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Abstract

When using data, often an analyst only has access to proxies or measure-

ments of the true variables of interest. I propose a framework that models

economic decision makers as ‘flawed statisticians’ who assume potentially

noisy proxy variables are perfectly measured. Due to feedback from the

decision maker’s choices to the distribution over variables, a notion of equi-

librium is required to close the model. I illustrate the concept with appli-

cations to policing/crime and market entry. In these examples, we see that

very small imperfections in the proxy variable can lead to large distortions

in beliefs. I characterize all strategies that can arise as equilibria when mea-

surement is arbitrarily close to perfect.
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1 Introduction

The analysis of quantitative data in order to inform decisions is increasingly im-

portant to organizations and firms. For the case of private companies, McAfee

et al. (2012) argue that improvements in the ability of managers to measure, store

and collect information about their business can result in large performance gains.

However, data used in economic decision making is often an imperfect measure-

ment or proxy of the underlying variables.

Examples of proxy variables that play an important role in driving allocation of

economic resources abound. GDP per capita guides entrepreneurs and traders in

assessing the relative economic vitality of countries in which they are considering

investment, and is used by governments in determining important policy decisions.

Yet as a proxy for living standards it has come in for criticism1. The use of citation

metrics is another case. Governments and academic institutions find these metrics

valuable for assessing academic impact, but there is debate around the extent to

which they are truly good measures2.

In this paper I propose a framework for modelling decision makers who naively

use possibly mismeasured proxies. The decision makers (henceforth DMs) in this

framework are assumed to form expectations about the impact of their actions

from the proxy variables they have available, treating the proxy variables as if

they were exactly identical to the true variables. This follows a long tradition in

economics and psychology of modelling economic agents as ‘flawed statisticians’,

for example early work in behavioural economics on the ‘law of small numbers’ by

Tversky and Kahneman (1971) to more recent work testing the ‘What You See Is

All There Is’ heuristic in experiments (Enke, 2020).

The structure of the agent’s problem is as follows. First they draw the real-

izations of a circumstance variable s and a signal variable z. They then choose an

action variable x, and both the chosen action and signal then affect the realization

1See Coyle (2015) for an outline of various arguments in this debate.
2See Borchardt and Hartings (2018) for discussion and reference to work (Borchardt et al.,

2018) providing evidence that for academic chemists there are significant differences between the
level of citations a paper receives and perceived academic impact among scientists.
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of an outcome variable y. Agents are assumed to have a vNM utility function over

the circumstance, signal and action variables. Thus, the circumstance variable af-

fects utility but not the outcome while the signal affects the outcome but does not

affect utility directly. Finally, a vector of proxy variables (z•, x•, y•) is drawn from

a distribution π that depends on (z, x, y), where each of the true variables has a

corresponding proxy. The DMs only have access to data that gives them knowl-

edge of the joint distribution of the proxies. Due to the possible imperfections in

the variables available, choices made by these decision makers can affect the data

they use to form beliefs. I define a notion of Proxy Equilibrium which ensures

consistency between these choices and the data upon which they are based.

I present two examples illustrating the framework. The first demonstrates

the possibility of stark discontinuity between the extent of imperfection in proxy

variables and the extent of the bias in the beliefs of the DMs. A municipality

chooses the number of police in order to affect crime. In order to do so, the

municipality needs to learn the relationship between police numbers and crime.

If they knew this relationship perfectly, municipalities would vary police numbers

in a way that depends on crime’s responsiveness to policing. However, if proxy

variables are used to learn this relationship, measurement error in recorded police

numbers results in downward attenuation bias. If there is little or no variation in

police numbers then the extent of this attenuation bias is greater. This is because

more of the variation in the policing measure is then coming from measurement

error. As such, there exists a Proxy Equilibrium in which municipalities do not

systematically vary police numbers at all, regardless of how small the measurement

error is.

The second example examines how the use of imperfect proxies results in ex-

cessive entry into markets by firms. Here there is a clear ordering over proxy

‘noise’ in terms of the welfare of firms, in which more noise results in a greater

extent of excessive entry. Without equilibrium feedback effects, the effect of noise

on entry is ambiguous. This is in contrast to other work on the behavioural bias

caused by selection effects, such as Jehiel (2018) and Esponda and Pouzo (2017),
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in which there is no such ordering both in and out of equilibrium. The ordering

results from features of how beliefs are formed under Proxy Equilibrium.

Finally, I give a characterization of all strategies that could arise as Proxy

Equilibria when the proxy variables are imperfectly measured but arbitrarily close

to being perfect measurements. The characterization imposes different conditions

on actions that are in the support of the strategy and actions that are not. Actions

in the support must give higher true expected utility than the other actions in the

support at least at one circumstance realization. Actions that are not in the

support must be worse that some action in the support for some full-support

belief. A second result demonstrates how the multiplicity of possible equilibria is

a result of strategies lacking full support over actions. When a strategy satisfies a

full-support condition then proximity of proxies to perfect measurement results in

beliefs of the DMs that are close to what they would be under perfect measurement.

The concept draws a distinction between the fact that the DM knows the

realization the circumstance, signal and the action they have chosen but does not

know how these variables covary with the outcome they wish to forecast. The

story I have in mind for this is that the joint distribution over proxies is generated

as a long run steady state of some learning process. The learning process is not

that of a long lived agent who repeats the same decision problem enough times

to generate an asymptotic sample, but instead a short-lived agent who does not

generate enough experiences of the effect of their own action and signals and has to

rely on a large public dataset of potentially mismeasured proxies. For concreteness,

in the policing example we can imagine a sequence of short lived municipal leaders.

The data generated from each municipal leader’s tenure is too sparse to apply the

law of large numbers, so the leaders have to draw inference from the experiences

of other municipalities in other time periods by using a national dataset designed

for social scientists researching crime.

The contribution of this paper is twofold. First, it contributes to the literature

on solution concepts with bounded rational expectations by considering issues of

measurement and proxies in an equilibrium framework. The concept generally
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does not fall neatly in others in the literature, and I explore these connections in

Section 6. The concept demonstrates how issues of belief distortion similar to that

explored in the growing literature on misspecified models can occur purely as a

result of the neglect of measurement noise. Secondly, it develops applications of

the concept to a variety of settings in which organizations use data to form beliefs.

2 Modelling Set Up

The space of variables V can be divided into four dimensions. There is a space of

circumstances S ⊆ R with realization s, a space of signals Z ⊆ R with realization

z, a space of actions X ⊆ R with realization x and a space of outcomes Y ⊆ R

with realization y. The variable space can thus be described as V = S×Z×X×Y .

The idea will be that our decision maker learns the realization of the circum-

stance variable s and the signal variable z, before choosing an action x resulting

in a distribution over the outcome variable y. The payoff of the decision maker

(henceforth DM) is defined over the circumstance, action and outcome variables

by utility function u : S ×X × Y → R. In examples, when a variable only takes

on a single value we suppress that variable in notation.

Let P ∈ ∆(V ) be the objective distribution over the variables. We assume

throughout that this distribution admits a density p with respect to some σ-finite

measure µ3. The causal structure between the variables is represented by the graph

in Figure 2. The signal and circumstance variables affect the action variable, and

in turn the signal and action variables affect the outcome variable. Using this

structure, the joint density over all the variables can be factorized as follows.

p(y, x, z, s) = p(y|x, z)p(x|z, s)p(z, s) (1)

The DM wants to form the conditional distribution p(y|x, z). Doing this, they

can calculate their objective expected utility:

3In all examples in this paper this will either be the counting measure for the finite case or
Lebesgue measure for the continuum case.
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s x y

z

Figure 1: Causal Structure

U(x, z, s) ≡
∫
Y

u(y, x, s)p(y|x, z)dµ(y) (2)

The objective conditional distribution p(y|x, z) is invariant to the conditional

distribution over actions p(x|z, s). Thus there is no need to account for equilibrium

effects and the problem of maximizing (2) boils down to a standard single agent

decision problem.

2.1 Proxy variables

In order to form beliefs about the distribution of outcomes conditional on a given

action being taken when a given signal is realized, the DM needs to have infor-

mation on the joint distribution of (y, x, z). We assume that the DM can only

access the joint distribution over proxies for these variables. Each of the three

variables has a respective proxy that can take any of the values the variable it is

a proxy for can take. We denote a realization of the proxy for the signal, action

and outcome by (z•, x•, y•) ∈ Z ×X ×Y respectively. We define a proxy mapping

π : Y ×X × Z → ∆(Y ×X × Z) that induces a distribution over the proxies for

any realization of the true variables. Denote any Borel subset of the variable space

Y ×X ×Z by W ∈ Y × X × Z. The induced distribution over proxy variables is

then:

Pπ(W ) =

∫
Y×X×Z

π(W |y, x, z)p(y, x, z)dµ (3)

We assume that the proxy mapping is such that the induced distribution over

proxies Pπ admits a density pπ. In order to form beliefs about how their action

affects the distribution over outcomes, the DM needs to form conditional beliefs:
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pπ(y
•|z•, x•) =

pπ(y
•, x•, z•)

pπ(x•, z•)
(4)

To ensure this is well defined we assume that the proxy mapping and the

distribution over true variables is such that pπ(x
•, z•) > 0 for any realization

(x•, z•). Given this distorted belief distribution, the agent in circumstance s with

signal z chooses an action x to maximize the perceived utility given below.

V (x, z, s; pπ) =

∫
Y •

u(y = y•, x, s)pπ(y
•|z• = z, x• = x)dµ(y•) (5)

2.1.1 The proxy mapping

Consider that i is any of the three variables, and that we can denote a realization

of the true variable by vi and a realization of the proxy by v•i . It is possible

that a proxy is a perfect measure for the underlying true variable, v•i = vi almost

everywhere for some variable(s) i. Indeed, for all the applications in this paper

some of the variables are perfectly observed. In the case where v•i ̸= vi with

nonzero probability, we say that i• is a mismeasurement of i. In examples, for

simplicity we generally avoid drawing a distinction between the true and proxy

variable when the proxy is a perfect measurement.

A proxy mapping that induces an identical joint distribution over the proxy

variables and the true variables —for any initial distribution of the true variables—

is called the perfect measurement mapping. Throughout the paper, we say that

the beliefs induced by the perfect measurement mapping comprise the rational

expectations benchmark or induce correct beliefs. One could argue that what com-

prises rational expectations is ambiguous, given the DM only has knowledge of the

proxies. However, what it means to correctly form beliefs under this ambiguity is

not the focus of this paper.

In our examples, we illustrate the causal dependencies between the variables

by Directed Acyclic Graphs (DAGs). In these graphs, a link → between two

variables indicates that the variable being pointed to is independent of all other

variables conditional on the variables that point into it. DAGs are used to model
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causal misperceptions in the related concept of Spiegler (2016), and we discuss the

relationship between the two concepts further in Section 6.1.

