Buy Big or Buy Small? Procurement Policies, Firms' Financing, and the Macroeconomy

Julian di Giovanni¹ Manuel García-Santana² Priit Jeenas³ Enrique Moral-Benito⁴ Josep Pijoan-Mas⁵

> ¹FRBNY and CEPR ²World Bank, UPF, BSE, CREi, CEPR ³UPF, BSE, CREi ⁴Banco de España ⁵CEMFI and CEPR

EEA Annual Congress August 2023

This project does not represent the official views of the Banco de España, World Bank or the FRBNY.

Motivation

- Governments play a key role in economic activity
 - Set taxes and transfers
 - Large employers
 - $\bullet\,$ Purchase goods and services from private firms $\rightarrow\,$ public procurement contracts

Motivation

- Governments play a key role in economic activity
 - Set taxes and transfers
 - Large employers
 - $\bullet\,$ Purchase goods and services from private firms $\rightarrow\,$ public procurement contracts
- Public procurement
 - Accounts for large fraction of economic activity (10-15% of GDP in EU-27 and U.S.)
 - And is spread across many industries

Motivation

- Governments play a key role in economic activity
 - Set taxes and transfers
 - Large employers
 - $\bullet\,$ Purchase goods and services from private firms $\rightarrow\,$ public procurement contracts
- Public procurement
 - Accounts for large fraction of economic activity (10-15% of GDP in EU-27 and U.S.)
 - And is spread across many industries
- Recurrent policy debate: should governments target specific types of firms?
 - Target big firms to build "national champions"
 - Target small firms to help them grow (e.g., U.S. Small Business Act or European Parliament)

- Study the effects of public procurement on firm outcomes and the macroeconomy
 - Focus on severity and type of firms' financial frictions
 - Show that allocation of contracts to firms can have first-order effects

- Study the effects of public procurement on firm outcomes and the macroeconomy
 - Focus on severity and type of firms' financial frictions
 - Show that allocation of contracts to firms can have first-order effects
- We combine a new administrative data set and a model of firm dynamics with a government sector

- Study the effects of public procurement on firm outcomes and the macroeconomy
 - Focus on severity and type of firms' financial frictions
 - Show that allocation of contracts to firms can have first-order effects
- We combine a new administrative data set and a model of firm dynamics with a government sector to analyze:
 - Firm *selection* into procurement
 - Treatment effect of procurement on firm dynamics

- Study the effects of public procurement on firm outcomes and the macroeconomy
 - Focus on severity and type of firms' financial frictions
 - Show that allocation of contracts to firms can have first-order effects
- We combine a new administrative data set and a model of firm dynamics with a government sector to analyze:
 - Firm *selection* into procurement
 - Treatment effect of procurement on firm dynamics
 - Relationship between procurement and access to credit

- Study the effects of public procurement on firm outcomes and the macroeconomy
 - Focus on severity and type of firms' financial frictions
 - Show that allocation of contracts to firms can have first-order effects
- We combine a new administrative data set and a model of firm dynamics with a government sector to analyze:
 - Firm *selection* into procurement
 - Treatment effect of procurement on firm dynamics
 - Relationship between procurement and access to credit
 - ⇒ Quantify the *long-run macroeconomic consequences* of alternative procurement allocation systems in Spain

Related literature

Data and Motivating Evidence

Our data

- 1. <u>Procurement contracts</u> (web-scraped from Spanish Central Government's Official Bulletin)
 - 150,000 contracts during 2000-2013 (type, value, awarded firm, etc.)
 - For subset of contracts (\approx 1,000): all bidders and final ranking
- 2. Balance sheets and income statements of non-financial Spanish firms (Bank of Spain)
 - Annual frequency from 2000-2013 (85% of all firms)

Summary stats

- 3. Universe of new and outstanding loans, (Credit Registry from Bank of Spain)
 - At firm-bank-month level, including whether loan features posted (tangible) collateral
 - Loan applications for "new" firm-bank relations

Motivating empirical evidence

Winning a procurement contract is associated with

In higher credit growth

Regression

Motivating empirical evidence

Winning a procurement contract is associated with

- In higher credit growth
- ② ... coming from an immediate increase in non-collateralized credit;
 Results

Regression

Results

Motivating empirical evidence

Winning a procurement contract is associated with

- In higher credit growth
- 2 ... coming from an immediate increase in non-collateralized credit; Results
- a persistent increase in total sales;

Results

Results

Motivating empirical evidence

Winning a procurement contract is associated with

- In higher credit growth ...
- ② ... coming from an immediate increase in non-collateralized credit; Results
- a persistent increase in total sales;
- a temporary reduction in private sales
 - stronger for firms more likely to be financially constrained.

