or $\mathbf{0}$ (decline trade).
- Shift payoffs: \mathcal{A}^{K} (accept) or \boldsymbol{t} (decline).
- Never decline trade $\Longleftrightarrow \boldsymbol{t}$ does not add welfare to \mathcal{A}^{K}.
- Theorem 3: \boldsymbol{t} adds welfare to $\mathcal{A}^{K} \Longleftrightarrow \boldsymbol{t}$ adds welfare to $\left\{\boldsymbol{\alpha}^{K}\right\}$
- Agent K's ignorance equivalent $\boldsymbol{\alpha}^{K}$ imposes an upper bound on \boldsymbol{t}.

Absolute Advantage: Visuals

Absolute Advantage: Visuals

Absolute Advantage: Visuals

Absolute Advantage: Visuals

- Agent 1's favorite terms are $\boldsymbol{\alpha}^{K}$, Agent K's favorite terms are $\boldsymbol{\alpha}^{1}$.

Absolute Advantage: Visuals

- Agent 1's favorite terms are $\boldsymbol{\alpha}^{K}$, Agent K 's favorite terms are $\boldsymbol{\alpha}^{1}$.
- State-independent transfers cannot achieve the first-best.

Absolute Advantage: Visuals

- Agent 1's favorite terms are $\boldsymbol{\alpha}^{K}$, Agent K 's favorite terms are $\boldsymbol{\alpha}^{1}$.
- State-independent transfers can achieve the first-best.

Absolute Advantage: Visuals

- Agent 1's favorite terms are $\boldsymbol{\alpha}^{K}$, Agent K 's favorite terms are $\boldsymbol{\alpha}^{1}$.
- State-independent transfers cannot achieve the first-best.
- Diversity of options for Agent K does not make trade easier or harder.

Absolute Advantage: Visuals

- Agent 1's favorite terms are $\boldsymbol{\alpha}^{K}$, Agent K 's favorite terms are $\boldsymbol{\alpha}^{1}$.
- State-independent transfers cannot achieve the first-best.
- Diversity of options for Agent 1 makes trade harder.

RI patterns of behavior

- Agents consider only actions in a (small) consideration set. Caplin-Dean-Leahy (REStud'18), Jung-Kim-Matějka-Sims (REStud'19)

RI patterns of behavior

- Agents consider only actions in a (small) consideration set.

Caplin-Dean-Leahy (REStud'18), Jung-Kim-Matějka-Sims (REStud'19)

- Learning generates payoff complementarities between actions.
- Positive weight on (ex-ante) unattractive actions.

Caplin-Dean-Leahy (REStud'18)

RI patterns of behavior

- Agents consider only actions in a (small) consideration set.

Caplin-Dean-Leahy (REStud'18), Jung-Kim-Matějka-Sims (REStud'19)

- Learning generates payoff complementarities between actions.
- Positive weight on (ex-ante) unattractive actions.

Caplin-Dean-Leahy (REStud'18)

- Adding a new action may 'activate' a previously unchosen action.

Matëjka \& McKay (AER'15)

RI patterns of behavior

- Agents consider only actions in a (small) consideration set.

Caplin-Dean-Leahy (REStud'18), Jung-Kim-Matějka-Sims (REStud'19)

- Learning generates payoff complementarities between actions.
- Positive weight on (ex-ante) unattractive actions.

Caplin-Dean-Leahy (REStud'18)

- Adding a new action may 'activate' a previously unchosen action.

Matëjka \& McKay (AER'15)

- Applications: Sticky prices, co-movement, under-diversification. Mackowiak\&Wiederholdt (AER'09,REStud'15), Matějka (REStud'16), Mondria (JET'10),

Peng\&Xiong (JFE'06), Van Nieuwerburgh\&Veldkamp (JFE'09,REStud'10), ...

RI patterns of behavior

- Agents consider only actions in a (small) consideration set.

Caplin-Dean-Leahy (REStud'18), Jung-Kim-Matějka-Sims (REStud'19)

- Learning generates payoff complementarities between actions.
- Positive weight on (ex-ante) unattractive actions.

Caplin-Dean-Leahy (REStud'18)

- Adding a new action may 'activate' a previously unchosen action.