2.2 Equilibrium

We can see how the decision maker’s strategy can affect expectations by consider-

ing the case where all variables are finite. For any proxy mapping π we can write

the perceived conditional distribution as follows.

pπ(y
•|x•, z•) =

∑
y,x,s,z π(y

•, x•, z•|y, x, z)p(y|x, z)p(x|s, z)p(s, z)∑
y•,y,x,s,z π(y

•, x•, z•|y, x, z)p(y|x, z)p(x|s, z)p(s, z)
(6)

We illustrate the dependence of this distribution on the strategy p(x|s, z) using

the following binary version of the policing example.

Example 1. The municipal leader learns the realization of a circumstance variable

s determining whether the cost of crime is high s = s̄ > 0 or low s = 0, before

choosing to whether to hire more police officers x = 1 or not x = 0. The hiring of

police officers in turn affects whether crime is high y = 1 or low y = 0.

Let the relationship between the policing variables and the crime variable be

given by p(y = 1|x, s) = βx+(1−β)(1−x) where β ∈ (1
2
, 1). The prior distribution

over the cost of crime variable is p(s̄) = 1
2
. We assume the crime variable y is

perfectly measured, but the policing variable x is potentially not. We can write

the simplest form of measurement error in the policing variable using the proxy

mapping πx(x
• = x|x) = λ where λ ∈ (1

2
, 1]. As λ → 1 we have close to perfect

measurement.

The payoff function of the DM is given by u(y, x, s) = s(x+y)−x. Denote the

ex-ante strategy as σ(x = 1) = 1
2
p(x = 1|s̄) + 1

2
p(x = 1|0) and σ(x = 0) = 1

2
p(x =

0|s̄) + 1
2
p(x = 0|0). The perceived conditional distribution is then:

pπ(y
• = 1|x• = 1) =

σ(x = 1)λβ + σ(x = 0)(1− λ)(1− β)

σ(x = 1)λ+ σ(x = 0)(1− λ)
(7)

This expression is clearly not invariant to the strategy. For example if σ(x =

1) = σ(x = 0) it is equal to λβ + (1 − λ)(1 − β) while if σ(x = 1) = 1 and
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σ(x = 0) = 0 it is equal to β.

Thus, in general to characterize the DM’s choices we need to define an equi-

librium concept in order to establish consistency between strategies and beliefs.

To ensure that conditional distributions are well defined we first define an equi-

librium with a small trembling probability and then define an equilibrium as the

limit when this probability goes to zero.

We make the following technical definitions to facilitate the description of

Proxy Equilibrium. We define an interval as being a subset X int = {x ∈ X :

a ≤ x ≤ b} ⊂ R. We say a sequence of strategies {σ}∞j=1 converges to strategy σ̄

if for every s ∈ S the sequence of probability measures {σ(.|s)}∞j=1 converges in

distribution to the probability measure σ̄(.|s).

Definition 1. A strategy mapping that admits a full-support density σ∗
ϵ (x|s, z) for

every s ∈ S, z ∈ Z is an ϵ-Proxy Equilibrium if the following two conditions

hold:

1. Belief density pπ is induced by the proxy mapping π and the true distribution

over variables P according to (3). The true distribution admits a density p

such that p(x|s, z) = σ∗
ϵ (x|s, z).

2. For every s ∈ S, z ∈ Z and strategy σ, define the following set:

X(s, z;σ) ≡

{x ∈ X : x /∈ argmax

∫
Y •

u(y = y•, x, s)pπ(y
•|x• = x, z• = z;σ)dµ(y•)}

Then for every interval I ⊆ X(s, z;σ∗
ϵ ), the strategy mapping is such that

σ∗
ϵ (I|s, z) < ϵ

Definition 2. A strategy σ∗ is an Proxy Equilibrium if there exists a sequence

{σ∗
l }∞l=1 converging to σ∗ as well as a sequence ϵl → 0, such that for every l, σ∗

l is

an ϵl-Proxy Equilibrium.
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The first part of the definition describes how the beliefs of the DM are induced

by proposed equilibrium strategy. The second part ensures that action-signal-

circumstance combinations that are not in the best response correspondence must

have vanishing probability under the equilibrium strategy.

When the variable space is finite, we can show the existence of at least one

Proxy Equilibrium using conventional methods.

Proposition 1. Assume the set V is finite. Then a Proxy Equilibrium exists.

Proof. In Appendix

3 An illustrative example: Police and Thieves

In this example we consider the leader of a municipal authority, who has to make

a decision on the number of police officers to hire. The municipal leader wants to

hire police officers in order to reduce crime. We assume that there is noise in the

measured variable for police numbers. Concern about measurement error in police

staffing figures is not unprecedented. It is argued by Chalfin and McCrary (2018)

that based on discrepancies between official data and administrative and census

information there is significant measurement error in police staffing numbers in

the literature estimating the effect of police numbers on crime. For expositional

purposes, we assume that the crime variable is measured perfectly. This turns out

not to make a difference to the equilibria that we characterize.

The structure of the problem facing the municipal leader is as follows, first they

learn the realization of a variable affecting the cost of crime in their municipality

s. This is assumed to be distributed normally in the population of municipalities

used in the dataset under consideration, s ∼ N (0, σ2
s). The municipal leader then

chooses the change in the number of police officers. This affects the change in

crime observed under their leadership via the relationship y = α+ βx+ u, where

u ∼ N (0, σ2
u) and β < 0. In the available data, it is assumed that changes in police

numbers are measured as x• = x+ϵ, where ϵ is normally distributed measurement

error ϵ ∼ N (0, σ2
ϵ ). The relationship between the variables can be characterized
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by the following DAG.

s x y

x•

Figure 2: Crime and Policing

The utility function of the municipal leader trades-off crime and policing costs.

Higher s is assumed to reflect higher costs of crime relative to altering police

numbers.

u(y, x, s) = −s · y − 1

2
x2 (8)

Denote the rational expectations benchmark for how policing affects crime lev-

els in expectation by E[y|x] = f(x) = α+βx. We can see that by plugging this in

to the utility function and calculating the best response that the optimal strategy

under rational expectations for the municipal leader is to set police numbers such

that x∗(s) = −βs. Thus the rational expectations benchmark is for police numbers

to be increased by more when the costs of crime is larger (higher s) and the effect

of police numbers on crime is greater (higher |β|). Define a linear equilibrium as

an equilibrium in which the strategy of the policy maker can be expressed as a

linear function of the cost variable, x(s) = θ0+ θ1s for some (θ0, θ1) ∈ R2. We can

characterize all the linear equilibria of the model as follows4.

Proposition 2. There is always a linear equilibrium in which the municipal leader

never changes police numbers, with best response xnv(s) = 0.

In addition, if |β| ≥ 2σϵ

σs
, then there exist two additional linear equilibria, with

best response x−(s) = (−1
2
β− 1

2

√
β2 − 4σ2

ϵ

σ2
s
)s and x+(s) = (−1

2
β + 1

2

√
β2 − 4σ2

ϵ

σ2
s
)s.

There are no other linear equilibria.

Proof. In Appendix

4Due to the difficulty in characterizing non-linear equilibria in this setting, we do not attempt
to do so.
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Due to the measurement error in the police numbers proxy, there is gener-

ally downward attenuation bias in the municipal leaders estimate of the expected

change in the level of crime for any given change in police numbers. However,

when there is more variation in police staffing numbers the measurement error is

a smaller fraction of the total variance of the proxy. This means the downward at-

tenuation effect is lessened compared to when there is little or no variation in true

police staffing numbers. This effect generates potential multiplicity of equilibria.

We illustrate the solution method and equilibria in Figure 3 below. We have

the following expression for the marginal effect of increasing police numbers, given

the expectations induced by the strategy x(s) = θ1 · s:

−∂E[y•|x•]

∂x• =
−βθ21σ

2
2

θ21σ
2
2 + σ2

ϵ

= g(θ1; (β, σs, σϵ)) (9)

An equilibrium best response has to be such that θ1 = g(θ1; (β, σs, σϵ)). The

figure below shows how this equation characterises the equilibria for two different

parameter sets. We have a case in which the only equilibrium is the no variation

equilibrium and a case in which all three equilibria exist.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

θ1

g
(θ

1
;(
β
,σ

s
,σ

ϵ)
),
θ 1

g(θ1; (−2, 4, 3))
g(θ1, (−1.5, 4, 3))

θ1
Equilibria

Figure 3: Best response quadratic

Adding normally distributed measurement error to the crime variable, so that

y• = y + v with v ∼ N (0, σ2
v), does not change either the set of Proxy Equilibria
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nor does it change the rational expectations benchmark. That the rational ex-

pectations benchmark is unchanged is easy to see due to linearity of expectations.

The proxy-equilibrium case is due to both the linearity of the conditional expec-

tation and the fact that the additional variance in y• does not affect the marginal

perceived incentive over the policing variable.

Another interesting feature is that one of the equilibria has the municipalities

not varying police numbers at all, regardless of how great the effect of policing on

crime is. This extreme, no variation equilibrium exists for any small amount of

measurement error in the proxy σ2
ϵ > 0 no matter how close to zero. For σ2

ϵ close to

zero, the case when the proxy is close to a perfect measurement, the equilibrium

with the smaller positive amount of variation in policing converges to the zero

variation equilibrium while the equilibrium with the larger amount of variation

converges to the rational expectations benchmark.

4 Endogenous Hubris and Market Entry

Businesses entering into new markets have high rates of failure. Using data from

the US Census Bureau Haltiwanger (2015) calculates that half of new firms exit the

market within 5 years. In UK data, 38 percent of enterprises newly born in 2016

survived 5 years5. A literature in business and economics attributes these seem-

ingly excessive levels of market entry to overoptimism on the part of the potential

market entrants, see Hayward et al. (2006), Cooper et al. (1988), Malmendier and

Tate (2005).

We build an application of our solution concept that generates firms that have

an upwardly biased assessment of the payoffs from entering new markets as a

feature of equilibrium. Firms draw on noisily recorded data drawn from past

entrants. There is a variable z ∈ [0, 1] ≡ Z, representing the location of markets

in some space, which could be geographical or based on demographic information.

This variable is distributed such that it admits a continuous full-support density

function p(z). After learning the realization of this variable, the potential market

5This statistic is from Office for National Statistics (2022).
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entrant has to make a binary decision on whether to enter x = 1 or not x = 0. The

payoff of the entrant is measured via an outcome variable y ∈ R ≡ Y representing

the profitability of the enterprise, so that u(y, x, s) = y. The outcome variable

is determined by both the entry decision and the market location variable by the

following relationship.

E[y|x, z] =
∫
Y

yp(y|x, z)dµ(y) =


m(z) if x = 1

0 if x = 0

(10)

We assume that the function m : Z → R is strictly increasing, bounded and

right-continuous, with a single point of crossing α ∈ [0, 1] such that m(z) < 0 for

all z ∈ [0, α) and m(z) ≥ 0 for z ∈ [α, 1]. Thus for high enough realizations of

the market location variable, the expected profitability of entry is always greater

than the payoff of zero from not entering. We assume the potential entrant does

not have data on how the market location z varies with the outcome and action

variable, but instead has access to a noisy recorded proxy variable z•. The idea

is that each market has a very granular definition, and in data it can only be

recorded in an imprecise fashion. This could be due to data protection reasons or

due to the categories available to the data recorder not being as fine-grained as

the data itself.

