Reallocation dynamics in production networks with heterogeneous elasticities

Côme Poirier & Gauthier Vermandel

EEA Congress – Barcelona 28th August 2023

Motivation

2 The model

- Estimation method
- Oissecting the propagation of shocks
- 5 Why is the H-IES hyptohesis better after all ?

Motivation

2 The model

- 3 Estimation method
- Oissecting the propagation of shocks
- Why is the H-IES hyptohesis better after all ?

Motivation

- Production side of the economy has shown to be more and more connected (Acemoglu & Azar, [2020])
- Firms and sectors are very intertwined and it has some major implications on shock propagation, with more or less vulnerabilities : COVID-19, Ukrainian conflict...

FIGURE 1.—Evolution of U.S. input-output linkages. Average degree (number of suppliers) from the U.S. summary input-output tables, 1963–1996. We use the harmonized commodity-by-commodity matrix, which is available for 61 industries during this period.

- The ability of firms to find a supplier and substitute inputs determines the resilience of supply chains, and in turn shapes the downstream propagation of supply shocks along the production network
- This puts stress on the idea that **reallocation patterns** are essential in our understanding of shock propagation
- Production networks modelling has shifted from Cobb-Douglas to CES modelling to take these mechanisms into account

- $\bullet\,$ Models use a unique input elasticity of substitution for ALL sectors ! (henceforth U-IES hypothesis)
- This is a strong restriction on sectors' ability to substitute
- And it might considerably affect propagation patterns

Are sectors' substitution abilities really identical ?

Motivation : two challenges (quantification of reallocation channels)

- There is very few empirical quantification of the reallocation channels in the literature
- Nevertheless, industrial policies can play a major role in counterfeiting these effects when they're unfavourable for the economy

What is the contribution of reallocation mechanisms in shock transmission ?

- Intermediate input elasticities of substitution are heterogeneous across industries
- The H-IES model yields more variability in aggregate fluctuations as compared to that in U-IES models
- The contribution of reallocation mechanisms to shock propagation is quantitatively important
- Sectoral shocks are the main drivers of aggregate fluctuations

Motivation

2 The model

- 8 Estimation method
- Oissecting the propagation of shocks
- 5 Why is the H-IES hyptohesis better after all ?

Prelude : how does work a CES function ?

A CES technology is a function with :

$$(\sum_{j} \phi_{j}^{\frac{1}{\sigma}} C_{jt}^{1-\frac{1}{\sigma}})^{\frac{\sigma}{\sigma-1}}$$

where ϕ_j are weights (e.g.: demand share), C_{jt} are the goods and σ is the elasticity of substitution. When :

- $\sigma>$ 1, goods are "gross substitutes" : a higher price in a sector increases demand for other products
- $\sigma <$ 1, goods are "gross complements" : a higher price in a sector decreases demand for other products
- $\sigma = 1$, the function is Cobb-Douglas

Representative household maximizing its consumption basket :

$$\max_{(C_{jt})_j} C_t = D_t^{\frac{1}{\sigma-1}} (\sum_j \phi_j^{\frac{1}{\sigma}} C_{jt}^{1-\frac{1}{\sigma}})^{\frac{\sigma}{\sigma-1}}$$

under simplified budget constraint:

$$C_t = w_t$$

where w_t is the real wage

Firms

Firms maximize their profit:

$$\begin{aligned} \max_{Y_{jt}, L_{jt}, (M_{jit})_i} p_{jt} Y_{jt} - w_{jt} L_{jt} - \sum_{i=1}^{N} p_{it} M_{jit} \\ s.t: Y_{jt} &= \xi_j Z_t A_{jt} L_{jt}^{\beta_j} (\sum_{i=1}^{N} \gamma_{ij}^{\frac{1}{\sigma_j}} M_{jit}^{1 - \frac{1}{\sigma_j}})^{\frac{\sigma_j (1 - \beta_j)}{\sigma_j - 1}} \quad for \ t = 0, 1.. \end{aligned}$$

with Y_{jt} the output of sector *j*, L_{jt} the labor use, M_{jit} the input use of good *i* for sector *j*'s output, Z_t the common state of technologyand A_{jt} the sectoral state of technology. We add the resource constraint :

$$Y_{jt} = C_{jt} + \sum_{i=1}^{N} M_{ijt}$$

Shocks

avec :

There are three types of shocks in our model :

$$(Sectoral Supply) : \log(A_{jt}) = \rho_j \log(A_{j(t-1)}) + \epsilon_{jt}$$
$$(Aggregate Supply) : \log(Z_t) = \rho_Z \log(Z_{t-1}) + \epsilon_{Zt}$$
$$(Aggregate Demand) : \log(D_t) = \rho_D \log(D_{t-1}) + \epsilon_{Dt}$$

$$\epsilon_{jt} \stackrel{i.i.d}{\sim} \mathcal{N}(0, v_j^2)$$

$$\epsilon_{Zt} \stackrel{i.i.d}{\sim} \mathcal{N}(0, \Upsilon_Z^2)$$

$$\epsilon_{Dt} \stackrel{i.i.d}{\sim} \mathcal{N}(0, \Upsilon_D^2)$$

Motivation

2 The model

Estimation method

Oissecting the propagation of shocks

5 Why is the H-IES hyptohesis better after all ?

In our model, we estimate :