Additional results and take-away

Using quarterly frequency data, we show:

- 1. Similar relations b/w credit and procurement (w/ firm-year FE) 1-2: Cred 1-2: Comp
- 2. For a subset of contracts: compare winners vs. second place firms in each auction

Additional results and take-away

Using quarterly frequency data, we show:

- 1. Similar relations b/w credit and procurement (w/ firm-year FE) 1-2: Cred 1-2: Comp
- 2. For a subset of contracts: compare winners vs. second place firms in each auction
- 3. Loan applications: winning procurement contract increases probability of getting a loan granted

Additional results and take-away

Using quarterly frequency data, we show:

- 1. Similar relations b/w credit and procurement (w/ firm-year FE) 1-2: Cred 1-2: Comp
- 2. For a subset of contracts: compare winners vs. second place firms in each auction
- 3. Loan applications: winning procurement contract increases probability of getting a loan granted
- \Rightarrow Our results suggest procurement contracts help financially constrained firms
 - a) obtain credit and increase revenues,
 - b) grow net worth,
 - c) and scale up operations in the future.

Model

Model's main ingredients

- Standard framework of firm dynamics + financial frictions, extended to: [Buera, Kaboski and Shin (2011), Midrigan and Xu (2014), Moll (2014)]
 - a. Downward-sloping demands in both the private and public sectors
 - b. Endogenous choice to compete for procurement projects
 - c. Earnings-based borrowing constraints (\neq private and public earnings)

Technology, demand, and public procurement

• Two final goods: private (Y_p) and public (Y_q)

• Private: for private consumption and capital formation, $Y_p = \left(\int_{[0,1]} y_{ip}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}}$

- Public: to provide public services, $Y_g = m_g \frac{1}{1-\sigma} \left(\int_{I_a} y_{ig}^{\frac{\sigma-1}{\sigma}} di \right)^{\frac{\sigma}{\sigma-1}}$
- Continuum of differentiated intermediate varieties y_i , with $i \in [0, 1]$ and $I_q \subset [0, 1]$

 $Y_g = m_g^{\frac{1}{1-\sigma}} \left(\int_{I_\sigma} y_{ig}^{\frac{\sigma-1}{\sigma}} di \right)^{\frac{\sigma}{\sigma-1}}$

Technology, demand, and public procurement

• Two final goods: private (Y_p) and public (Y_q)

• Private: for private consumption and capital formation, $Y_p = \left(\int_{[0,1]} y_{ip}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}}$

- Public: to provide public services,
- Continuum of differentiated intermediate varieties y_i , with $i \in [0, 1]$ and $I_g \subset [0, 1]$
- Intermediate good y_i produced by firm i,
 - with $y_i = s_i k_i$ (s_i idiosyncratic AR(1) productivity, k_i capital);
 - competing independently in each sector, facing downward-sloping demands

 $Y_g = m_g^{\frac{1}{1-\sigma}} \left(\int_{I_g} y_{ig}^{\frac{\sigma-1}{\sigma}} di \right)^{\frac{\sigma}{\sigma-1}}$

Technology, demand, and public procurement

• Two final goods: private (Y_p) and public (Y_q)

• Private: for private consumption and capital formation, $Y_p = \left(\int_{[0,1]} y_{ip}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}}$

- Public: to provide public services,
- Continuum of differentiated intermediate varieties y_i , with $i \in [0, 1]$ and $I_g \subset [0, 1]$
- Intermediate good y_i produced by firm i,
 - with $y_i = s_i k_i$ (s_i idiosyncratic AR(1) productivity, k_i capital);
 - · competing independently in each sector, facing downward-sloping demands
- Procurement allocation system:
 - To sell to the government in t+1 $(d_{it+1}=1)$ firms must invest $b_{it} > 0$ today
 - There is uncertainty in outcome of application: $\mathbb{P}(d_{it+1} = 1 \mid b_{it}) = 1 e^{-\eta_0 b_{it}^{\eta_1}}$

Households and their firms

• Firm *i* owned by entrepreneur *i*, with survival probability θ , and preferences:

$$\sum_{t=0}^{\infty} \left(\beta\theta\right)^t \mathbb{E}\left[\frac{c_{it}^{1-\mu}-1}{1-\mu}\right]$$

• Budget constraint:

$$c_{it} + b_{it} + k_{it+1} - l_{it+1} \leq p_{ipt}y_{ipt} + p_{igt}y_{igt} + (1-\delta)k_{it} - (1+r)l_{it} - tax_{it}$$

Households and their firms

• Firm *i* owned by entrepreneur *i*, with survival probability θ , and preferences:

$$\sum_{t=0}^{\infty} \left(\beta\theta\right)^t \mathbb{E}\left[\frac{c_{it}^{1-\mu}-1}{1-\mu}\right]$$

• Budget constraint:

 $c_{it} + b_{it} + k_{it+1} - l_{it+1} \leq p_{ipt}y_{ipt} + p_{igt}y_{igt} + (1-\delta)k_{it} - (1+r)l_{it} - tax_{it}$

• Borrowing constraint:

$$l_{it+1} \leq \varphi_k \, k_{it+1} + \varphi_p \, p_{ipt+1} y_{ipt+1} + \varphi_g \, p_{igt+1} y_{igt+1}$$