Thus we assume the proxy variable is generated by a mapping that has the

following ‘window’ form. There is some parameter h ∈ (0, 1
2
) such that for every

z ∈ [h, 1 − h] we have that z• is uniformly distributed on [z − h, z + h]. For all

z ∈ [0, h) we have that z• is distributed uniformly on [0, 2h) and for all z ∈ (1−h, 1]

we have that z• is distributed uniformly on z ∈ (1 − 2h, 1]. This window form

of proxy noise is similar to the notion of similarity used in Steiner and Stewart’s

(2008) model of learning in games. The conditional independence relationships

between the true variables and the proxy are illustrated in the DAG below.

Under rational expectations the best response of the potential entrant is clear;

when z ∈ [0, α) x = 0 is optimal while for z ∈ [α, 1] the payoff from entering is

above zero and therefore optimal. We are going to see that in equilibrium, there is
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z

x

yz•

Figure 4: Market Entry

over-entry. Since in the equilibrium data there is negligible observations of entrants

below a certain market location, the proxy observations for these markets are

disproportionately higher location markets that have been misclassified as lower

ones. This leads to an overestimate of the payoff from entering at these lower

levels. However, enough over-entry reduces the extent of this proxy bias and in

equilibrium the DM is indifferent between entering or not at some cut-off strength

level below the cut-off they would enter at under rational expectations.

Given an induced perceived distribution over the outcome variable pπ(y|x, z•),

we give an expression for the perceived expected utility below.

U(z, x = 1; qπ) =

∫
Y

ypπ(y|x = 1, z• = z)dµ(y)

=

∫
Y

y[

∫
Z

p(y|x = 1, z̃)pπ(z̃|z• = z, x = 1)dµ(z̃)]dµ(y)

=

∫
Z

[

∫
Y

yp(y|x = 1, z̃)dµ(y)]pπ(z̃|z• = z, x = 1)dµ(z̃)

=

∫
Z

m(z̃)pπ(z̃|z• = z, x = 1)dµ(z̃) (11)

The perceived utility of x = 0 at z is always zero; U(z, x = 0; qπ) = 0. We

can see that the perceived utility depends on the distribution pπ(z̃|z• = z, x =

1) induced by the strategy σ. Given the distribution over proxies, this can be

calculated as follows.
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pπ(z|z•, x = 1) =
pπ(z, z

•, x = 1)∫
Z
pπ(ẑ, z•, x = 1)dµ(ẑ)

=



1[z∈[z•−h,z•+h]]p(z)σ(x=1|z)∫ z•+h
z•−h p(ẑ)σ(x=1|ẑ)dµ(ẑ)

if z• ∈ [h, 1− h]

1[z∈[0,h]]p(z)σ(x=1|z)∫ h
0 p(ẑ)σ(x=1|ẑ)dµ(ẑ)

if z• ∈ [0, h)

1[z∈[1−h,1]]p(z)σ(x=1|z)∫ 1
1−hp(ẑ)σ(x=1|ẑ)dµ(ẑ)

if z• ∈ (1− h, 1]

(12)

We make the following endpoint assumptions, which ensure that the firm will

not enter at low values of z and there is always an equilibrium in which the firm

will enter at high values of z.

Assumption 1. We say that m(.), p(.) and h satisfy the endpoint assumptions

if
∫ 2h

h
m(z)p(z)dµ(z) < 0 and

∫ 1

1−h
m(z)p(z)dµ(z) > 0.

We can then show existence and characterize the Proxy Equilibria.

Proposition 3. Assume the primitives m(.), p(.) and h satisfy the endpoint

assumptions. Then there is a cut-off z̄ ∈ [h, 1 − h] such that there is a Proxy

Equilibrium with strategy σ(x = 1|z) = 0 for z ∈ [0, z̄] and σ(x = 1|z) = 1 for

z ∈ (z̄, 1].

In addition, there is always a Proxy Equilibrium where σ(x = 1|z) = 0 for all

z ∈ [0, 1].

There are no other Proxy Equilibria.

Proof. In Appendix

We then have the following result, which gives us that in cases where there

is entry in equilibrium there is excessive entry. In addition, we see that noisier

proxies —in the form of higher h— always lead to greater levels of excessive entry.

Proposition 4. The cut-off in the Proxy Equilibrium with positive probability of

entry, z̄, is always strictly less than α.
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Moreover, consider two noise parameters 1 > h2 > h1 > 0, such that given

m(.), p(.) the endpoint assumptions are satisfied for both. We have that the cut-

off z̄(h2) under the positive entry Proxy Equilibrium with noise parameter h2 is

strictly less that the cut-off z̄(h1) under h1.

Proof. In Appendix

The intuition for this result is as follows. In general —for a fixed belief distri-

bution— it is ambiguous whether larger h increases or decreases the payoff from

entry at any given z. However, in equilibrium what matters is the beliefs at the

pivotal cut-off z̄. At the cut-off the DM must be indifferent between entering and

not. An increase in h will always lead to greater weight on the part of the function

m(z) that is above the cut-off, in particular greater weight on the positive part

of m(z). This pushes up the expected payoff from entering strictly above zero at

this cut-off, and the new cut-off at the larger h must be below in order to restore

indifference.

In contrast if there are no equilibrium effects and the belief distribution is

fixed, we can construct cases where entry is excessive and increasing h results in

a best response with less entry.

Example 2. Let the function m(.) take the following form.

m(z) =


z − 5

2
if z ∈ [0, 1

4
)

z − 1
2

if z ∈ [1
4
, 1
2
)

z + 1
2

if z ∈ [1
2
, 1]

(13)

Assume the distribution over signals p(z) is uniform and the conditional dis-

tribution p(.|z•, x = 1) is set exogenously to that which would be induced by the

strategy σ(x = 1|z) = 1 for all z. This means that p(.|z•, x = 1) is uniform

in z ∈ [z• − h, z• + h] for each z• ∈ [h, 1 − h] and uniform on z ∈ [0, h) and

z ∈ (1− h, 1] for z• ∈ [0, h) and z• ∈ (1− h, 1] respectively.

If 1
4
< h < 1

2
, then the cut-off signal at which the DM switches from x = 0 to

x = 1 is z̄(h) = 1+2h
3+2h

∈ [0, 1
2
). The parameters are such that 0 < z̄(h)− h < 1

4
and
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1
2
< z̄(h) + h < 1. Since dz̄(h)

dh
= 4

(2h+3)2
> 0 we can then see that as h increases by

a small amount, the cut-off increases. This reduces the extent of entry at signals

in [0, 1
2
) where it gives a negative true expected payoff.

4.0.1 Differences with Jehiel (2018)

There are similarities between this application and the model of selection bias in-

duced overconfidence of Jehiel (2018). In his model as in ours, there is an upwardly

bias distortion in beliefs in equilibrium which induces an entry action to occur at

a threshold earlier than under rational expectations. However, there are subtle

differences between the two models, and the result that greater ‘noise’ always in-

duces greater over-entry that holds in our example under Proxy Equilibrium does

not necessarily hold in Jehiel (2018).

In that paper, the reason why the effect of noise on entry is ambiguous is that a

more accurate signal mechanically means that any fixed strategy is more selective,

which increases the extent of upward bias at each signal. There is a countervailing

effect in that for a fixed level of selection, a more accurate signal increases the

expected payoff at higher signals and reduces the expected payoff at lower signals.

In our application, only the latter effect is operating and thus we get the result

that more noise increases over-entry, while in Jehiel (2018) which effect is larger

depends on the parameterization.

5 Almost Perfect Proxies

In this section we present two results. Our first result characterizes the set of

all strategies that can arise as Proxy Equilibria even as the variables are arbi-

trarily close to being perfectly measured. We call these strategies Potentially

Implementable. If a strategy is in the set, then we can choose a particular proxy

mapping that implements that strategy as an equilibrium. Moreover, this proxy

mapping has very close to perfect measurement and has perfect measurement of

all the outcome variables. If a strategy does not meet the conditions to be Po-

tentially Implementable, then it cannot be implemented as a Proxy Equilibrium
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for any proxy mapping that is above a certain level of proximity to perfect mea-

surement. The result is proven for the case where all variables spaces are finite,

although it seems likely that the basic idea of the proof extends to non-finite

spaces.

The second result gives conditions under which we have convergence to ratio-

nal expectations. It shows that if the joint density over variables satisfies a full

support assumption, then beliefs become arbitrarily close to rational expectations

as the proxy variables become close to perfect measurements. This result con-

cerns potentially out of equilibrium beliefs, and can be used as a diagnostic when

considering equilibria in which the full-support assumption does not hold. For

example, in our policing application the full-support assumption does not always

hold and therefore we can have large belief distortions even as the proxy noise is

close to zero.

We use the following concept of statistical distance to define a notion of prox-

imity of the proxy variables to perfect measurement. The total variation distance

between probability measures Q1 and Q2 on measure space (Ω,A) is:

TV (Q1, Q2) = sup
A∈A

|Q1(A)−Q2(A)| (14)

Denote w = (y, x, z) and define the perfect measurement proxy mapping as

πδ : Y × X × Z → ∆(Y × X × Z) such that Pπ(W ) =
∫
Y×X×Z

πδ(W
• =

W |w)p(w)dµ(w) = P (W ) for every Borel set W ∈ Y × X × Z and any P . We

then have the following definition.

Definition 3. Given η > 0, we say the proxy distortion mapping π is strongly

η-close to perfect if:

sup
w∈Y×X×Z

TV (π(.|w), πδ(.|w)) < η (15)

We define the conditions required for a strategy to be Potentially Imple-

mentable below. The definition requires that the strategy meets different con-

ditions for actions that are in the support of the strategy and actions that are
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not. The first condition requires that any action that is in the support is a best

response against all the other strategies in the support for some realization of the

circumstance variable. The second condition requires that for every action not in

the support of the strategy, we can find a full support belief that results in lower

perceived utility than the rational expectations benchmark utility from any action

in the support, for every realization of the circumstance variable.

Define the distribution over actions at signal z induced by the strategy σ as:

σ(x|z) =
∫
S

σ(x|s, z)p(s|z)dµ(s) (16)

Definition 4. Let Y × X × Z × S be finite. A strategy σ∗ : S × Z → ∆(X)

is Potentially Implementable if at every z ∈ Z, the following two conditions

hold.

1. For any action x ∈ supp{σ∗(.|z)} there exists an s ∈ S such that, for every

x′ ∈ supp{σ∗(.|z)}:

∑
y∈Y

u(y, x, s)p(y|x, z) ≥
∑
y∈Y

u(y, x′, s)p(y|x′, z) (17)

2. For every action xns /∈ supp{σ∗(.|z)}, there exists a full-support condi-

tional distribution q : X × Z → ∆(Y ) such that for any s ∈ S and xs ∈

supp{σ∗(.|s, z)} we have that:

∑
y∈Y

u(y, xs, s)p(y|xs, z) ≥
∑
y∈Y

u(y, xns, s)q(y|xns, z) (18)

We then have the following result.

