Prospect Equality: A Force of Redistribution

Xiangyu Qu

EEA-ESEM, Collective Decision Making and Social Choice

August 31, 2023
Redistribution Puzzle

Meltzer and Richard [1981], claimed that as income inequality increases, a society will prefer policies supporting greater redistribution to counter excessive income disparities.

Empirical Evidence is ambiguous:

- Meltzer and Richard [1983], Borge and Rattsø [2004]

- Alesina and Glaeser [2004] observed the opposite pattern:
 - Western European countries have lower levels of objective income inequality than the US but demand a higher redistribution policy.
Inequality by countries

Figure: *

OECD data
Tax Rates by countries

Top marginal tax rate, by country

UK 92%
US 72%
France 62%
Germany 53%

2017 supertax 75%

Sources: PwC, Piketty (2014)
Recent Evidence

Perceived inequality deviates from objective inequality: Page and Goldstein [2016], Kuhn [2020]

Perceived inequality—not the objective one—correlates strongly with demand for redistribution: Gimpelson and Treisman [2018]

Determinants of perceived inequality

- Objective Inequality
- **Prospect** Equality
 - US believes **efforts** determine incomes.
 - West Europe believes **luck** determines incomes.
Emmanuel Macron: “France is not like other countries. The sense of injustice is more intense than elsewhere.”
This paper

I ask
 • which elements are most relevant to perceived inequality?

I suggest
 • a novel model of perceived inequality.

I provide
 • behavioral foundation for such model.

I demonstrate
 • the redistribution puzzle is compatible with my model.
The Setup

- a society contains $n \geq 2$ individuals
- $x = (x_1, \ldots, x_n) \in X \subset \mathbb{R}_+^n$: an income allocation
- \mathcal{A}: the set of nonempty subsets of X
 - prospect set $A \in \mathcal{A}$
 - \mathbb{D}: set of pairs (x, A).
- $\preceq \subset \mathbb{D} \times \mathbb{D}$
The Model

Definition

A function $J : \mathbb{D} \to \mathbb{R}$ is an index of the *perception of inequality* if there exists an index of objective inequality I such that for $(x, A) \in \mathbb{D}$,

$$J(x, A) = |I(x) - \theta \min_{y \in A} I(y)|,$$

where $0 \leq \theta \leq 1$. In particular, we say J is a *Gini index* of the perception of inequality if I is an objective Gini coefficient defined as follows: for all $x \in X$,

$$I_g(x) = \frac{\sum_{1 \leq i < j \leq n} |x_i - x_j|}{n^2 \mu(x)}.$$

(1)

(2)
Objective vs Perceived Inequality

Example

- A society consists of two individuals.
- Income profiles: \(x = (7, 3), \ y = (5, 5), \ x' = (9, 1) \) and \(y' = (8, 2) \).
- Gini indices are \(I_g(x) = 0.4 \), \(I_g(y) = 0 \), \(I_g(x') = 0.8 \) and \(I_g(y') = 0.6 \).
- Consider two alternatives \((x, \{x, y\})\) and \((x', \{x', y'\})\).
- Let \(\theta = 0.8 \).

\[
J(x, \{x, y\}) = I_g(x) - 0.8 \times I_g(y) = 0.4 > 0.32 = I_g(x') - 0.8 \times I_g(y') = J(x', \{x', y'\}).
\]

Hence, the perceived inequality from \(J(x, \{x, y\}) > J(x', \{x', y'\}) \).
Voting on Redistribution

Voter i has prospect inequality preferences over \mathbb{D} if $u_i : \mathbb{D} \rightarrow \mathbb{R}$ has the following form:

$$u_i(x, A) = x_i - \delta \cdot |I_g(x) - \theta \min_{y \in A} I_g(y)|. \quad (3)$$

where scalars $0 \leq \delta, \theta \leq 1$.

- $\delta = 0$: self-interest voters. (Meltzer and Richard [1981])
- $\theta = 0$: inequality averse voters. (Tyran and Sausgruber [2006], Dhami and al Nowaihi [2010])
Assumptions

• voter \(i \) belongs to either rich or poor class: \(n_r + n_p = n \)

• Income allocation \(x = (x_r, x_p) \), where \(x_r > x_p \)

• Prospect equality:
 ▶ low: pretax income allocation \(x \) with \(n_{rl} + n_{pl} \) voters.
 ▶ high: perfectly equal allocation \(x^* \) with \(n_{rh} + n_{ph} \) voters.
Pre-tax utilities

1). The pretax utility of rich voters with low prospects is

\[u_{rl}(x) = x_r - \delta |I_g(x) - I_g(x)| = x_r \]