Buy Big or Buy Small? Procurement Policies, Firms' Financing, and the Macroeconomy

Calibration

Households and their firms

• Firm *i* owned by entrepreneur *i*, with survival probability θ , and preferences:

$$\sum_{t=0}^{\infty} \left(\beta\theta\right)^{t} \mathbb{E}\left[\frac{c_{it}^{1-\mu}-1}{1-\mu}\right]$$

Budget constraint:

 $c_{it} + b_{it} + k_{it+1} - l_{it+1} \leq p_{ipt}y_{ipt} + p_{igt}y_{igt} + (1-\delta)k_{it} - (1+r)l_{it} - tax_{it}$

• Borrowing constraint:

$$l_{it+1} \leq \varphi_k \, k_{it+1} + \varphi_p \, p_{ipt+1} y_{ipt+1} + \varphi_g \, p_{igt+1} y_{igt+1}$$

- Define $a_{it} \equiv k_{it} l_{it}$ as firm's net worth \Rightarrow Problem split into:
 - Static production problem: $(k_{p,it}, k_{q,it})$ to max π_{it} , given a_{it} and d_{it}
 - Dynamic saving problem: $(c_{it}, b_{it}, a_{it+1})$, given a_{it} and π_{it}

Timing Reformulation Static problem Dynamic problem Equilibrium conditions

Buy Big or Buy Small? Procurement Policies, Firms' Financing, and the Macroeconomy

Results

Optimal solutions and model outcomes

Static problem:

- Size and between-firm misallocation
 - Constrained firms produce at $MRPK > (r + \delta) \iff k_p$, k_g below optimal

Optimal solutions and model outcomes

Static problem:

- Size and between-firm misallocation
 - Constrained firms produce at $MRPK > (r + \delta) \iff k_p$, k_g below optimal
- Effect of "procurement shock" *treatment*:
 - on profits π : positive and increasing in s and net worth (strictly if constrained)

Optimal solutions and model outcomes

Static problem:

- Size and between-firm misallocation
 - Constrained firms produce at $MRPK > (r + \delta) \iff k_p$, k_g below optimal
- Effect of "procurement shock" *treatment*:
 - on profits π : positive and increasing in s and net worth (strictly if constrained)
 - on private production y_p : negative if constrained

(Selection) (Treatment) (Aggs)

Aggs

(Selection) (Treatment)

Optimal solutions and model outcomes

Static problem:

- Size and between-firm misallocation
 - Constrained firms produce at $MRPK > (r + \delta) \iff k_p$, k_g below optimal
- Effect of "procurement shock" *treatment*:
 - on profits π : positive and increasing in s and net worth (strictly if constrained)
 - on private production y_p : negative if constrained

Dynamic problem:

- Entrepreneurs with lower levels of net worth (a = k l) have
 - higher returns to asset accumulation (relax asset-based constraint),
 - lower returns of winning a procurement project
- ⇒ Selection into procurement by firms with high net worth (and high productivity)

U.S. "set aside" policies

• Think about expenditure-neutral $(P_g Y_g$ -constant) procurement reforms

U.S. "set aside" policies

- Think about expenditure-neutral ($P_g Y_g$ -constant) procurement reforms
- What if the government "encourages" participation of smaller firms?
 - Decrease η_1 such that (ex ante) procurement premium falls from 72% to 50%
 - \Rightarrow Lower weight to firms' investment in b
 - \Rightarrow Selection weakens in both a and s

Main results

• We define GDP as:

$$Y = Y_p + P_g Y_g = TFP_p K_p + P_g TFP_g K_g$$

Main results

• We define GDP as:

$$Y = Y_p + P_g Y_g = TFP_p K_p + P_g TFP_g K_g$$

• Decompose its change after the reform

a. $TFP_p \uparrow$ (stronger "self-financing" \Rightarrow less misallocation)

Main results

• We define GDP as:

$$Y = Y_p + P_g Y_g = TFP_p K_p + P_g TFP_g K_g$$

• Decompose its change after the reform

a. $TFP_p \uparrow$ (stronger "self-financing" \Rightarrow less misallocation) b. $K_p \uparrow$ for new procurement firms (stronger "self-financing" \Rightarrow more capital)

Buy Big or Buy Small? Procurement Policies, Firms' Financing, and the Macroeconomy
Reforming the procurement allocation system

Main results

• We define GDP as:

$$Y = Y_p + P_g Y_g = TFP_p K_p + P_g TFP_g K_g$$

• Decompose its change after the reform

a. $TFP_p \uparrow$ (stronger "self-financing" \Rightarrow less misallocation)b. $K_p \uparrow$ for new procurement firms(stronger "self-financing" \Rightarrow more capital)c. $K_p \downarrow$ for relatively big firms(weaker "precautionary savings" motive + GE effects)

Reforming the procurement allocation system

Main results

• We define GDP as:

$$Y = Y_p + P_g Y_g = TFP_p K_p + P_g TFP_g K_g$$

• Decompose its change after the reform

a. $TFP_g \downarrow, K_g \downarrow \Rightarrow Y_g \downarrow$ (weaker s b. $P_g \uparrow$ (new proc

(weaker selection in s and a)

(new procurement firms charge higher prices)

Reforming the procurement allocation system

Main results

• We define GDP as:

$$Y = Y_p + P_g Y_g = TFP_p K_p + P_g TFP_g K_g$$

• Decompose its change after the reform

• Reaching out to small firms in procurement may increase output by strengthening self-financing of constrained firms, at cost of efficiency losses in the public sector.