Matëjka \& McKay (AER'15)

- Applications: Sticky prices, co-movement, under-diversification. Mackowiak\&Wiederholdt (AER'09,REStud'15), Matëjka (REStud'16), Mondria (JET'10), Peng\&Xiong (JFE'06), Van Nieuwerburgh\& Veldkamp (JFE'09, REStud'10), ...
- Limited integration of Rational Inattention in multiplayer settings.

RI patterns of behavior

- Agents consider only actions in a (small) consideration set.

Caplin-Dean-Leahy (REStud'18), Jung-Kim-Matějka-Sims (REStud'19)

- Learning generates payoff complementarities between actions.
- Positive weight on (ex-ante) unattractive actions.

Caplin-Dean-Leahy (REStud'18)

- Adding a new action may 'activate' a previously unchosen action.

Matëjka \& McKay (AER'15)

- Applications: Sticky prices, co-movement, under-diversification. Mackowiak\&Wiederholdt (AER'09,REStud'15), Matějka (REStud'16), Mondria (JET'10), Peng\&Xiong (JFE'06), Van Nieuwerburgh\&Veldkamp (JFE'09,REStud'10), ...
- Limited integration of Rational Inattention in multiplayer settings.
- Yes/no decisions become "sometimes".
- One player's "sometimes" yields information to other players.

RI patterns of behavior

- Agents consider only actions in a (small) consideration set.

Caplin-Dean-Leahy (REStud'18), Jung-Kim-Matějka-Sims (REStud'19)

- Learning generates payoff complementarities between actions.
- Positive weight on (ex-ante) unattractive actions.

Caplin-Dean-Leahy (REStud'18)

- Adding a new action may 'activate' a previously unchosen action.

Matějka \& McKay (AER'15)

- Applications: Sticky prices, co-movement, under-diversification.

Mackowiak\&Wiederholdt (AER'09,REStud'15), Matějka (REStud'16), Mondria (JET'10),
Peng\&Xiong (JFE'06), Van Nieuwerburgh\&Veldkamp (JFE'09,REStud'10), ...

- Limited integration of Rational Inattention in multiplayer settings.
- Yes/no decisions become "sometimes".
- One player's "sometimes" yields information to other players.
- Yet, even crude learning ability influences contract terms, security design, information design, location choice, ...

Crémer\&Khalil (AER'92), Yoder (JPE'22), Yang (REStud'20),
Gentzkow\&Kamenica (AER'14), Matyskova\&Montes ('21), Porcher ('20)

Anchor Actions

Theorem

Anchors $\boldsymbol{a} \in \mathcal{A} \cap \overline{\mathcal{A}}$ form a 'latent' consideration set:

Anchor Actions

Theorem

Anchors $\boldsymbol{a} \in \mathcal{A} \cap \overline{\mathcal{A}}$ form a 'latent' consideration set:

- A subset of them is chosen at any given prior $\boldsymbol{\pi}$.

Anchor Actions

Theorem

Anchors $\boldsymbol{a} \in \mathcal{A} \cap \overline{\mathcal{A}}$ form a 'latent' consideration set:

- A subset of them is chosen at any given prior $\boldsymbol{\pi}$.
- Changes in π can activate any of them.

Anchor Actions

Theorem

Anchors $\mathbf{a} \in \mathcal{A} \cap \overline{\mathcal{A}}$ form a 'latent' consideration set:

- A subset of them is chosen at any given prior π.
- Changes in π can activate any of them.
- Menu expansion can activate any of them for a fixed prior $\boldsymbol{\pi}$.

Menu Expansion 夫

Consider an RI problem $(\mathcal{A}, \boldsymbol{\pi}, c)$.
Question: What happens if we add action $\boldsymbol{a}^{+} \in \mathbb{R}^{\prime}$ to the menu \mathcal{A} ?

[^0]
Menu Expansion 夫

Consider an RI problem $(\mathcal{A}, \boldsymbol{\pi}, c)$.
Question: What happens if we add action $\boldsymbol{a}^{+} \in \mathbb{R}^{\prime}$ to the menu \mathcal{A} ?

Theorem (Welfare consequences of menu expansion)

- \boldsymbol{a}^{+}adds welfare to $\mathcal{A} \Longleftrightarrow \boldsymbol{a}^{+}$adds welfare to $\{\boldsymbol{\alpha}\}$.