(2). The pretax utility of rich voters with high prospects is

\[u_{rh}(x) = x_r - \delta |I_g(x) - I_g(x^*)| = x_r - \delta I_g(x). \]

(3). The pretax utility of poor voters with low prospects is

\[u_{pl}(x) = x_p \]

(4). The pretax utility of poor voters with high prospects is

\[u_{ph}(x) = x_p - \delta I_g(x). \]
Tax Scheme

- uniform redistribution policy: $0 < t \leq 1$
- total collected tax: $(n_r x_r + n_p x_p) t$
- transfer $b = \frac{(n_r x_r + n_p x_p) t}{n}$
- $x(t)$ after-tax income allocation with tax rate t
- For $q \in (0, 1]$, q-majority voting rule: the number of voters who vote for policy t must be greater than qn for the policy to be accepted.
After-tax utilities

1’). The after-tax utility of rich voters with low prospects is

$$u_{r\ell}(x(t)) = (1 - t)x_r + b - \delta|I_g(x(t)) - I_g(x)|$$

Therefore, a rich voter with a low prospect will vote for tax policy t if and only if

$$\delta < \frac{b - tx_r}{I_g(x) - I_g(x(t))}.$$

Since $b - tx_r < 0$ and $\delta \geq 0$, a rich voter with a low prospect will never vote for redistribution.

(2’). The after-tax utility of rich voters with high prospects is

$$u_{rh}(x(t)) = (1 - t)x_r + b - \delta I_g(x(t))$$

Therefore, a rich voter with a high prospect will vote for tax policy t if and only if

$$\delta > \frac{tx_r - b}{I_g(x) - I_g(x(t))}.$$

Rich voter with a high prospect is sufficiently sensitive to perceive inequality, then she will vote for tax policy t.

After-tax utilities

(3'). The after-tax utility of poor voters with low prospects is

\[u_{pl}(x(t)) = (1 - t)x_p + b - \delta |I_g(x) - I_g(x(t))| \]

Therefore, a poor voter with a low prospect will vote for tax policy \(t \) if and only if

\[\delta < \frac{b - tx_p}{I_g(x) - I_g(x(t))}. \]

Contrary to the above case, if a poor voter with a low prospect is overly sensitive to the perception of inequality, then she will not vote for redistribution.

(4'). The after-tax utility of poor voters with high prospects is

\[u_{ph}(x(t)) = (1 - t)x_p + b - \delta I_g(x(t)). \]

It is immediately clear that a poor voter with a high prospect will always vote for redistribution.
Proposition

Consider a tax policy $t \in (0, 1]$.

(i) If $n_p < n_r$ and $\delta \in \left(\frac{tx_r - b}{I_g(x) - I_g(x(t))}, \frac{b - tx_p}{I_g(x) - I_g(x(t))}\right)$, then tax policy t is accepted iff $n_{rh} + n_p > qn$.

(ii) If $n_p < n_r$ and $\delta > \frac{b - tx_p}{I_g(x) - I_g(x(t))}$, then tax policy t is accepted iff $n_{rh} + n_{ph} > qn$.

(iii) If $n_p > n_r$ and $\delta > \frac{tx_r - b}{I_g(x) - I_g(x(t))}$, then tax policy t is accepted iff $n_{rh} + n_{ph} > qn$.

(iv) If $n_p > n_r$ and $\delta < \frac{b - tx_p}{I_g(x) - I_g(x(t))}$, then tax policy t is accepted iff $n_p > qn$.
The Model

Definition

A function $J : \mathbb{D} \rightarrow \mathbb{R}$ is an index of the perception of inequality if there exists an index of objective inequality I such that for $(x, A) \in \mathbb{D}$,

$$J(x, A) = |I(x) - \theta \min_{y \in A} I(y)|,$$

(4)

where $0 \leq \theta \leq 1$. In particular, we say J is a Gini index of the perception of inequality if I is an objective Gini coefficient defined as follows: for all $x \in X$,

$$I_g(x) = \frac{\sum_{1 \leq i < j \leq n} |x_i - x_j|}{n^2 \mu(x)}.$$

(5)
Axiom 1. \textit{(Weak order.)} \succeq is complete and transitive.

Axiom 2. \textit{(Continuity.)} For all $(x, A) \in \mathcal{D}$, the sets \{(y, B) \in \mathcal{D} : (x, A) \succsim (y, B)\} and \{(y, B) \in \mathcal{D} : (y, B) \succsim (x, A)\} are closed.
Let \(\tilde{x} \) be the income distribution obtained from \(x \) by rearranging the incomes in an increasing order, i.e., \(\{x_1, \ldots, x_n\} = \{\tilde{x}_1, \ldots, \tilde{x}_n\} \) and \(\tilde{x}_1 \leq \ldots \leq \tilde{x}_n \).