- Reaching out to small firms in procurement may increase output by strengthening self-financing of constrained firms, at cost of efficiency losses in the public sector.
- Also, the details matter! Counterfactual policy 2: Promoting small firms' participation by slicing big contracts into smaller ones
 - Current strategy by European Commission
 - \Rightarrow GDP could go down (much bigger reduction in "big" firms' incentives to save)

- Reaching out to small firms in procurement may increase output by strengthening self-financing of constrained firms, at cost of efficiency losses in the public sector.
- Also, the details matter! Counterfactual policy 2: Promoting small firms' participation by slicing big contracts into smaller ones
 - Current strategy by European Commission
 - \Rightarrow GDP could go down (much bigger reduction in "big" firms' incentives to save)
- In a world in which $\varphi_g \simeq \varphi_p$:
 - ⇒ Effects of policies less expansionary (short-run crowding out)

- Reaching out to small firms in procurement may increase output by strengthening self-financing of constrained firms, at cost of efficiency losses in the public sector.
- Also, the details matter! Counterfactual policy 2: Promoting small firms' participation by slicing big contracts into smaller ones
 - Current strategy by European Commission
 - \Rightarrow GDP could go down (much bigger reduction in "big" firms' incentives to save)
- In a world in which $\varphi_g \simeq \varphi_p$:
 - ⇒ Effects of policies less expansionary (short-run crowding out)
- ⇒ Expenditure-neutral procurement reforms have distinct expansionary and contractionary effects, with aggregate impacts depending on
 - the type of reform
 - institutional characteristics of the economy

Related literature Back

- 1. Governments policies, allocation of resources across firms, and aggregate outcomes Song et al (2011), Garcia-Santana, Pijoan-Mas (2014), Garicano et al (2016), Berthau et al (2019) \rightarrow We focus on government spending
- Financial frictions, allocation of resources across firms, and aggregate outcomes Buera et al (2011), Midrigan, Xu (2014), David, Venkateswaran (2019) Erosa, Gonzalez (2019), Itskhoki, Moll (2019), Guvenen et al (2019), Blanco, Baley (2022)
 → We study the interaction with government spending policies
- 3. Role of earnings-based borrowing constraints

Lian, Ma (2020), Brooks, Dovis (2020), Dreschel (2021), Caglio et al (2021), Li (2022)

 \rightarrow We study their asymmetries across 'markets', and in particular, their importance for government contracts

4. Empirical literature on treatment effects of procurement

Ferraz et al (2016), Lee (2021), Hebous, Zimmerman (2021)

ightarrow We show evidence of mechanism: financial frictions

Summary statistics

- Types and size of procurement projects Go
 - A lot of procurement outside construction (>80% of projects outside construction)
 - High presence of relatively small contracts (median pprox 0.35-0.70 M euro)
- Procurement vs. non-procurement firms Go Go
 - Procurement firms are larger and older on average (but large overlap in the support of firm size)
 - Higher share of non-collateralized credit for procurement firms, despite larger net worth (86% vs. 71%)

Back

Number and size of projects **Back**

Table: Value of Procurement projects (budget value in millions of euro), pool of years 2000-13

sector	mean	10th	25th	50th	75th	99th	obs.
Construction	5.28	0.13	0.23	0.74	4.00	70.84	22,549
Consulting	0.66	0.10	0.17	0.37	0.84	3.91	12,427
Services	1.22	0.11	0.20	0.42	1.05	13.47	44,581
Supplies	0.95	0.10	0.17	0.37	0.86	10.20	45,552
Others	1.99	0.09	0.15	0.35	0.99	38.18	5,524