- The standard deviations of shocks $(v_j)_j, \Upsilon_Z, \Upsilon_D$
- The persistence coefficients $(\rho_j)_j$, ρ_Z and ρ_D
- The elasticities of substitution for production $(\sigma_j)_j$ and consumption σ

The sectors

- AGR : Agriculture, forestry, fishing and hunting
- MIN : Mining
- UTI : Utilities
- CON : Construction
- MAN : Manufacturing
- WHO : Wholesale trade
 - RET : Retail trade
 - TRA : Transportation and warehousing
 - INF : Information
 - FIN : Finance, insurance, real estate, rental and leasing
 - BUS : Professional and business services
 - EDU : Educational services, health care, and social assistance
- ART : Arts. entertainment, recreation, accommodation and food services
- OTH : Other services, except government
- GOV : Government

Table: Description of the 15 industries

- We use bayesian estimation under Dynare, combining prior knowledge on the estimates distribution and data
- For the prior distribution, we use specifications close to the literature
- For the calibration of the other parameters, we follow a methodology close to Atalay (2021)

- The data used as observables are the sectoral outputs (Y_j) provided by the BEA and the Personal Consumption Expenditure index (C) given by the FRED database between 1948Q1 and 2020Q4
- As the data are annual, we have quarterlyised them using a temporal disaggregation method à la Chow-Lin, which gives 291 estimation points
- These data were also filtered to remove trends and obtain stationary observables

Sectoral Estimates

		Prior distribution			Posterior distribution		
Parameter		Туре	Mean	SD	Mean [5%;95%]		
Input Elasticities	$\sigma_{\sf AGR}$	\mathcal{IG}	0.9	2	1.11 [0.76 , 1.45]		
	σ_{MIN}	\mathcal{IG}	0.9	2	1.60 [1.19 , 1.99]		
	$\sigma_{ m UTI}$	\mathcal{IG}	0.9	2	0.31 [0.19 , 0.42]		
	σ_{CON}	\mathcal{IG}	0.9	2	0.29 [0.19 , 0.38]		
	σ_{MAN}	\mathcal{IG}	0.9	2	0.21 [0.16 , 0.26]		
	$\sigma_{ m WHO}$	\mathcal{IG}	0.9	2	0.39 [0.22 , 0.56]		
	σ_{RET}	\mathcal{IG}	0.9	2	0.76 [0.25 , 1.34]		
	σ_{TRA}	\mathcal{IG}	0.9	2	0.33 [0.20 , 0.46]		
	σ_{INF}	\mathcal{IG}	0.9	2	0.27 [0.18 , 0.35]		
	σ_{FIN}	\mathcal{IG}	0.9	2	0.26 [0.19 , 0.32]		
	$\sigma_{\sf BUS}$	\mathcal{IG}	0.9	2	0.26 [0.18 , 0.33]		
	$\sigma_{\rm EDU}$	\mathcal{IG}	0.9	2	0.72 [0.24 , 1.23]		
	σ_{ART}	\mathcal{IG}	0.9	2	1.73 [0.44 , 2.84]		
	$\sigma_{ m OTH}$	\mathcal{IG}	0.9	2	0.63 [0.23 , 1.08]		
	$\sigma_{\sf GOV}$	\mathcal{IG}	0.9	2	2.98 [2.00 , 3.93]		

Notes: $\mathcal B$ denotes the Beta and $\mathcal I\mathcal G$ the Inverse Gamma (type 1) distribution.

Table: Results of posterior estimation for sectoral parameters

Motivation

2 The model

Estimation method

Oissecting the propagation of shocks

Why is the H-IES hyptohesis better after all ?

Proposition

The first-order effect of a productivity shock in sector i on the log output of sector j around the steady state can be decomposed into three complementary channels as follows:

$$\frac{\partial \log Y_j}{\partial \epsilon_i}|_{\epsilon=0} = TOT_{ji} = DE_{ji} + CR_{ji} + IR_{ji}, \tag{1}$$

where each channel is given by:

$$DE_{ji} = I_{ji}$$

$$CR_{ji} = \frac{1}{\lambda_j} (1 - \sigma) \left[\sum_{r=1}^{N} \phi_r I_{rj} I_{ri} - (\sum_{r=1}^{N} \phi_r I_{ri}) (\sum_{r=1}^{N} \phi_r I_{rj}) \right]$$

$$IR_{ji} = \frac{1}{\lambda_j} \sum_{k=1}^{N} \lambda_k (1 - \sigma_k) \left[\sum_{r=1}^{N} \gamma_{kr} I_{rj} I_{ri} - \frac{1}{1 - \beta_k} (\sum_{r=1}^{N} \gamma_{kr} I_{ri}) (\sum_{r=1}^{N} \gamma_{kr} I_{rj}) \right].$$

How to read a multiplier matrix

Transmitters

Figure: Downstream multiplier matrix for the US economy

Heatmap example with the Input reallocation channel

We only show the Input reallocation channel heatmap IR here :

Figure: Heatmap of input reallocation multiplier for the US economy

- Blue means amplification, red means dampening
- Overall, *IR* channel dampens the shock propagation due to complementarity on average

Why does reallocation matter ?