[^1]
Menu Expansion 夫

Consider an RI problem $(\mathcal{A}, \boldsymbol{\pi}, c)$.
Question: What happens if we add action $\boldsymbol{a}^{+} \in \mathbb{R}^{\prime}$ to the menu \mathcal{A} ?

Theorem (Welfare consequences of menu expansion)

- \mathbf{a}^{+}adds welfare to $\mathcal{A} \Longleftrightarrow \boldsymbol{a}^{+}$adds welfare to $\{\boldsymbol{\alpha}\}$.
- \mathbf{a}^{+}adds welfare to some $\mathcal{A}^{\prime} \subseteq \mathcal{A} \Longleftrightarrow \boldsymbol{a}^{+} \notin \overline{\mathcal{A}}$.

[^2]
Menu Expansion 夫

Consider an RI problem $(\mathcal{A}, \boldsymbol{\pi}, c)$.
Question: What happens if we add action $\boldsymbol{a}^{+} \in \mathbb{R}^{\prime}$ to the menu \mathcal{A} ?

Theorem (Welfare consequences of menu expansion)

- \boldsymbol{a}^{+}adds welfare to $\mathcal{A} \Longleftrightarrow \boldsymbol{a}^{+}$adds welfare to $\{\boldsymbol{\alpha}\}$.
- \mathbf{a}^{+}adds welfare to some $\mathcal{A}^{\prime} \subseteq \mathcal{A} \Longleftrightarrow \boldsymbol{a}^{+} \notin \overline{\mathcal{A}}$.
... and the 'right' complement \mathbf{a}^{+}can activate any anchor action.

Theorem (Activation of anchor actions)

For any anchor action $\mathbf{a} \in \mathcal{A} \cap \overline{\mathcal{A}}$, there exists $\mathbf{a}^{+} \in \mathbb{R}^{\prime}$ such that

$$
p(\boldsymbol{a})>0 \text { in RI problem }\left(\mathcal{A} \cup \mathbf{a}^{+}, \boldsymbol{\pi}, c\right) .
$$

[^3]
Proof Sketch: Uniqueness

- Suppose there are two ignorance equivalents $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}$.

Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$.

Proof Sketch: Uniqueness

- Suppose there are two ignorance equivalents $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}$.
- Both achieve expected utility $\boldsymbol{\pi} \cdot \boldsymbol{\alpha}^{k} \equiv W(\mathcal{A}, \boldsymbol{\pi}, c)=\boldsymbol{\pi} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\pi})$.

Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, \boldsymbol{c})=W(\mathcal{A}, \boldsymbol{\pi}, \boldsymbol{c})=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \pi, c)$.

Proof Sketch: Uniqueness

- Suppose there are two ignorance equivalents $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}$.
- Both achieve expected utility $\boldsymbol{\pi} \cdot \boldsymbol{\alpha}^{k} \equiv W(\mathcal{A}, \boldsymbol{\pi}, c)=\boldsymbol{\pi} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\pi})$.
- Since $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}, \exists$ prior $\boldsymbol{\rho}$ such that $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{1}=\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{2}+\Delta$ with $\Delta>0$.

[^4]
Proof Sketch: Uniqueness

- Suppose there are two ignorance equivalents $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}$.
- Both achieve expected utility $\boldsymbol{\pi} \cdot \boldsymbol{\alpha}^{k} \equiv W(\mathcal{A}, \boldsymbol{\pi}, c)=\boldsymbol{\pi} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\pi})$.
- Since $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}, \exists$ prior $\boldsymbol{\rho}$ such that $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{1}=\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{2}+\Delta$ with $\Delta>0$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.

Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$.

Proof Sketch: Uniqueness

- Suppose there are two ignorance equivalents $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}$.
- Both achieve expected utility $\boldsymbol{\pi} \cdot \boldsymbol{\alpha}^{k} \equiv W(\mathcal{A}, \boldsymbol{\pi}, c)=\boldsymbol{\pi} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\pi})$.
- Since $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}, \exists$ prior $\boldsymbol{\rho}$ such that $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{1}=\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{2}+\Delta$ with $\Delta>0$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.

Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$.