Procurement across industries **Back**

Secto	r Description	Firms	Emp.	Sales	Assets	Credit
		(1)	(2)	(3)	(4)	(5)
19	Manufacture of coke & refined petroleum prod.	0.150	0.332	0.315	0.310	0.243
21	Manufacturing of Pharmaceutical Products	0.149	0.240	0.225	0.231	0.288
42	Civil Engineering	0.093	0.260	0.324	0.366	0.386
80	Security and investigation activities	0.064	0.198	0.299	0.269	0.312
30	Manufacturing of Transport Equipment	0.052	0.176	0.177	0.205	0.180
94	Activities of membership organisations	0.051	0.069	0.127	0.037	0.018
36	Collection, purification and distribution of water	0.040	0.116	0.117	0.088	0.121
61	Telecommunications	0.038	0.217	0.192	0.189	0.207
51	Air transportation	0.033	0.054	0.049	0.078	0.142
81	Services of Buildings Maintenance	0.031	0.137	0.232	0.151	0.211
63	Information services	0.026	0.127	0.100	0.080	0.087
62	Programming, consultancy, other IT activities	0.025	0.151	0.193	0.157	0.214
26	Manufacturing of IT, electronic, & optical prod.	0.025	0.087	0.095	0.125	0.165
71	Technical services of architecture & engineering	0.024	0.152	0.159	0.084	0.103
2	Forestry and logging	0.019	0.069	0.068	0.033	0.080
6	Extraction of crude petroleum and natural gas	0.017	0.021	0.036	0.016	0.026
91	Libraries, archives, museums and cultural activities	0.016	0.061	0.051	0.021	0.017
29	Manufacture of motor vehicles and trailers	0.015	0.030	0.036	0.030	0.086
Buy Big or Buy Small?72	cure R&D dicies, Fiens' Financing, and the Macroeconomy	0.014	0.017	0.014	0.003	0.003

4/30

Procurement and non-procurement firms

	mean		2	25th		50th		75th	
	Proc	No.proc	Proc	No.proc	Proc	No.proc	Proc	No.proc	
Age	20.42	10.95	12.00	5.00	17.00	10.00	24.00	15.00	
Employment	73.56	12.75	16.00	3.00	45.00	6.00	155.0	12.00	
Sales	8.96	1.19	1.14	0.10	4.22	0.28	16.89	0.86	
Procurement/Sales	0.20	0.00	0.01	0.00	0.03	0.00	0.10	0.00	
Fixed Assets	3.80	0.85	0.21	0.03	0.82	0.14	3.58	0.50	
Credit	2.51	0.57	0.11	0.03	0.48	0.08	2.32	0.30	
Coll. Credit (share)	0.14	0.29	0.00	0.00	0.00	0.00	0.14	0.74	

(Back)

Motivating empirical evidence - regression Back

• We estimate local projection panel regressions. We regress:

$$\Delta_h \log(x_{i,t+h}) = \alpha_i + \alpha_{st} + \beta_1^h \mathsf{PROC}_{it} + \beta_2^h \log x_{it-1} + \varepsilon_{ith+h}$$
(1)

where:

- $\Delta_h \log(x_{i,t+h}) \equiv \log(x_{i,t+h}) \log(x_{i,t-1})$
- h = 0, 1, ..., H denotes the horizon at which the impact of procurement is estimated
- i denotes firms and s denotes 4-digit sectors

Motivating empirical evidence - credit Back

Notes: This figure shows the cumulative impact of the estimate of β_2^h from regression (1) for different time horizons h = 0, 1, 2, 3, 4. Panel (a) shows the results for the case of x being firms' non-collateralized credit. Panel (b) shows the results for the case of x being firms' non-collateralized credit. Panel (c) shows the results for the case of x being firms' collateralized credit.

Figure: Procurement effect on credit

Motivating empirical evidence - sales Back

Notes: This figure shows the cumulative impact of the estimate of β_2^h from regression (1) for different time horizons h = 0, 1, 2, 3, 4. Panel (a) shows the results for the case of x being firms' total sales. Panel (b) shows the results for the case of x being firms' sales to the private sector.

Figure: Procurement effect on sales

Motivating empirical evidence - heterogeneous crowding out Back

(a) Distribution of assets

(b) Distribution of leverage

Notes: This figure shows the effect on impact, i.e., h = 0, of public procurement on sales to the private sector for different quartiles of the distribution of total assets and leverage.

Figure: Heterogeneous effects on sales to the private sector

Buy Big or Buy Small? Procurement Policies, Firms' Financing, and the Macroeconomy

Appendix

Additional result 1: Credit growth and procurement

	All firms	Bidders only	
		First	Second
	(1)	(2)	(3)
$PROC_{it}$	0.055^{a}	0.073^{a}	-0.061
	(0.004)	(0.028)	(0.049)
Observations	700,780	8,310	3,683
R-squared	0.786	0.360	0.458
Sector×quarter FE	Yes	No	No
Firm imes year FE	Yes	Yes	Yes
Quarter FE	No	Yes	Yes
Auction FE	No	Yes	Yes

Back

Additional result 2: Composition of credit growth and procurement

	All	firms		Bidders only				
			F	irst	Second			
	Collat.	NoCollat.	Collat.	NoCollat.	Collat.	NoCollat.		
	(1)	(2)	(3)	(4)	(5)	(6)		
$PROC_{it}$	0.001	0.070^a	-0.011	0.080^b	-0.019	-0.058		
	(0.006)	(0.005)	(0.029)	(0.031)	(0.044)	(0.057)		
	(0.003)	(0.001)	(0.073)	(0.040)	(0.064)	(0.044)		
Observations R-squared	224,011	557,873	2,690	8,110	1,423	3,606		
Sector×quarter FE	Yes	Yes	No	No	No	No		
Firm×year FE		Yes	Yes	Yes	Yes	Yes		
Quarter FE	No	No	Yes	Yes	Yes	Yes		
Auction FE	No	No	Yes	Yes	Yes	Yes		