Proposition 5. Let Y ×X × Z × S be finite and supp{p(.|x, z)} = Y for every

(x, z) ∈ X × Z.

Then σ∗ : S × Z → ∆(X) is a Proxy Equilibrium under some proxy mapping

that is strongly η-close to perfect for all small enough η > 0 if and only if it is a

Potentially Implementable strategy.
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Moreover, it is sufficient to construct this proxy mapping such that the outcome

variable is perfectly measured.

Proof. In Appendix

The sufficiency part of the result is proven by constructing a proxy mapping

that has a small probability of randomly allocating a particular realization of the

true outcome vector to the proxy of an action-signal combination that has zero

probability under the proposed equilibrium strategy. The particular outcome vec-

tor is chosen so as to deter the DM from choosing that particular zero-probability

action-signal combination. The necessity part follows from a stronger version of

our second result, that we have convergence of beliefs to rational expectations if

the proxy mapping converges to perfect measurement.

We can apply this result to our binary policing example from Section 2.2 to

analyze what strategies can arise as Proxy Equilibria for arbitrarily small mea-

surement noise.

Example 1 (Continued). The action x = 0 must be in the support of any Proxy

Equilibrium. This is because at s = 0 it is a best response regardless of the beliefs

of the DM about how x covaries with y. Any strategy in which x = 0 is not in the

support must violate the second condition of Definition 4.

There are three cases at which different strategies are potentially implementable.

1. If s̄ ∈ [0, 1
2β
) then we must have x = 0 chosen at s̄ with probability one in

any potentially implementable strategy. This is because at s = s̄ the following

inequality must hold for x = 1 to be a best response.

s̄(1 + pπ(y = 1|x• = 1))− 1 ≥ s̄pπ(y = 1|x• = 0) (19)

A strategy in which x = 1 is chosen with positive probability at s̄ is one

in which both actions are in the support. Thus we must check if the first

condition of Definition 4 is satisfied as beliefs about both actions converge to

the rational expectation benchmark as the proxy mapping tends to the perfect

measurement mapping. Since it is not if s̄ ∈ [0, 1
2β
), we have our claim.
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2. If s̄ ∈ [ 1
β
,∞) then it must be the case that x = 1 is chosen with probability

one at s̄ = 1. For these parameters, the first condition of Definition 4 is

satisfied. A strategy in which x = 0 at s = s̄ with some probability is not

potentially implementable. This is because satisfying the second condition

would require:

s̄(1− β) ≥ s̄(1 + pπ(y = 1|x• = 0))− 1 (20)

This is violated for any beliefs in which pπ(y = 1|x• = 0)) > 0 if s̄ ≥ 1
β
.

3. If s̄ ∈ [ 1
2β
, 1
β
), then it is possible to implement strategies in which x = 1

at s = s̄ or x = 0 for all s. The first type of strategy can be implemented

by the perfect measurement mapping, which is trivially arbitrarily close to

perfect measurement. The second type of strategy can be implemented by the

following proxy mapping:

π(y• = y, x• = x|y, x) = 1− η + ηy

π(y• = y, x• ̸= x|y, x) = η(1− y)

For small η > 0, this results in beliefs such that pπ(y = 1|x• = 1) → 0 and

pπ(y = 1|x• = 0) → 1 − β as the probability that x = 1 at s = s̄ tends to zero.

This can then sustain the proposed strategy as a proxy equilibrium as it satisfies

inequality (20) for s̄ ∈ [0, 1
β
).

For our second result, we can weaken our notion of distance to perfect measure-

ment so that it is specific to a particular distribution P . This weaker definition is

sufficient.

Definition 5. Given η > 0, we say the proxy mapping π is η-close to perfect given

the distribution over true variables P if:

TV (P, Pπ) < η (21)
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Under the following assumptions, we can always ensure the perceived belief of

the DM induced by the proxy mapping is close to rational expectations with a

proxy mapping that is close enough to perfect.

Assumption 2. The distribution F over variables in Y ×X×Z is said to satisfy

the full support assumption if it admits a density f(ỹ, x̃, z̃) such that f(x̃, z̃) >

0 for every realization (x̃, z̃) ∈ X × Z.

This assumption rules out zero probability events in the denominator of con-

ditional probabilities, which then ensures the convergence of the joint distribution

is passed through into the factorized conditional density. We can then show that

a continuity property holds for the perceived conditional distribution of y given

(x, z).

Proposition 6. Assume the full support assumption holds for the true dis-

tribution P .

Then for µ almost every (y, x, z) ∈ Y × X × Z, for any ϵ > 0, there exists

an η > 0 such that if the proxy mapping π is η-close to perfect given true

distribution P and induces a distribution over the proxy variables that satisfies the

full support assumption, then |pπ(y• = y|x• = x, z• = z)− p(y|x, z)| < ϵ.

Proof. In Appendix

It is clear that the policing example does not satisfy the full support assumption

when the no variation equilibrium strategy is played. However, in the cases where

the full support assumption is satisfied then Proposition 6 holds and we have

beliefs that are close to rational expectations for proxies that are close enough to

perfect measurements. We can use the Hellinger distance, convergence in which

implies convergence in the Total Variation distance, to derive an expression for the

distance between any joint gaussian for proxies and true variables. For example,

we can obtain an expression for the square of the Hellinger distance between

the distribution for the policing variable x and its proxy, which are distributed

x ∼ N (µx, σ
2
x) and x• ∼ N (µx, σ

2
x + σ2

ϵ ) respectively.
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H2(P x
π , P

x) = 1−

√
2σx

√
σ2
x + σ2

ϵ

2σ2
x + σ2

ϵ

(22)

We can then see that as σϵ → 0 we can make the two distributions arbitrarily

close and thus satisfy our requirements for Proposition 6.

6 Related Literature

The strand of literature that this paper is most clearly related to is that on equi-

librium solution concepts with bounded rational expectations. In particular, the

work on using Bayesian Networks as a formalism to model causal misperceptions

originating from Spiegler (2016) and developed to explore interactive beliefs in

games (Spiegler, 2021); political narratives (Eliaz and Spiegler, 2020), (Eliaz et al.,

2022); persuasion (Eliaz et al., 2021); contract theory (Schumacher and Thysen,

2022) and deception (Spiegler, 2020). This is due to the latter concept requir-

ing that actions and signals are perfectly observed. Other solution concepts in

this tradition include the Cursed Equilibrium of Eyster and Rabin (2005), the

Behavioural Equilibrium of Esponda (2008) and the Analogy Based Expectation

Equilibrium of Jehiel (2005), Jehiel and Koessler (2008).

The Berk-Nash equilibrium of Esponda and Pouzo (2016) supplies a framework

that nests many of these concepts and provides a foundation in the literature on

dynamic misspecified learning. We discuss how Proxy Equilibrium and Berk-

Nash Equilibrium relate later in this section. Papers in the broader misspecified

learning literature have explored overconfidence about one’s ability; Heidhues et al.

(2018), social learning; Bohren and Hauser (2021) and connections to Berk-Nash

Equilibrium; Fudenberg et al. (2021). In particular, the work of Frick et al. (2020)

on fragile social learning has a similar flavour to our paper. They show that

arbitrarily small misperceptions about the distribution of other player’s types can

generate large breakdowns of information aggregation, similar to our results on

arbitrarily small imperfections in proxies leading to large distortions in beliefs.

We can see this solution concept literature as modelling players whose actions

24



contribute to an long-run steady state distribution of the outcomes of past deci-

sions in the same or similar situations. In contrast, there is a literature modelling

players in games as extrapolating from small samples of the equilibrium behaviour

of other players, the seminal work being Osborne and Rubinstein (1998) and Os-

borne and Rubinstein (2003). Several recent papers developing similar ideas in-

clude Salant and Cherry (2020), Patil and Salant (2020) and Gonçalves (2022).

This paper also connects to a body of work on naive inference from selected

observations as a form of decision making bias. This models of sampling in-

vestors in Jehiel (2018) and elections with retrospective voters in Esponda and

Pouzo (2017). Spiegler (2017) explores a procedure in which an analyst extrapo-

lates from a dataset with partially missing information. Fudenberg et al. (2022)

presents an equilibrium concept in which agents have selective recollection of their

past experience. In all of these works, agents are considering a partially missing

distribution. Under Proxy Equilibrium, data does not have to be fully missing

but can be distorted by measurement error instead.

Finally, there is a link between this paper and the literature on overconfidence

in the sense of over-precision as discussed in Moore and Healy (2008). As in the

case of over-precision, in Proxy Equilibrium agents underestimate the extent of

the divergence of observable variables from true variables. The size of the overcon-

fidence literature makes it impossible to cover fully here, but examples modelling

over-precision specifically include applications to political ideology (Ortoleva and

Snowberg, 2015), speculative bubbles in finance (Scheinkman and Xiong, 2003)

and volatility in securities markets (Daniel et al., 1998).

6.1 Relationship to Bayesian Network Equilibrium

We can relate the proxy solution concept to both the DAG causality literature

(see Pearl (2009)) and also the Bayesian Network Equilibrium (henceforth BNE)

of Spiegler (2016). In Spiegler (2016) the relationship between variables is mod-

elled using Directed Acyclic Graphs (henceforth DAGs). Suppose there are m− 2

outcome variables, so there are m variables in total. Denote the vector of all vari-
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ables as v = (v1, v2, v3, ..., vm) ∈ V1×V2×V3× ...×Vm ≡ V , and the set of variables

as M . Any subset of the variables N ⊆ M is denoted by vN = (vj)j∈N ∈
∏

j∈N Vj.

A DAG R = (M,R) consists of a set of variables M and a set of directed links

R ⊂ M ×M . The set R is an acyclic, irreflexive and asymmetric binary relation

which we can use to define R(i) = {j ∈ M |jRi} as the set of ‘parents’ of the

variable i according to the DAG. Figure 6.1 illustrates different DAG structures

for three variables, with jRi meaning that the arrow → is pointing from j to i.

v1

v2

v3

v1 v2 v3

v1

v2

v3

Figure 5: Illustration of three DAGs

The concept assumes there is an objective DAG R∗ that that the true joint

density between the variables can be factorized.

p(v) = p∗R(v) =
m∏
i=1

p(vi|vR∗(i)) (23)

Under BNE, DMs are endowed with a possibly misspecified subjective DAG

R. This subjective DAG can remove or add links between the variables in M .

The DM is assumed to factorize the joint density given by (23) according to their

subjective DAG in way that can potentially distort beliefs and lead to equilibrium

effects.

pR(v) =
m∏
i=1

p(vi|vR(i)) (24)

Let v1 = s be a signal, v2 = x be an action take after learning the realization of

s and all the m−2 remaining variables be outcome variables that are downstream

from the action and signal according to the true DAG R∗. The DM is assumed to

form beliefs pR(v1, ..., vm−2|x, s) by conditioning the distorted beliefs given by (24)
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on the action and signal variable. As in Proxy Equilibrium, the DM then uses these

distorted beliefs to form perceived expected utility from taking an action after a

given signal realization, with expectations taken with respect to a vNM utility

function defined over all the variables. As in Proxy Equilibrium, there can be

equilibrium effects and a trembling hand criterion in the definition of equilibrium

is used to ensure that there is no conditioning on zero-probability events.