Proof Sketch: Uniqueness

- Suppose there are two ignorance equivalents $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}$.
- Both achieve expected utility $\boldsymbol{\pi} \cdot \boldsymbol{\alpha}^{k} \equiv W(\mathcal{A}, \boldsymbol{\pi}, c)=\boldsymbol{\pi} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\pi})$.
- Since $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}, \exists$ prior $\boldsymbol{\rho}$ such that $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{1}=\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{2}+\Delta$ with $\Delta>0$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.

- By 3, total welfare is $>2 W(\mathcal{A}, \pi, c)$ for small ε.

Proof Sketch: Uniqueness

- Suppose there are two ignorance equivalents $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}$.
- Both achieve expected utility $\boldsymbol{\pi} \cdot \boldsymbol{\alpha}^{k} \equiv W(\mathcal{A}, \boldsymbol{\pi}, c)=\boldsymbol{\pi} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\pi})$.
- Since $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}, \exists$ prior $\boldsymbol{\rho}$ such that $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{1}=\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{2}+\Delta$ with $\Delta>0$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.

- By 3 , total welfare is $>2 W(\mathcal{A}, \pi, c)$ for small ε.

Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$.

Proof Sketch: Uniqueness

- Suppose there are two ignorance equivalents $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}$.
- Both achieve expected utility $\boldsymbol{\pi} \cdot \boldsymbol{\alpha}^{k} \equiv W(\mathcal{A}, \boldsymbol{\pi}, c)=\boldsymbol{\pi} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\pi})$.
- Since $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}, \exists$ prior $\boldsymbol{\rho}$ such that $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{1}=\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{2}+\Delta$ with $\Delta>0$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.

- By 3, total welfare is $>2 W(\mathcal{A}, \pi, c)$ for small ε.
- Now switch contingency plans without affecting total welfare.

Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$.

Proof Sketch: Uniqueness

- Suppose there are two ignorance equivalents $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}$.
- Both achieve expected utility $\boldsymbol{\pi} \cdot \boldsymbol{\alpha}^{k} \equiv W(\mathcal{A}, \boldsymbol{\pi}, c)=\boldsymbol{\pi} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\pi})$.
- Since $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}, \exists$ prior ρ such that $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{1}=\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{2}+\Delta$ with $\Delta>0$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.

- By 3, total welfare is $>2 W(\mathcal{A}, \pi, c)$ for small ε.
- Now switch contingency plans without affecting total welfare.

Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$.

Proof Sketch: Uniqueness

- Suppose there are two ignorance equivalents $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}$.
- Both achieve expected utility $\boldsymbol{\pi} \cdot \boldsymbol{\alpha}^{k} \equiv W(\mathcal{A}, \boldsymbol{\pi}, c)=\boldsymbol{\pi} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\pi})$.
- Since $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}, \exists$ prior ρ such that $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{1}=\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{2}+\Delta$ with $\Delta>0$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.
feasible in $\left(\mathcal{A} \cup\left\{\alpha^{1}\right\}, \pi, c\right)$

- By 3, total welfare is $>2 W(\mathcal{A}, \pi, c)$ for small ε.
- Now switch contingency plans without affecting total welfare.

[^5]
Proof Sketch: Uniqueness

- Suppose there are two ignorance equivalents $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}$.
- Both achieve expected utility $\boldsymbol{\pi} \cdot \boldsymbol{\alpha}^{k} \equiv W(\mathcal{A}, \boldsymbol{\pi}, c)=\boldsymbol{\pi} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\pi})$.
- Since $\boldsymbol{\alpha}^{1} \neq \boldsymbol{\alpha}^{2}, \exists$ prior $\boldsymbol{\rho}$ such that $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{1}=\boldsymbol{\rho} \cdot \boldsymbol{\alpha}^{2}+\Delta$ with $\Delta>0$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.
feasible in $\left(\mathcal{A} \cup\left\{\boldsymbol{\alpha}^{1}\right\}, \boldsymbol{\pi}, c\right)$

- By 3, total welfare is $>2 W(\mathcal{A}, \pi, c)$ for small ε.
- Now switch contingency plans without affecting total welfare.
- Hence $W\left(\mathcal{A} \cup\left\{\boldsymbol{\alpha}^{k}\right\}, \pi, c\right)>W(\mathcal{A}, \boldsymbol{\pi}, c)$ for at least one k.