Remember that :

$$TOT_{ji} = DE_{ji} + CR_{ji} + IR_{ji}$$

To understand the extent to which reallocation channels CR and IR matter, we compute the percentage error of prediction of the idiosyncratic shock multiplier under Cobb-Douglas against CES :

$$\varepsilon_{ji}^{(l)} = \frac{|DE_{ji} - TOT_{ji}|}{TOT_{ji}},\tag{2}$$

This first type error shows how important are reallocation channels (the higher $\varepsilon^{(l)}$, the more important reallocation is).

Why does reallocation matter ?

First type errors $\varepsilon^{(l)}$ are represented with the following heatmap :

Figure: Relative percentage loss ε_{ij} for predicting idiosyncratic shock multipliers for Cobb-Douglas against CES substitutions

Motivation

2 The model

8 Estimation method

Dissecting the propagation of shocks

5 Why is the H-IES hyptohesis better after all ?

Reason 1 : elasticities are indeed dispersed

The estimated elasticites in our model are dispersed and relatively far from 0. Common estimate used in the literature for calibration comes from Atalay (2017) : $\sigma = 0.1$.

Figure: Dispersion of estimated elasticities of substitution

Reason 2 : the Input reallocation channel is strongly affected

Remember that the only channel which is elasticity-dependent is IR :

$$IR_{ji} = \frac{1}{\lambda_j} \sum_{k=1}^N \lambda_k (1 - \sigma_k) \left[\sum_{r=1}^N \gamma_{kr} I_{rj} I_{ri} - \frac{1}{1 - \beta_k} (\sum_{r=1}^N \gamma_{kr} I_{ri}) (\sum_{r=1}^N \gamma_{kr} I_{rj}) \right].$$

Question is : how does H-IES vs U-IES affect this channel ? We answer by computing the second type (II) of relative errors of prediction of the idiosyncratic shock multiplier is given by:

$$\varepsilon_{ji}^{(II)} = \frac{|IR_{ji}|_{\sigma_j=0.43} - IR_{ji}|}{IR_{ji}},\tag{3}$$

Reason 2 : the Input reallocation channel is strongly affected

The second type errors on the Input Reallocation channel are very high :

Figure: Relative percentage difference $\varepsilon_{ij}^{(II)}$ of Input Reallocation multipliers (*IR*) between U-IES and H-IES hypothesis

- Remember that the Input Reallocation channel under H-IES dampens shock propagation overall due to complementarity
- But U-IES pushes the production network towards even more complementarity
- The result is an underestimation of aggregate volatility !

Reason 3 : recessions (as well as booms) are underestimated

We feed both models with the same sequence of shocks (here, estimated recessive shocks) and we compare the aggregate output response :

Figure: (a) Dotcom crisis

Figure: (b) Subprime crisis

Figure: Counterfactual output with H-IES and U-IES models (the U-IES case corresponds to $\sigma_i = 0.43$)

Motivation

2 The model

- 3 Estimation method
- Oissecting the propagation of shocks
- 5 Why is the H-IES hyptohesis better after all ?

- First bayesian estimation of a multi-sectoral model with heterogeneous CES elasticities
- Sectors exhibit heterogeneous elasticities of substitution, and it matters !
- Theoretical decomposition of shock propagation with quantitative estimation of the different channels
- Input reallocation channel is crucial in aggregate volatility and is strongly affected by H-IES vs U-IES hypothesis
- Sectoral shocks are the main drivers of aggregate volatility

	No substitution	Partial SU	BSTITUTION	Full substitution	
Model type	$(\sigma = 1, \sigma_j = 1)$	$(\sigma \neq 1, \sigma_j = 1)$	$(\sigma = 1, \sigma_j \neq 1)$	$(\sigma \neq 1, \sigma_j = 0.43)$	$(\sigma \neq 1, \sigma_j \neq 1)$
Prior probability	0.2	0.2	0.2	0.2	0.2
Log marginal data density	16240.62	16383.95	16622.51	16649.18	16691.27
Bayes ratio	1	3.45e+62	7.95e+165	4.23e+177	7.36e+195
Posterior model probability	0.00	0.00	0.00	0.00	1.00

Table: The comparison of prior and posterior model probabilities with different specifications (with parameters taken at their posterior mode).