The substantive differences between the two frameworks are first that Proxy

Equilibrium allows for conditioning on ‘false’ action and signal variables, with

expectations also formed with respect to false outcome variables. This is not

something that can be obtained in BNE. Secondly, BNE allows for more outcome

variables and more elaborate causal structures than does Proxy Equilibrium. The

idea behind Proxy Equilibrium is that the simple causal structure between the

variables is understood by the DM, but the DM either neglects or does not realize

there are measurement problems with the variables. BNE considers cases where

the DMmisunderstands the causal structure, and fits the incorrect causal structure

to variables that are otherwise perfectly measured. The two concepts could be

combined in a variety of ways, for example having the DM fit the incorrect DAG

to the false variables.

6.2 Relationship to Berk-Nash Equilibrium

The Berk-Nash Equilibrium of Esponda and Pouzo (2016) gives a general solution

concept for games in which players have to form expectations of a mapping between

actions, a signal variable and outcome variables that may depend on the actions

and signals of multiple players. Each player has a set of subjective models over

this mapping. Under the solution concept the expectations of the players have

to be such that any subjective model that is in the support of expectation of the

player minimizes the Kullback-Leibler divergence between the true distribution

over outcomes and that projected by the model, weighted by that player’s signal

and action probabilities. This is then founded as the limit of a Bayesian learning

process in which the players have a prior with their set of subjective models as the
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support. The true model that generates the mapping between the action, signal

and outcome variables may not be in the set of subjective models and thus players

may have misspecified expectations.

There are similarities between Proxy Equilibrium and Berk-Nash equilibrium

in that under the latter the DM dogmatically believes the proxy variables are

identical to the true variables, while under Berk-Nash the players in the game

dogmatically believe the objective true model is in their set of subjective models.

However, it is in general not possible to nest the Proxy Equilibrium concept as an

exact special case of Berk-Nash equilibrium for the following reason; the formula-

tion of Berk-Nash equilibrium in Esponda and Pouzo (2016) assumes that players

perfectly observe the joint distribution of their signals and their own equilibrium

action. This means that, if the action and signal variables are imperfectly mea-

sured, any set of subjective models cannot contain models that put probability

one on the proxies for actions and signal being equal to the true action and signal.

This is because the Kullback-Leibler divergence is not well defined for that model,

as it would place zero probability on the event that the proxies and true variable

realizations differ even though they differ with positive probability. Another case

in which the concepts are distinct is when imperfectly measured proxy variables

enter into the utility function, as there is no allowance for the players to have

models that put probability one on a payoff function that depends on the wrong

dimensions in the outcome vector.
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A Proofs

Proof of Proposition 1

Proof. Denote the set of all strategies conditional on circumstance s and signal z

as Σ(s, z). Unlike the main body of the paper, we make the dependence of the

perceived conditional distribution on the proposed equilibrium strategy σ̃ explicit,

so use notation pπ(y
•|z• = z, x• = x; σ̃). Define the best response correspondence,

given strategy σ̂ξ and ξ > 0 as

BRξ(σ̂ξ, s, z)

= { argmax
σ(.|s,z)∈Σ(s,z)

∫
X

σ(x|s, z)[
∫
Y •

u(y = y•, x, s)pπ(y
•|z• = z, x• = x; σ̂ξ)dµ(y

•)]dµ(x)

s.t σ(x′|s, z) ≥ ξ ∀x′ ∈ X}

Stack the best response correspondences for each circumstance-signal combi-

nation (s, z) into a vector BRξ(σ̂) =
∏

s,z∈S×Z BRξ(σ̂, s, z). Since pπ(y
•|z• =

z, x• = x; σ̃) is continuous in σ̃ and the best response correspondence is the set

of maximizers over a compact set defined by a finite set of inequalities, BRξ(σ̂) is

nonempty for any σ̂. Moreover due to linearity in σ(x|s, z), BRξ(.) convex valued

and continuity of pπ(y
•|z• = z, x• = x; σ̃) implies continuity of the maximand,

meaning BRξ(.) has closed graph. We therefore have met all the requirements of

Kakutani’s fixed point theorem and a fixed point exists for any ξ > 0, σ∗
ξ ∈ BRξ(σ

∗
ξ

).

For any ϵ > 0, we can choose ξ > 0 in such a way that ensures that our ξ-fixed

point is an ϵ-Proxy Equilibrium. In the finite case, the largest interval subset

of X(s, z;σ∗
ϵ ) is itself. We have that σ∗

ξ (x|s, z) = ξ for all x ∈ X(s, z;σ∗
ϵ ) and

(s, z). Therefore, we can choose ξ > 0 to ensure that
∑

x∈X(s,z;σ∗
ϵ )
σ∗
ξ (x|s, z) =

|X(s, z;σ∗
ϵ )|ξ < ϵ for all (s, z). This ensures our fixed point, which we denote σ∗

ϵ ,

meets the definition of ϵ-Proxy Equilibrium.

Since finiteness ensures the space of strategies Σ is compact, we can find a
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convergent sequence of ϵ-equilibria as ϵ → 0, σ∗
ϵ → σ∗.

Proof of Proposition 2

Proof. We first propose a generic linear solution x(s) = θ0 + θ1s, which is then

used to calculate the perceived expectation E[y|x• = x] using the properties of the

normal distribution. Under the proposed best response function, the joint normal

distribution of (y, x•) is:

 y

x•

 ∼ N


α + β(θ0 + θ1µs)

θ0 + θ1µs

 ,

β2θ21σ
2
s + σ2

u βθ21σ
2
s

βθ21σ
2
s θ21σ

2
s + σ2

ϵ




Using this we can calculate the conditional expectation of y given x•.

E[y|x•] = α + β(θ0 + θ1µs) +
βθ21σ

2
s

θ21σ
2
s + σ2

ϵ

(x• − θ0 − θ1µs)

Using the utility function we then get perceived expected utility U(x, s; q) =

−sE[y|x• = x]− 1
2
x2. Solving for a maximum then gives us x(s) =

−βσ2
sθ

2
1

θ21σ
2
s+σ2

ϵ
· s. In

order to have a linear equilibria, we must therefore have θ0 = 0 and θ1 =
−βσ2

sθ
2
1

θ21σ
2
s+σ2

ϵ
.

We can solve the latter cubic equation to get the equilibria in the statement of

the proposition.

To show that these equilibria are proxy equilibria, we must show that there

is a sequence of proxy equilibria that converges in distribution to them. Let

xϵ(s) = θϵ0 + θϵ1s + σ2
u, where u ∼ N (0, σ2

u). Then the induced distribution over

(y, x•) is almost identical to above except V ar(x•) = θ21σ
2
s + σ2

ϵ + σ2
u. As such the

cubic equation that characterizes the proposed ϵ-Proxy Equilibria is now:

θϵ1 =
−β(σ2

s(θ
ϵ
1)

2 + σ2
u)

(θϵ1)
2σ2

s + σ2
ϵ + σ2

u

For each of the three proposed equilibria we can find θη1 and σ2,η
u > 0 param-

eterized by η > 0, where the former converges to the equilibrium value and the

latter converges to zero. For the no variation equilibrium, we can set:
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θnv,η1 =
(−βσ2

s +
σ2
ϵ

β
− η) +

√
(βσ2

s −
σ2
ϵ

β
+ η)2 − 4σ2

sηβ

2σ2
s

σ2,nv,η
u = (

−σ2
ϵ

β
+ η)θnv,η1

These parameters solve the equilibrium quadratic and θnv,η1 → 0, σ2,η
u → 0 as

η → 0. Since θnv,η1 > 0 and −σ2
ϵ

β
+ η > 0 for small enough η > 0, we have that

σ2,η
u > 0 for small enough η.

Similarly, assuming |β| ≥ 2σϵ

σs
holds, for the θ−1 and θ+1 equilibria, we can define:

θ−,η
1 = −1

2
β − 1

2

√
β2 − 4

σ2
ϵ

σ2
s + η

σ2,−,η
u = θ2,−,η

1 η

θ+,η
1 = −1

2
β +

1

2

√
β2 − 4

σ2
ϵ

σ2
s + η

σ2,+,η
u = θ2,+,η

1 η

As η → 0, we have (θ−,η
1 , θ+,η

1 ) → (θ−1 , θ
+
1 ), (σ

2,−,η
u , σ2,+,η

u ) → (0, 0). These

parameters all solve the equilibrium quadratic, we can thus use them to define a

sequence of ϵ-Proxy Equilibria.

For any s ∈ S, define ση(.|s) as the strategy mapping implied by any of the per-

turbed (θη1 , σ
2,η
u ) parameters above, let ση,δ(.|s) be the Dirac measure at x(s) = θη1 ·s

and σ∗(.|s) be the Dirac measure at x(s) = θ∗1 · s where θ∗1 is the parameter of

any of the equilibria stated in the proposition. Since we have defined convergent

sequence of parameters above, and the normal distribution converges to the degen-

erate Dirac measure as σ2,η
u → 0, we have that ση(.|s) converges in distribution to

σ∗(.|s) as (θη1 , σ2,η
u ) → (θ∗1, 0). Likewise, as θ

η
1 → θ∗1 we have that σ

η,δ(.|s) converges

in distribution to σ∗(.|s).

Using the triangle inequality, we have that for any interval I ⊆ X:
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|ση,δ(I|s)− ση(I|s)| ≤ |ση,δ(I|s)− σ∗(I|s)|+ |σ∗(I|s)− ση(I|s)|

For any ϵ > 0, due to the fact any interval I in this application is a continuity

set, the portmanteau lemma6 and convergence in distribution of both the terms

on the right hand side of the above equation means we can find an η > 0 such

that |ση,δ(I|s) − ση(I|s)| < ϵ. Let X(s;σ∗
η) be the subset of actions that are not

a best response against the beliefs induced by the linear-normal strategy given by

parameters (θη1 , σ
2,η
u ). Since for any interval Ĩ ⊆ X(s;σ∗

η), we have that σ
η,δ(Ĩ|s) =

0, this means that ση(Ĩ|s) < ϵ. Thus we have an ϵ-Proxy Equilibrium. This means

that for any of the proposed Proxy Equilibria in the statement of the proposition

we can find a sequence of ϵ-Proxy Equilibria that converge in distribution to that

Proxy Equilibrium.

Proof of Proposition 3

We first show the following fact which is used several times in our proof.

Lemma A.1. Let I[a1,b1] = [a1, b1], I[a2,b2] = [a2, b2] be intervals in [0, 1], with

a1 > a2 and b1 > b2. Then for any z1 > z2 we have that:

1[z1 ∈ [a1, b1]] · 1[z2 ∈ [a2, b2]] ≥ 1[z2 ∈ [a1, b1]] · 1[z1 ∈ [a2, b2]] (25)

Moreover, this inequality holds strictly if z1 ∈ I[a1,b1] \ I[a2,b2] or z2 ∈ I[a2,b2] \

I[a1,b1].

These facts also hold for half-open intervals I[a1,b1) = [a1, b1) and I[a2,b2) =

[a2, b2).