Ignorance Equivalence: $W(\{\alpha\}, \pi, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$

Proof Sketch: Necessity of Dominance

- Suppose $\boldsymbol{\alpha}$ beats \mathcal{S} under some posterior, $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}=\boldsymbol{\rho} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\rho})+\Delta$ with $\Delta>0$.
$\overline{\text { Dominance: } \alpha \precsim \mathcal{S} \Longleftrightarrow \rho \cdot \alpha \leq \rho \cdot a^{\mathcal{S}}-c(\mathcal{S}, \rho)} \forall \rho$.
Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$

Proof Sketch: Necessity of Dominance

- Suppose $\boldsymbol{\alpha}$ beats \mathcal{S} under some posterior, $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}=\boldsymbol{\rho} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\rho})+\Delta$ with $\Delta>0$.
- By $\mathbb{Z}^{2}, \boldsymbol{\alpha}$ beats \mathcal{S} by at least $\varepsilon \Delta$ at $\boldsymbol{\pi}_{+}^{\varepsilon}=(1-\varepsilon) \boldsymbol{\pi}+\varepsilon \boldsymbol{\rho}$.
$\overline{\text { Dominance: } \alpha \precsim \mathcal{S} \Longleftrightarrow \rho \cdot \alpha \leq \rho \cdot a^{\mathcal{S}}-c(\mathcal{S}, \rho)} \forall \rho$.
Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$

Proof Sketch: Necessity of Dominance

- Suppose $\boldsymbol{\alpha}$ beats \mathcal{S} under some posterior, $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}=\boldsymbol{\rho} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\rho})+\Delta$ with $\Delta>0$.
- By $\mathbb{2}, \boldsymbol{\alpha}$ beats \mathcal{S} by at least $\varepsilon \Delta$ at $\boldsymbol{\pi}_{+}^{\varepsilon}=(1-\varepsilon) \boldsymbol{\pi}+\varepsilon \boldsymbol{\rho}$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.

$\overline{\text { Dominance: } \alpha \precsim \mathcal{S} \Longleftrightarrow \rho \cdot \alpha \leq \rho \cdot a^{\mathcal{S}}-c(\mathcal{S}, \rho)} \forall \rho$.
Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$

Proof Sketch: Necessity of Dominance

- Suppose $\boldsymbol{\alpha}$ beats \mathcal{S} under some posterior, $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}=\boldsymbol{\rho} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\rho})+\Delta$ with $\Delta>0$.
- By $\left(2, \boldsymbol{\alpha}\right.$ beats \mathcal{S} by at least $\varepsilon \Delta$ at $\boldsymbol{\pi}_{+}^{\varepsilon}=(1-\varepsilon) \boldsymbol{\pi}+\varepsilon \boldsymbol{\rho}$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.

- Implement α when advantageous.
$\overline{\text { Dominance: } \alpha \precsim \mathcal{S} \Longleftrightarrow \rho \cdot \alpha \leq \rho \cdot a^{\mathcal{S}}-c(\mathcal{S}, \rho)} \forall \rho$.
Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$

Proof Sketch: Necessity of Dominance

- Suppose $\boldsymbol{\alpha}$ beats \mathcal{S} under some posterior, $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}=\boldsymbol{\rho} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\rho})+\Delta$ with $\Delta>0$.
- By $\left(2, \boldsymbol{\alpha}\right.$ beats \mathcal{S} by at least $\varepsilon \Delta$ at $\boldsymbol{\pi}_{+}^{\varepsilon}=(1-\varepsilon) \boldsymbol{\pi}+\varepsilon \boldsymbol{\rho}$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.

- Implement α when advantageous.
$\overline{\text { Dominance: } \alpha \precsim \mathcal{S} \Longleftrightarrow \rho \cdot \alpha \leq \rho \cdot a^{\mathcal{S}}-c(\mathcal{S}, \rho)} \forall \rho$.
Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$

Proof Sketch: Necessity of Dominance

- Suppose $\boldsymbol{\alpha}$ beats \mathcal{S} under some posterior, $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}=\boldsymbol{\rho} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\rho})+\Delta$ with $\Delta>0$.
- By $\mathbb{2}, \boldsymbol{\alpha}$ beats \mathcal{S} by at least $\varepsilon \Delta$ at $\boldsymbol{\pi}_{+}^{\varepsilon}=(1-\varepsilon) \boldsymbol{\pi}+\varepsilon \boldsymbol{\rho}$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.