(Back)

Additional result 3: Probability of a new loan and procurement

	All f	All firms		
	(1)	(2)		
$PROC_{it}$	0.024^a (0.008)	0.023^b (0.011)		
Observations R-squares	36,857	26,924		
Firm×bank FE	Yes	Yes		
Bank×quarter FE Sector×quarter FE	No No	Yes Yes		

Timing in the model

Back

Households and their firms **Back**

Re-formulation

• Let $a_{it} \equiv k_{it} - l_{it}$ be the firm's net worth. We can re-write the constraints as:

$$c_{it} + b_{it} + a_{it+1} \leq (1+r)a_{it} + (1-\tau) \underbrace{[p_{ipt}y_{ipt} + p_{igt}y_{igt} - (r+\delta)k_{it}]}_{\pi_{it}}$$

 $k_{it} \leq \phi_a a_{it} + \phi_p p_{ipt} y_{ipt} + \phi_g p_{igt} y_{igt}$

Households and their firms **Back**

Re-formulation

• Let $a_{it} \equiv k_{it} - l_{it}$ be the firm's net worth. We can re-write the constraints as:

$$c_{it} + b_{it} + a_{it+1} \leq (1+r)a_{it} + (1-\tau)\underbrace{[p_{ipt}y_{ipt} + p_{igt}y_{igt} - (r+\delta)k_{it}]}_{\pi_{it}}$$

 $k_{it} \leq \phi_a a_{it} + \phi_p p_{ipt} y_{ipt} + \phi_g p_{igt} y_{igt}$

• The parameters in the borrowing constraint are re-defined as:

$$\phi_a \equiv \frac{1}{1 - \varphi_k}, \ \ \phi_p \equiv \frac{\varphi_p}{1 - \varphi_k}, \ \ \phi_g \equiv \frac{\varphi_g}{1 - \varphi_k}$$

Households and their firms **Back**

Re-formulation

• Let $a_{it} \equiv k_{it} - l_{it}$ be the firm's net worth. We can re-write the constraints as:

$$c_{it} + b_{it} + a_{it+1} \leq (1+r)a_{it} + (1-\tau) \underbrace{[p_{ipt}y_{ipt} + p_{igt}y_{igt} - (r+\delta)k_{it}]}_{\pi_{it}}$$

 $k_{it} \leq \phi_a a_{it} + \phi_p p_{ipt} y_{ipt} + \phi_g p_{igt} y_{igt}$

• The parameters in the borrowing constraint are re-defined as:

$$\phi_a \equiv \frac{1}{1 - \varphi_k}, \ \phi_p \equiv \frac{\varphi_p}{1 - \varphi_k}, \ \phi_g \equiv \frac{\varphi_g}{1 - \varphi_k}$$

- The problem can be split into:
 - Static production problem
 - Dynamic saving problem

Static production problem Back Setup

• Entrepreneur in state (s, a, d) chooses sizes $k_p(s, a, d)$ and $k_g(s, a, d)$:

$$\begin{aligned} \pi\left(s,a,d\right) &= \max_{k_p,k_g \geq 0} \left\{ p_p y_p + p_g y_g - \left(r + \delta\right) \left(k_p + k_g\right) \right\} \\ \text{subject to:} \end{aligned}$$

$$p_p y_p = B_p [sk_p]^{\frac{\sigma-1}{\sigma}}$$

$$p_g y_g = B_g [sk_g]^{\frac{\sigma-1}{\sigma}} \times d$$

$$k_p + k_g \le \phi_a a + \phi_p p_p y_p + \phi_g p_g y_g$$

• There will be a multiplier $\lambda\left(s,a,d
ight)$ associated to the financial constraint

Policy functions

Static problem

First order conditions

$$MRPK_{p} \equiv \frac{\sigma - 1}{\sigma} \frac{p_{p} y_{p}}{k_{p}} = \frac{r + \delta + \lambda}{1 + \lambda \phi_{p}}$$
$$MRPK_{g} \equiv \frac{\sigma - 1}{\sigma} \frac{p_{g} y_{g}}{k_{g}} = \frac{r + \delta + \lambda}{1 + \lambda \phi_{g}}$$

Static problem

First order conditions

$$MRPK_p \equiv \frac{\sigma - 1}{\sigma} \frac{p_p y_p}{k_p} = \frac{r + \delta + \lambda}{1 + \lambda \phi_p}$$
$$MRPK_g \equiv \frac{\sigma - 1}{\sigma} \frac{p_g y_g}{k_g} = \frac{r + \delta + \lambda}{1 + \lambda \phi_g}$$

- Size of firms and between-firm misallocation
 - Unconstrained firms ($\lambda=0$) equalize MRPK to capital costs ($r+\delta$)