Proof. For the right hand side of the inequality to be equal to one requires z2 <

z1 ≤ b2, z2 ≥ a1 > a2, z1 > z2 ≥ a1 and z1 ≤ b2 < b1 so z2 ∈ [a2, b2] and

z1 ∈ [a1, b1] and the left hand side is also equal to one.

6See Billingsley (2012) Theorem 25.8 on page 358 for a proof.
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The second part of the result holds by definition and the third part is clear by

applying the arguments above again.

We can then show an increasing best response property.

Lemma A.2. Given a perceived distribution over outcomes induced by a full-

support strategy σ, we have that U(z, x = 1; pπ) is strictly increasing in z ∈ [h, 1−

h].

Proof. For a given induced distribution pπ, we can use integration by parts to

write the perceived utility of the DM as follows.

U(z, x = 1; pπ) =

∫ 1

0

m(z̃)pπ(z̃|z• = z, x = 1)dµ(z̃)

= m(1)−
∫ 1

0

Pπ(z̃|z• = z, x = 1)dM(z̃)

Where Pπ(z̃|z•, x = 1) is the cdf of the induced distribution and M is the

Lebesgue-Stieltjes measure satisfying M((zl, zh]) = m(zh)−m(zl) for any 0 ≤ zl <

zh ≤ 1. Since m(.) is strictly increasing and right continuous, this measure exists.

Therefore, to show the result it is enough to show Pπ(z|z•1 , x = 1) ≤ Pπ(z|z•2 , x = 1)

for any 1 − h ≥ z•1 > z•2 ≥ h and all z, with strict inequality for all z in some

interval [a, b] ⊆ [0, 1]. Our assumptions about the conditional distribution of the

proxies gives us the following sequence of claims.

By Lemma A.1, we have that for any z1 > z2 and 1− h ≥ z•1 > z•2 ≥ h.

1[z1 ∈ [z•1 − h, z•1 + h]] · 1[z2 ∈ [z•2 − h, z•2 + h]]

≥ 1[z2 ∈ [z•1 − h, z•1 + h]] · 1[z1 ∈ [z•2 − h, z•2 + h]]

With strict inequality if z1 ∈ [z•1 − h, z•1 + h] \ [z•2 − h, z•2 + h] or z2 ∈ [z•2 −

h, z•2 + h] \ [z•1 − h, z•1 + h], given any 1− h ≥ z•1 > z•2 > h.

Multiplying both sides by p(z1)σ(x=1|z1)∫
Z p(z)σ(x=1|z)p(z•1 |z)dµ(z)

· p(z2)σ(x=1|z2)∫
Z p(z)σ(x=1|z)p(z•2 |s)dµ(z)

, we can

then write:
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pπ(z1|z•1)pπ(z2|z•2) ≥ pπ(z1|z•2)pπ(z2|z•1)

Integrating over both sides then gives us that Pπ(z|z•1 , x = 1) ≤ Pπ(z|z•2 , x =

1) for any z•1 > z•2 and z. By the strict inequality case above, we have that

Pπ(z|z•1 , x = 1) < Pπ(z|z•2 , x = 1) for any z ∈ [z•1 − h, z•1 + h] ∪ [z•2 − h, z•2 + h].

This completes the proof.

An outline of the proof is as follows. We first show why any Proxy Equilibrium

with partial entry must have a cut-off structure, and give a condition that the cut-

off must satisfy in terms of perceived expected utility. We then show how we can

construct a sequence of ϵ-Proxy Equilibria that converge to this cut-off structure.

Finally, we combine this with the endpoint assumptions to show that any equilibria

with entry at some signal has this cut-off structure.

We consider partial entry Proxy Equilibrium in which σ(x = 1|z) > 0 at a

strict subset of z ∈ Z> ⊂ [0, 1]. For such an equilibrium to exist, we must have a

sequence of ϵl-Proxy Equilibria, {σ∗
ϵl
}∞l=1 that converge in distribution to it. Given

we are considering partial entry Proxy Equilibria, for large enough l we must have

that the induced belief plπ in the ϵl-Proxy Equilibrium in the sequence is such that

U(z, x = 1; plπ) ≤ 0 for all z ∈ [0, h], and that x = 1 is a best response to plπ for

some z. By the fact perceived utility is increasing in z ∈ [h, 1 − h] from Lemma

A.2 there must be a cut-off z̄ϵ
l ∈ [h, 1] such that a best response is x = 0 for

z ∈ [0, z̄ϵ
l
] and x = 1 for z ∈ (z̄ϵ

l
, 1].

By the definition ϵl-Proxy Equilibrium, we must have that σ∗
ϵl
(x = 1|z) < ϵl

for all z ∈ [0, z̄ϵ
l
] and σ∗

ϵl
(x = 1|z) ≥ 1− ϵl for all z ∈ (z̄ϵ

l
, 1]. The perceived utility

of the DM at this cut-off z̄ϵ
l
is then:

∫ z̄ϵ
l

z̄ϵl−h

m(z̃)
σϵ(x = 1|z̃)p(z̃)∫ z̄ϵl+h

z̄ϵl−h
σϵ(x = 1|ẑ)p(ẑ)dµ(ẑ)

dµ(z̃)+

∫ z̄ϵ
l
+h

z̄ϵl
m(z̃)

σϵ(x = 1|z̃)p(z̃)∫ z̄ϵl+h

z̄ϵl−h
σϵ(x = 1|ẑ)p(ẑ)dµ(ẑ)

dµ(z̃) = 0

34



Thus as l → ∞, if our sequence of ϵ-Proxy Equilibria converges it will converge

to a Proxy Equilibrium with cut-off z̄∗ such that σ∗(x = 1|z) = 0 for z ∈ [0, z̄∗)

and σ∗(x = 1|z) = 1 for z ∈ [z̄∗, 1]. The perceived utility at the cut-off z̄∗ will

then be:

∫ z̄+h

z̄

m(z̃)
p(z̃)∫ z̄+h

z̄
p(ẑ)dµ(ẑ)

dµ(z̃) = 0 (26)

We then construct strategies that can form a sequence of ϵ-Proxy Equilibria

that converge to a partial entry Proxy Equilibria. These strategies have a cut-

off form where σξ(x|z) = ξ ∈ (0, 1
2
) for z ∈ [0, z̄) and σξ(x|z) = 1 − ξ ∈ (1

2
, 1)

for z ∈ [z̄, 1], with z̄ ∈ [0, 1] as the cut-off. We can then define the following

conditional density over z ∈ [h, 1− h] given z• = z̄.

gξ(z|z• = z̄) =
(1− ξ)1[z̃ ∈ [z̄, z̄ + h]] + ξ1[z̃ ∈ [z̄ − h, z̄)]

(1− ξ)
∫ z̄+h

z̄
p(ẑ)dµ(ẑ) + ξ

∫ z̄

z̄−h
p(ẑ)dµ(ẑ)

p(z̃) (27)

For any cut-off z̄ ∈ [h, 1− h] and k, we can choose:

ξ(z̄, k) =
k
∫ z̄+h

z̄
p(z̃)dµ(z̃)

k
∫ z̄+h

z̄
p(z̃)dµ(z̃) + (1− k)

∫ z̄

z̄−h
p(z̃)dµ(z̃)

(28)

Which is arbitrarily small for small enough 1 > k > 0. This ensures that:

∫ z̄

z̄−h

gξ(z̃|z• = z̄)dµ(z̃) =
ξ(z̄, k)

∫ z̄

z̄−h
p(z̃)dµ(z̃)

(1− ξ(z̄, k))
∫ z̄+h

z̄
p(z̃)dµ(z̃) + ξ(z̄, k)

∫ z̄

z̄−h
p(z̃)dµ(z̃)

= k

We can then write the perceived utility at z̄ ∈ [h, 1 − h] against the beliefs

induced by strategy σξ(z̄,k) with cut-off z̄ ∈ [h, 1− h] in the following way:

∫ 1

0

m(z̃)gξ(z̄,k)(z̃|z• = z̄)dµ(z̃) = (1− k)U(z̄, x = 1; z̄) + kU(z̄, x = 1; z̄) (29)

Which is a linear combination of the terms:
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U(z̄, x = 1; z̄) =

∫ z̄+h

z̄

m(z̃)
p(z̃)∫ z̄+h

z̄
p(ẑ)dµ(ẑ)

dµ(z̃) (30)

U(z̄, x = 1; z̄) =

∫ z̄

z̄−h

m(z̃)
p(z̃)∫ z̄

z̄−h
p(ẑ)dµ(ẑ)

dµ(z̃) (31)

We show that (29) is strictly increasing in z̄ ∈ [h, 1 − h] by showing (30) and

(31) are strictly increasing in z̄.

Lemma A.3. The expressions U(z̄, x = 1; z̄) and U(z̄, x = 1; z̄) are strictly in-

creasing for all z̄ ∈ [h, 1− h].

Proof. We define densities g(z; z̄) =
1[z∈[z̄,z̄+h]]p(z)∫ z̄+h
z̄ p(z̃)dµ(z̃)

and g(z; z̄) =
1[z∈[z̄−h,z̄)]p(z)∫
z̄−h

z̄p(ẑ)dµ(ẑ)
. We

show that for z1 > z2 and 1− h ≥ z̄1 > z̄2 ≥ h we have the following inequalities:

g(z1; z̄1)g(z2; z̄2) ≥ g(z1; z̄2)g(z2; z̄1) (32)

g(z1; z̄1)g(z2; z̄2) ≥ g(z1; z̄2)g(z2; z̄1) (33)

Where for any h ≤ z̄2 < z̄1 ≤ 1−h, we can find intervals I1, I2 ⊂ [0, 1] such that

if for z1 > z2, z1 ∈ I1, z2 ∈ I2 the inequality holds strictly. The above inequalities

reduce to:

1[z1∈[ẑ1,ẑ1+h],z2∈[z̄2,z̄2+h]] ≥ 1[z1∈[z̄2,z̄2+h],z2∈[z̄1,z̄1+h]]

1[z1∈[ẑ1−h,ẑ1),z2∈[z̄2−h,z̄2)] ≥ 1[z1∈[z̄2−h,z̄2),z2∈[z̄1−h,z̄1)]

Which proves our inequality result by Lemma A.1. We can then use the same

steps as in the proof of Lemma A.2 to prove the result.

With these results in hand, we can then both show existence of and characterize

the equilibria for this application.
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Proposition 3

Proof. At any ϵ-Proxy Equilibrium, the perceived utility of the DM is increasing

strictly for z ∈ [h, 1 − h] by Lemma A.2. The structure of the window form of

proxy mapping means that the beliefs of the DM are identical on z ∈ [0, h]. If the

DM is mixing σϵ(x = 1|z) > ϵ on z ∈ [0, h], then due to increasing expected payoff

on z ∈ [h, 1−h], they must be playing σϵ(x = 1|z) ≥ 1− ϵ on z ∈ (h, 1]. As ϵ → 0

and σϵ → σ their perceived utility at any z ∈ [0, h] given potential equilibrium σ

is:

∫ h

0

m(z)
σ(x = 1|z)p(z)∫ 1

0
σ(x = 1|z̃)p(z̃)dµ(z̃)

dµ(z) +

∫ 2h

h

m(z)
p(z)∫ 1

0
σ(x = 1|z̃)p(z̃)dµ(z̃)

dµ(z)

By the endpoint assumption and the fact that m(.) is increasing this is strictly

negative. Thus for small enough ϵ at any ϵ-Proxy Equilibrium we must have

σ(x = 1|z) < ϵ for z ∈ [0, h].