- Implement $\boldsymbol{\alpha}$ when advantageous.
- By (3) welfare is $>W(\mathcal{A}, \pi, c)$ for small ε.

Dominance: $\alpha \precsim \mathcal{S} \Longleftrightarrow \rho \cdot \alpha \leq \rho \cdot a^{\mathcal{S}}-c(\mathcal{S}, \rho) \forall \rho$.
Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$

Proof Sketch: Necessity of Dominance

- Suppose $\boldsymbol{\alpha}$ beats \mathcal{S} under some posterior, $\boldsymbol{\rho} \cdot \boldsymbol{\alpha}=\boldsymbol{\rho} \cdot \boldsymbol{a}^{\mathcal{S}}-c(\mathcal{S}, \boldsymbol{\rho})+\Delta$ with $\Delta>0$.
- By $\left(2, \boldsymbol{\alpha}\right.$ beats \mathcal{S} by at least $\varepsilon \Delta$ at $\boldsymbol{\pi}_{+}^{\varepsilon}=(1-\varepsilon) \boldsymbol{\pi}+\varepsilon \boldsymbol{\rho}$.
- Pick a signal \mathcal{S}^{0} that updates beliefs towards or away from ρ with equal probability.
feasible in $(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \pi, c)$

- Implement $\boldsymbol{\alpha}$ when advantageous.
- By (3) welfare is $>W(\mathcal{A}, \pi, c)$ for small ε.
$\overline{\text { Dominance: } \alpha \precsim \mathcal{S} \Longleftrightarrow \rho \cdot \alpha \leq \rho \cdot a^{\mathcal{S}}-c(\mathcal{S}, \rho)} \forall \rho$.
Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \pi, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$

Unverifiable states (2)

For a particular transfer \boldsymbol{t},

Unverifiable states (2)

For a particular transfer \boldsymbol{t},

The learning-proof menu $\overline{\mathcal{A}^{K} \cup\{\boldsymbol{t}\}}$ determines under which posterior $\boldsymbol{\rho}^{K}$ Agent K accepts.

Unverifiable states (2)

For a particular transfer \boldsymbol{t},

Given Agent K 's strategy, offer \boldsymbol{t} is payoff-equivalent to certain trade at \boldsymbol{t}^{1}.

Unverifiable states (2)

For a particular transfer \boldsymbol{t},

The learning-proof menu $\overline{\mathcal{A}^{1} \cup\left\{\boldsymbol{t}^{1}\right\}}$ determines under which posterior $\boldsymbol{\rho}^{1}$ Agent 1 offers.

Unverifiable states (2)

For a particular transfer \boldsymbol{t},

The ignorance equivalent of $\left(\mathcal{A}^{1} \cup\left\{\boldsymbol{t}^{1}\right\}, \boldsymbol{\pi}, c^{1}\right)$ determines Agent 1's payoff.

Unverifiable states (3)

Using this construction, we can determine Agent 1's payoff for any constant transfer,

where

- \underline{t} maximal transfer that Agent K accepts unconditionally,
- \bar{t} maximal transfer that Agent K rejects unconditionally,
- \boldsymbol{t} the one plotted previously, apparently optimal.

Unverifiable states (solution)

Finding: The equilibrium TIOLI offer from Agent 1 involves partial trade and pre-trade learning by both.

[^0]: \star Results apply if the agent is indifferent across all sequential learning strategies (e.g. UPS costs).

[^1]: * Results apply if the agent is indifferent across all sequential learning strategies (e.g. UPS costs).

[^2]: * Results apply if the agent is indifferent across all sequential learning strategies (e.g. UPS costs).

[^3]: * Results apply if the agent is indifferent across all sequential learning strategies (e.g. UPS costs).

[^4]: Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$.

[^5]: Ignorance Equivalence: $W(\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)=W(\mathcal{A}, \boldsymbol{\pi}, c)=W(\mathcal{A} \cup\{\boldsymbol{\alpha}\}, \boldsymbol{\pi}, c)$.