Static problem

First order conditions

$$MRPK_p \equiv \frac{\sigma - 1}{\sigma} \frac{p_p y_p}{k_p} = \frac{r + \delta + \lambda}{1 + \lambda \phi_p}$$
$$MRPK_g \equiv \frac{\sigma - 1}{\sigma} \frac{p_g y_g}{k_g} = \frac{r + \delta + \lambda}{1 + \lambda \phi_g}$$

- Size of firms and between-firm misallocation
 - Unconstrained firms ($\lambda = 0$) equalize MRPK to capital costs ($r + \delta$)
 - Constrained firms $(\lambda>0)$ produce at higher MRPK \Rightarrow lower k_p , k_g

Static problem

First order conditions

$$MRPK_p \equiv \frac{\sigma - 1}{\sigma} \frac{p_p y_p}{k_p} = \frac{r + \delta + \lambda}{1 + \lambda \phi_p}$$
$$MRPK_g \equiv \frac{\sigma - 1}{\sigma} \frac{p_g y_g}{k_g} = \frac{r + \delta + \lambda}{1 + \lambda \phi_g}$$

- Size of firms and between-firm misallocation
 - Unconstrained firms ($\lambda=0$) equalize MRPK to capital costs $(r+\delta)$
 - Constrained firms $(\lambda > 0)$ produce at higher MRPK \Rightarrow lower k_p , k_g
- Sales composition and within-firm misallocation

$$(1 + \lambda \phi_p) \operatorname{MRPK}_p = (1 + \lambda \phi_g) \operatorname{MRPK}_g$$

- Unconstrained firms ($\lambda=0)$ equalize the marginal revenues across sectors
- Constrained firms $(\lambda>0)$ shift production towards higher collateral value sector

Static problem Back

Policy functions

- <u>Unconstrained firm</u>: $a > \underline{a}(s, d) \Rightarrow \lambda(s, a, d) = 0$
 - $u\left(s,a,d
 ight)$, $k\left(s,a,d
 ight)$, $y\left(s,a,d
 ight)$, $\pi\left(s,a,d
 ight)$ independent from a
 - k(s, a, d), y(s, a, d), $\pi(s, a, d)$ increasing in s
 - $\bullet \ u \left(s, a, d \right) \hspace{1.5cm} \text{independent from } s$
 - ightarrow ~a does not affect production, s scales up production
- Constrained firm: $a < \underline{a}(s, d) \Rightarrow \lambda(s, a, d) > 0$
 - $\lambda(s, a, d)$ increasing in s, decreasing in a, larger for d = 1
 - k(s, a, d), y(s, a, d), $\pi(s, a, d)$
 - $\bullet \ u \left(s, a, d \right)$
 - u(s, a, d)

- increasing in *s*, decreasing in *a*, larger for d = 1increasing in *a* and increasing in *s* increasing in *a* (iff $\phi_g > \phi_p$) decreasing in *s* (iff $\phi_a > \phi_p$)
- $\rightarrow a$ makes firms less constrained $\Rightarrow \uparrow y\,(s,a,d)$ + substitute towards good that provides less collateral
- $\rightarrow s$ makes firms more productive $\Rightarrow \uparrow y(s, a, d) + \uparrow \lambda(s, a, d) +$ substitute towards good that provides **more** collateral

Static problem Back

Policy functions

Dynamic problem Back Setup

• Entrepreneur in state (s, a, d) chooses: consumption c(s, a, d), saving a'(s, a, d) and investment in procurement b(s, a, d):

$$\begin{split} V\left(s, a, d\right) &= \max_{c, a', b} \left\{ u\left(c\right) + \beta \theta \, \mathbb{E}_{s', d' \mid s, b} \left[V\left(s', a', d'\right) \right] \right\} \\ &\text{subject to:} \\ c + b + a' &= (1 + r) \, a + (1 - \tau) \, \pi \, (s, a, d) \\ a' &\geq 0 \\ \mathbb{E}_{s', d' \mid s, b} \left[V\left(s', a', d'\right) \right] &= \mathbb{P} \left(d' = 1 | b \right) \mathbb{E}_{s' \mid s} V\left(s', a', 1\right) + \mathbb{P} \left(d' = 0 | b \right) \mathbb{E}_{s' \mid s} V\left(s', a', 0\right) \end{split}$$

Optimal solution

• The FOC for the choices of a' and b are:

$$u_{c}(c) = \beta \theta \mathbb{E}_{s',d'|s,b} \left[\left(1 + r + (1 - \tau) \frac{\partial \pi (s', a', d')}{\partial a'} \right) u_{c}(c') \right]$$
$$u_{c}(c) = \beta \theta \frac{\partial \mathbb{P} (d = 1|b)}{\partial b} \mathbb{E}_{s'|s} \left[V (s', a', 1) - V (s', a', 0) \right]$$