From this argument and Lemma A.2, any ϵ-Proxy Equilibria in which σ(x =

1|z) ≥ ϵ for some z must have some cut-off z̄ ∈ (h, 1] such that σ(x = 1|z) ≥ ϵ

only if z > z̄. The endpoint assumption
∫ 1

1−h
m(z)p(z)dµ(z) > 0 ensures that any

potential equilibrium strategy with cut-off z̄ ≥ 1− h will have σ(x = 1|z) = 1 as

a best response for all z ∈ [1− h, 1], and thus σ(x = 0|z) < ϵ for z ∈ [1− h, 1] in

any ϵ-Proxy Equilibrium.

We construct the following cut-off ϵ-Proxy Equilibrium strategy. For any cut-

off z̄ ∈ (h, 1], ϵ > 0 and kϵ ∈ (0, 1), define ξ(z̄, kϵ) as in (28). Let σϵ(x = 1|z) =

ξ(z̄, kϵ) on z ∈ [0, z̄] and σϵ(x = 1|z) = 1− ξ(z̄, kϵ) on z ∈ (z̄, 1]. We choose kϵ > 0

small enough such that ϵ > supz̄∈[h,1−h] ξ(z̄, kϵ). Then if we can find a z̄∗ such that

a best response to the beliefs induced by σϵ is σ(x = 1|z) = 0 on z ∈ [0, z̄∗] and

σ(x = 1|z) = 1 on z ∈ (z̄∗, 1] we have an ϵ- Proxy Equilibrium.

We have shown that the constructed strategy induces the beliefs at the cut-

off z̄ according to equation (29). We have also shown in Lemma A.3 that this

expression is strictly increasing in the cut-off z̄ ∈ [h, 1 − h]. Moreover, we have
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that as ϵ → 0, kϵ → 0, so this expression converges to that in equation (26). By

the endpoint assumptions (26) is strictly negative at z̄ = h and strictly positive

at z̄ = 1− h. Thus we can find a small enough ϵ > 0 and hence kϵ > 0 such that∫ 1

0
m(z̃)gξ(z̄,kϵ)(z̃|z• = h)dµ(z̃) < 0 and

∫ 1

0
m(z̃)gξ(z̄,kϵ)(z̃|z• = 1 − h)dµ(z̃) > 0.

Since
∫ 1

0
m(s̃)gξ(z̄,kϵ)(z̃|z• = z̄)dµ(z̃) is continuous and increasing in z̄ ∈ [h, 1− h],

we can find a z̄ = z̄∗ at which it is equal to zero by the intermediate value theorem.

This z̄∗ then gives us our ϵ-Proxy Equilibrium cut-off as stated above. As ϵ → 0,

we can find a sequence of ϵ-Proxy Equilibria of this form that converge to that in

the statement of the proposition.

For the final part of the proposition, we can always find a sequence of ϵ-Proxy

Equilibria that converges to a Proxy Equilibrium with x = 0 for all z ∈ [0, 1]. For

example, with small enough ϵ > 0 we can have an ϵ-Proxy Equilibrium such that

the DM plays x = 1 with probability ϵ > 0 on [0, α) and probability ϵ2 on [α, 1].

This induces beliefs to which x = 0 is a best response for all z.

Proof of Proposition 4

Proof. As shown in Proposition 3, there is a cut-off z̄∗ ∈ [h, 1−h] that characterizes

the cut-off equilibrium where σ(x = 1|z) = 0 for z ∈ [0, z̄∗] and σ(x = 1|z) = 1 for

z ∈ (z̄∗, 1]. We have shown the cut-off must solve the following equation.

U(z̄∗, x = 1; z̄∗) =

∫ z̄∗+h

z̄∗
m(z̃)

p(z̃)∫ z̄∗+h

z̄∗
p(ẑ)dµ(ẑ)

dµ(z̃) = 0

For the first part, consider that the statement is not true and we have that

z̄∗ ≥ α. Then we have U(z̄∗, x = 1; z̄∗) > 0 as all the probability weight in the

distribution is in z ∈ [α, 1], a contradiction. Thus the cut-off must be such that

z̄ < α.

For the second part, the end point assumptions being satisfied mean we are

comparing the cut-off equilibrium at h1 with the cut-off equilibrium at h2. Con-

sider the perceived utility at the cut-off under the equilibrium with noise h1.
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U(z̄(h1), x = 1;h1) =

∫ z̄(h1)+h1

z̄(h1)

m(z̃)
p(z̃)∫ z̄(h1)+h1

z̄
p(ẑ)dµ(ẑ)

dµ(z̃)

As this is an equilibrium cut-off, we must have that:

∫ z̄(h1)+h1

α

m(z̃)p(z̃)dµ(z̃) +

∫ α

z̄(h1)

m(z̃)p(z̃)dµ(z̃) = 0

If z̄(h1) is fixed, then as h1 increases to h2, the first part of this expression

that has weight on the positive part of the function m(.) increases while the

second part stays fixed. Thus the perceived utility at cut-off z̄(h1) when the

perceived distribution is induced by a strategy with cut-off z̄(h1), must become

positive at noise parameter h2 > h1. We have that U(z̄(h1), x = 1;h2) > 0,

U(h1, x = 1;h2) < 0 by the endpoint assumptions and U(z̄, x = 1;h2) is continuous

in z̄ ∈ [h1, 1−h1]. Therefore by the intermediate value theorem we can find a new

cut-off z̄(h2) < z̄(h1) that characterizes the positive entry equilibrium under noise

parameter h2.

Proof of Proposition 6

We prove Proposition 6 before Proposition 5 as we will use results in this section

in the proof of the latter.

We first prove a sequence of lemmas. Remember that we denote w = (y, x, z),

the perfect measurement mapping is denoted πδ and that W is the set of all the

Borel sets of Y ×X×Z. Enumerate the signal, action and circumstance variables

as 1, 2 and 3 respectively. Then we can denote any subset of the variable space

{1, 2, 3} by N ⊆ 23. We write the measure over the subset of true variables in N

as PN and the subset of the proxy variables in N as PN
π . These are related to the

measure over all the variables.

PN
π (WN) = Pπ(WN ×W−N) =

∫
Y×X×Z

π(WN ×W−N |w)p(w)dµ(w) (34)

39



We denote the set of Borel sets of the variable space only containing variables

in N by WN , and WN ∈ WN .

Lemma A.4. For any η > 0, if the proxy mapping is strongly η-close to perfect

then it is also η-close to perfect given any distribution over the true variables P .

In addition, for any subset of the variables N , if the proxy mapping is η-close

to perfect given distribution P then we have that:

TV (PN , PN
π ) < η (35)

Proof. For the first part, we have that:

TV (P, Pπ) = sup
A∈W

|P (A)− Pπ(A)|

= sup
A∈W

|
∫
Y×X×Z

πδ(A|w)p(w)dµ(w)−
∫
Y×X×S

π(A|w)p(w)dµ(w)|

= sup
A∈W

|
∫
Y×X×Z

(πδ(A|w)− π(A|w))p(w)dµ(w)|

≤ sup
A∈W

|
∫
Y×X×Z

∣∣πδ(A|w)− π(A|w)
∣∣ p(w)dµ(w)|

<|
∫
Y×X×Z

ηp(w)dµ(w)| = η

For the second part, we can show that the distance for the marginal distribution

over the subset of variables N is smaller than the distance for all the variables.

TV (PN , PN
π ) = sup

A∈WN

|PN(A)− PN
π (A)|

= sup
A∈WN×{V−N}

|P (A)− Pπ(A)|

≤ sup
A∈W

|P (A)− Pπ(A)| = TV (P, Pπ) < η

Where the last line follows as WN × {V−N} ⊂ W . This completes the proof.

Lemma A.5. Given a distribution over true variables P , let the sequence {πn}∞n=1

induce a sequence of distributions over the proxy variables {Pπn}∞n=1 that converges

to the true distribution P in the total variation distance.
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Then there exists a subsequence {πnk
}∞k=1 that induces, for any subset of the

variables N ,a subsequence of densities over the proxy variables {pNπnk
}∞k=1 that con-

verges pointwise µ almost everywhere to the true density, pNπnk
(w) → pN(w) for

almost all w ∈ Y ×X × Z.

Proof. An alternative expression for the total variation distance, given that the

distributions Q1 and Q2 over some measure space (Ω,A) admit densities q1 and

q2 with respect to some dominating measure µ, is as follows7.

TV (Q1, Q2) =
1

2

∫
Ω

|q1 − q2|dµ =
1

2
∥Q1 −Q2∥1 (36)

Therefore, convergence in the total variation distance is equivalent to conver-

gence in the L1 norm. By Lemma A.4 we have that the sequence {πn}∞n=1 induces

a sequence of distributions over the variables in N , {PN
πn
}∞n=1 which converges to

the true distribution PN in the total variation distance, and thus the L1 norm.

As each distribution in this sequence as well as the limit is assumed to admit

a density function, we have that ∥pNπn
− pN∥1 → 0. Thus, by Theorem 13.6 (pp

465) of Charalambos and Aliprantis (2006) we have that there is a subsequence

{pNπnk
}∞k=1 which converges pointwise to the true density pN almost everywhere.

We then extend this to the induced conditional distributions over proxy vari-

ables that form the agent’s beliefs under Proxy Equilibrium. For any distribution

over the true variables P , let XZ+ = {(x, z) ∈ X × Z : p(x, z) > 0}.

Lemma A.6. Given a distribution over true variables P , let the sequence {πn}∞n=1

induce a sequence of distributions over the proxy variables {Pπn}∞n=1 that converges

to the true distribution P in the total variation distance.

Then for µ-almost every (y, x, z) ∈ Y×XZ+ there exists a subsequence {πnk
}∞k=1

such that the induced subsequence of perceived conditional densities {pπnk
(y• =

y|x• = x, z• = z)}∞k=1 converges pointwise to the true conditional density p(y|x, z)

almost everywhere.

7See Tsybakov (2008) page 84 in Chapter 2.4 for a proof of this fact.
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Proof. By Lemma A.5 and the fact (x, z) ∈ XZ+, for µ-almost every (y, x, z) ∈

Y × XZ+ both the numerator and denominator of pπk(y• = y|x• = x, z• = z)

converge pointwise to the true joint density as k → ∞.

This result can then be used to show the following continuity property for

the perceived ex-ante expected indirect utility, under the full support assumption.

Remember that under the full-support assumption XZ+ = X × Z.

Proposition 6

We prove a stronger result.