Definition

If \(n \geq 3 \) and \(x \in X \), then the function \(L_x \), for \(p \in [0, 1] \) and \(k = 0, 1, \ldots, n \), defined by

\[
L_x(p) = \frac{1}{n \mu(x)} \sum_{i=1}^{k} \tilde{x}_i \quad \text{if} \quad \frac{k}{n} \leq p < \frac{k+1}{n}
\]

is called the *Lorenz measure* associated with \(x \), and its graph is referred to as the corresponding Lorenz curve.

Axiom 3. *(Lorenz principle.)* If \(x \) Lorenz dominates \(y \), then \((x, \{x\}) \gtrless (y, \{y\}) \). For perfect equality, \(x^* \) and all \(y \in X \), \((x^*, \{x^*\}) \gtrless (x^*, \{y\}) \) and \((x^*, \{x^*\}) \gtrless (y, \{x^*\}) \).
Axiom

\((x, \{y\})\) is underprospect if \((x^*, \{y\}) \succsim (x, \{x^*\})\); overprospect if \((x, \{x^*\}) \succsim (x^*, \{y\})\); and ideal prospect if \((x, \{x^*\}) \sim (x^*, \{y\})\).

Axiom 4 (Monotonicity.) For all ideal prospect alternatives \((x, \{y\})\),

(i) if \((x, \{x\}) \succsim (x', \{x'\}) \succsim (x'', \{x''\})\), then
\((x', \{y\}) \succsim (x'', \{y\})\);

(ii) if \((y', \{y'\}) \succsim (y'', \{y''\}) \succsim (y, \{y\})\), then
\((x, \{y''\}) \succsim (x, \{y\})\).
Axiom

For $c > 0$, let

$$X_c = \{x \in X : \mu(x) = c\}$$

be the set of income profiles wherein each profile has the same average income c, and define

$$\tilde{X}_c = \{x \in X_c : x_1 \leq x_2 \leq \cdots \leq x_n\}$$

Axiom 5. \textbf{(Order-preserving Independence)} For $c > 0$ and $x, x', y, y', z, z' \in \tilde{X}_c$, if $(x, \{x'\}), (y, \{y'\})$ and $(z, \{z'\})$ are all underprospect (or all overprospect), then $(x, \{x'\}) \succsim (y, \{y'\})$ implies $(\alpha x + (1 - \alpha)z, \{\alpha x' + (1 - \alpha)z'\}) \succsim (\alpha y + (1 - \alpha)z, \{\alpha y + (1 - \alpha)z'\})$ for all $\alpha \in [0, 1]$.

Axiom

For \(x \in X \) and \(1 \leq i, j \leq n \), we say \(i \) precedes \(j \) in \(x \) if \(x_i \leq x_j \) and there is no \(1 \leq k \leq n \) such that \(x_i < x_k < x_j \).

Axiom 6. \((\text{Ben Porath-Gilboa Transfer Principle.})\) For \(c > 0 \), take any \(x, y, x', y' \in X_c \) and \(1 \leq i, j \leq n \). If

(a) \(i \) precedes \(j \) in \(x, y, x', y' \)
(b) \(x_i = x'_i + s, \ x_j = x'_j - s \) and \(y_i = y'_i + s, \ y_j = y'_j - s \) for some \(s > 0 \)
(c) \(x_k = x'_k \) and \(y_k = y'_k \) for \(k \notin \{i, j\} \)

are satisfied, then

\((x, \{x\}) \succeq (y, \{y\})\) if and only if \((x', \{x'\}) \succeq (y', \{y'\})\).
Axiom

A prospect set A dominates B if for each $x \in A$ there exists $y \in B$ such that
$$(x, \{x\}) \succsim (y, \{y\}).$$
We say prospect sets A and B are equivalent if A dominates B and B dominates A.

Axiom 7 (Equivalence.) For all x and A, B, if A and B are equivalent, then
$$(x, A) \sim (x, B).$$
Characterization

Theorem

An individual preference relation \succeq satisfies Axioms 1-7 if and only if there exists J as in eqs (1) and (2) that represents \succeq.
Conclusion

- It is widely observed that perceived, not objective, inequality is positively correlated to redistribution policy.
- This paper formally construct and characterize a model to reflect perceived inequality of voters.
- I demonstrate that the proposed model can well explain redistribution puzzle under a voting scheme.