Proposition 7. For µ almost every (y, x, z) ∈ Y × XZ+, for any ϵ > 0 there

exists an η > 0 such that if the proxy mapping π is η-close to perfect given true

distribution P and induces a distribution over the proxy variables that satisfies the

full support assumption, then |pπ(y• = y|x• = x, z• = z)− p(y|x, z)| < ϵ.

Proof. Assume for contradiction that there exists an ϵ > 0 and (y, x, z) at which

p(x, z) > 0 holds such that for any η > 0, we can find a π such that the induced dis-

tribution over proxies satisfies the full support assumption given P , TV (P, Pπ) < η

and |pπ(y• = y|x• = x, z• = z) − p(y|x, z)| ≥ ϵ. Then by setting η = 1
n
, we can

define a sequence {πn}∞n=1 that induces a sequence of distributions over the proxy

variables {Pπn}∞n=1 converging to the true distribution P in the total variation dis-

tance. Then by Lemma A.6 we have that pπnk
(y• = y|x• = x, z• = z) → p(y|x, z),

a contradiction.

Since Lemma A.6 holds for µ-almost every (y, x, z), we have that the result

holds µ almost everywhere.

Since the full support assumption on P implies that XZ+ = X × Z, this also

proves Proposition 6.

Proof of Proposition 5

Proof. We can write the perceived conditional distribution induced by proxy map-

ping π as:
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pπ(y
•|x•, z•) =

∑
y,x,s,z π(y

•, x•, z•|y, x, z)p(y|x, z)σ(x|z)p(z)∑
y•,y,x,s,z π(y

•, x•, z•|y, x, z)p(y|x, z)σ(x|z)p(z)
(37)

Where

σ(x|z) =
∑
s∈S

σ(x|s, z)p(s|z) (38)

If we define the probability of perfect measurement at realization (y, x, z):

πperf (y, x, z) = π(y• = y, x• = x, z• = z|y, x, z) (39)

And the set of all true variable realizations that are imperfectly measured as

(y•, x•, z•) along at least one dimension:

IMP (y•, x•, z•) = {(y, x, z) ∈ Y ×X × Z : (y ̸= y•) ∨ (x ̸= x•) ∨ (z ̸= z•)} (40)

Then can then write out (37) in a way that splits it into a part coming from

perfect measured realizations of the true variables and a mismeasured part:

pπ(y
•|x•, z•) = πperf (y•, x•, z•)

p(y•|x•, z•)σ(x•|z•)p(z•)∑
y•,y,x,s,z π(y

•, x•, z•|y, x, z)p(y|x, z)σ(x|z)p(z)

+ (1− πperf (y•, x•, z•))

∑
(y,x,z)∈IMP (y•,x•,z•)

π(y•,x•,z•|y,x,z)
(1−πperf (y•,x•,z•))

p(y|x, z)σ(x|z)p(z)∑
y•,y,x,s,z π(y

•, x•, z•|y, x, z)p(y|x, z)σ(x|z)p(z)

(41)

⇒ (sufficiency): Define Xns(σ∗, s, z) ≡ {x ∈ X : x /∈ supp{σ∗(.|s, z)}} and

XZns(σ∗) ≡ {(x, z) ∈ X × Z : x /∈ supp{σ∗(.|z)}}. We can split the second

condition in the proposition into two cases:

Case 1: For each z, for every action xns /∈ supp{σ∗(.|z)}, either there exists an

outcome ŷ ∈ Y such that for any s ∈ S and xs ∈ supp{σ∗(.|s, z)} we have that:

∑
y∈Y

u(y, xs, s)p(y|xs, z) > u(ŷ, xns, s) (42)
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Case 2: We have that for all ŷ ∈ supp{p(y|xns, z)}:

∑
y∈Y

u(y, xs, s)p(y|xs, z) = u(ŷ, xns, s) (43)

By the second condition of Potentially Implementability, one of these two cases

must hold. Using this, we can construct a function k : XZns(σ∗) → Y by selecting

ŷ ∈ Y such that xs gives at least as high expected utility as action xs at signal-

circumstance combination (x, z), given particular beliefs. These beliefs are such

that xs results in the distribution over y that occurs under perfect measurement

and xns results in ŷ with certainty. If several outcomes satisfy either condition

then pick one arbitrarily.

We construct a sequence of full support equilibria that converges to σ∗. Let σ∗
ϵ

be such that for any (x, s, z) if x ∈ supp{σ∗(.|s, z)} then σ∗
ϵ (x|s, z) = σ∗(x|s, z)−ϵ,

and if x /∈ supp{σ∗(.|s, z)} then σ∗
ϵ (x|s, z) = ϵ

|Xns(σ∗,s,z)| .

Denote K(y) ≡ {(x•, z•) ∈ X × Z : y = k(x, z) and (x•, z•) = (x, z)} as the

set of all actions and signals mapped to y by k. We construct a proxy mapping

πc that randomizes uniformly over all elements of K(y). That is:

πc(y
•, x•, z•|y, x, z) =



1

|K(y)| if y• = y, K(y) ̸= ∅ and (x•, z•) ∈ K(y)

0 if y• = y, K(y) ̸= ∅ and (x•, z•) /∈ K(y)

πδ(y
•, x•, z•|y, x, z) otherwise

From this we can then form another proxy mapping πη that draws the perfect

measurement mapping with probability 1− η
2
and mapping πc with probability η

2
.

Denote by

XZs(σ∗) ≡ {(x, z) ∈ X × Z : x ∈ supp{σ∗(.|z)}}

the set of actions and signal combinations such that the action is in the support

of the signal under strategy σ∗. We can then write:

44



πη(y
•, x•, z•|y, x, z) = (1− η

2
)πδ(y

•, x•, z•|y, x, z) + η

2
πc(y

•, x•, z•|y, x, z)

This mapping is clearly strongly η-close to perfect. For any (x•, z•) ∈ XZs(σ∗)

we have perfect measurement under πη and the conditional distribution over y

given (x•, z•) is equal to the rational expectations benchmark independently of

the strategy; pπη(y|x•, z•) = p(y|x•, z•). For any (x•, z•) /∈ XZs(σ∗), we can write

the conditional distribution for any ŷ = k(x•, z•) as:

pπη(ŷ|x•, z•) =

ϵ(1− η
2
)p(z•)p(ŷ|x•, z•) + η

2|K(ŷ)|
∑

x,s p(z)σ
∗
ϵ (x|z)p(ŷ|x, z)

ϵ(1− η
2
)p(z•) + η

2|K(y)|
∑

x,z p(z)σ
∗
ϵ (x|z)p(y = k(x, z)|x, z)

(44)

While for any ỹ ̸= k(x•, z•)

pπη(ỹ|x•, z•) =

ϵ(1− η
2
)p(z•)p(ỹ|x•, z•)

ϵ(1− η
2
)p(z•) + η

2|K(y)|
∑

x,z p(z)σ
∗
ϵ (x|z)p(y = k(x, z)|x, z)

(45)

For small enough ϵ > 0, (44) is arbitrarily close to one for any η > 0 due to

our assumption in the statement that p(y|x, z) has full support. Therefore, we

can push the perceived expected utility of any action taken at a signal that is not

in the support of the proposed strategy; (x•, z•) /∈ XZs(σ∗) arbitrarily close to

putting probability one on y = k(x•, z•), with the remaining weight assigned to

p(y|x•, z•).

Any action-signal combination in the support of σ∗; (x•, z•) ∈ XZs(σ∗), has

perceived expected utility equal to the rational expectations benchmark. There-

fore for either of the two cases derived from the second condition of potential

implementability, (42) and (43), for small enough η > 0 the constructed proxy

mapping allows us to support σ∗
ϵ as an ϵ-Proxy Equilibrium for ϵ > 0 close enough

to zero. Since σ∗
ϵ → σ∗ as ϵ → 0, we have our result.
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⇐ (necessity): If we first consider the expression (37), we can write the nu-

merator and denominator as:

pπ(y
•, x•, z•;σ) =

∑
y,x,s,z

π(y•, x•, z•|y, x, z)p(y|x, z)σ(x|z)p(z) (46)

pπ(x
•, z•;σ) =

∑
y•,y,x,s,z

π(y•, x•, z•|y, x, z)p(y|x, z)σ(x|z)p(z) (47)

Both are continuous in the strategy σ, meaning pπ(y
•|x•, z•;σ) is well defined

for any full support strategy σ. Thus if we take a potentially implementable

strategy σ∗, for any δ
2
> 0 we can find an ξ > 0 such that for any full support

strategy σ∗
ϵ satisfying max(x,z,s)∈X×Z×S |σ∗

ϵ (x|s, z) − σ∗(x|s, z)| < ξ we have that

|pπ(y•|x•, z•;σ∗
ϵ )− pπ(y

•|x•, z•;σ∗)| < δ
2
for any y• ∈ Y if x• ∈ supp{σ∗(.|z•)}.

From Lemma A.4 and Proposition 6, we have for any δ
2
> 0 we can find a η > 0

such that if π is strongly η-close to perfect then |pπ(y•|x•, z•;σ∗)−p(y•|x•, z•)| < δ
2

for any y• ∈ Y if (x•, z•) such that x• ∈ supp{σ∗(.|z•)}.

Combining these observations, we have that for any δ > 0, there exists ξ > 0

and η > 0 such that if for any full support strategy σ∗
ϵ , max(x,z,s)∈X×Z×S |σ∗

ϵ (x|s, z)−

σ∗(x|s, z)| < ξ and π is strongly η-close to perfect, then if (x•, z•) such that

x• ∈ supp{σ∗(.|z•)}:

|pπ(y•|x•, z•;σ∗
ϵ )− p(y•|x•, z•)|

≤ |pπ(y•|x•, z•;σ∗
ϵ )− pπ(y

•|x•, z•;σ∗)|+ |pπ(y•|x•, z•;σ∗)− p(y•|x•, z•)|

<
δ

2
+

δ

2
= δ (48)

For all y• ∈ Y .

Thus we can find an η > 0 such that for any full-support strategy that is close

to the proposed strategy the perceived conditional distribution over outcomes is

arbitrarily close to the true conditional distribution for action-signal combinations
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that are in the support of that strategy.

If the proposed strategy violates the first condition of potential implementabil-

ity for some (x, z, s) at which x ∈ supp{σ∗(.|s, z)}, then the above fact means that

we cannot find any convergent sequence of full-support strategies in which x is a

best response at this (s, z) combination, meaning we cannot support the proposed

strategy as a Proxy Equilibrium. Similarly, if the second condition of poten-

tial implementability is violated, then for some (s, z), xns /∈ supp{σ∗(.|z)} and

xs ∈ supp{σ∗(.|s, z)} we have:

∑
y∈Y

u(y, xs, s)p(y|xs, z) <
∑
y∈Y

u(y, xns, s)q(y|xns, z) (49)

For any full-support conditional distribution q : X × Z → ∆(Y ). Since we

have convergence of the conditional distribution at xs ∈ supp{σ∗(.|s, z)} for any

π that is η-close to perfect as π → 0, and by (41) any π that has some possibility

of perfect measurement must induce a full-support conditional distribution over

Y , we have that any proposed strategy that violates the second condition cannot

be implemented as a Proxy Equilibrium.
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