Optimal solution

• The FOC for the choices of a' and b are:

$$u_{c}(c) = \beta \theta \mathbb{E}_{s',d'|s,b} \left[\left(1 + r + (1 - \tau) \frac{\partial \pi (s', a', d')}{\partial a'} \right) u_{c}(c') \right]$$
$$u_{c}(c) = \beta \theta \frac{\partial \mathbb{P} (d = 1|b)}{\partial b} \mathbb{E}_{s'|s} \left[V (s', a', 1) - V (s', a', 0) \right]$$

- Two competing "saving" mechanisms:
 - 1) Wealth accumulation: relaxes future asset-based constraints (Midrigan and Xu, 2014)
 - 2) Investment in procurement: provides a second market to increase future earnings

Optimal solution

• The FOC for the choices of a' and b are:

$$u_{c}(c) = \beta \theta \mathbb{E}_{s',d'|s,b} \left[\left(1 + r + (1 - \tau) \frac{\partial \pi (s', a', d')}{\partial a'} \right) u_{c}(c') \right]$$
$$u_{c}(c) = \beta \theta \frac{\partial \mathbb{P} (d = 1|b)}{\partial b} \mathbb{E}_{s'|s} \left[V (s', a', 1) - V (s', a', 0) \right]$$

- Two competing "saving" mechanisms:
 - 1) Wealth accumulation: relaxes future asset-based constraints (Midrigan and Xu, 2014)
 - 2) Investment in procurement: provides a second market to increase future earnings
- Entrepreneurs with higher levels of net worth (higher a)
 - Lower returns of asset accumulation $(\partial \pi (s, a, d) / \partial a \text{ declines in } a)$

Optimal solution

• The FOC for the choices of a' and b are:

$$u_{c}(c) = \beta \theta \mathbb{E}_{s',d'|s,b} \left[\left(1 + r + (1 - \tau) \frac{\partial \pi (s', a', d')}{\partial a'} \right) u_{c}(c') \right]$$
$$u_{c}(c) = \beta \theta \frac{\partial \mathbb{P} (d = 1|b)}{\partial b} \mathbb{E}_{s'|s} \left[V (s', a', 1) - V (s', a', 0) \right]$$

• Two competing "saving" mechanisms:

- 1) Wealth accumulation: relaxes future asset-based constraints (Midrigan and Xu, 2014)
- 2) Investment in procurement: provides a second market to increase future earnings
- Entrepreneurs with higher levels of net worth (higher *a*)
 - Lower returns of asset accumulation $(\partial \pi (s, a, d) / \partial a \text{ declines in } a)$
 - Higher returns of a procurement project (V(s, a, 1) V(s, a, 0) increases in a)
Dynamic problem

Optimal solution

• The FOC for the choices of a' and b are:

$$u_{c}(c) = \beta \theta \mathbb{E}_{s',d'|s,b} \left[\left(1 + r + (1 - \tau) \frac{\partial \pi (s', a', d')}{\partial a'} \right) u_{c}(c') \right]$$
$$u_{c}(c) = \beta \theta \frac{\partial \mathbb{P} (d = 1|b)}{\partial b} \mathbb{E}_{s'|s} \left[V (s', a', 1) - V (s', a', 0) \right]$$

• Two competing "saving" mechanisms:

1) Wealth accumulation: relaxes future asset-based constraints (Midrigan and Xu, 2014)

- 2) Investment in procurement: provides a second market to increase future earnings
- Entrepreneurs with higher levels of net worth (higher *a*)
 - Lower returns of asset accumulation $(\partial \pi (s, a, d) / \partial a \text{ declines in } a)$
 - Higher returns of a procurement project (V(s, a, 1) V(s, a, 0) increases in a)
 - ⇒ Invest more in procurement (*selection*)

Equilibrium conditions I

- a) Entrepreneurs solve their optimization problem
- b) The probability measure Γ is stationary
- c) The market for the private good clears:

$$\int_{\mathbf{X}} p_{p}\left(a,s,d\right) u\left(a,s,d\right) y\left(s,a,d\right) d\Gamma = Y_{p} = \int_{\mathbf{X}} \left[b\left(s,a,d\right) + c\left(s,a,d\right) + \delta k\left(s,a,d\right)\right] d\Gamma$$

d) The market for the public good clears:

$$\int_{\mathbf{X}_{1}} p_{g}\left(a,s,1\right) \left[1-u\left(a,s,1\right)\right] y\left(s,a,1\right) d\Gamma = P_{g}Y_{g}$$

Equilibrium conditions II

e) The probability of obtaining procurement projects is consistent with the measure of goods bought by the public sector,

$$\int_{\mathbf{X}} \Pr\left(d'=1 \mid b\left(s, a, d\right)\right) d\Gamma = \int_{\mathbf{X}_{1}} d\Gamma = m_{g}$$

f) The budget constraint of the government holds

$$PgYg = rD + \tau \int_{\mathbf{X}} \pi \left(s, a, d \right) d\Gamma + (1 - \theta) \left[\int_{\mathbf{X}} a'(s, a, d) d\Gamma - \int_{\mathbf{X}} a d\Gamma_0 \right]$$

g) By Walras law, the debt market clears.

$$D = \int_{\mathbf{X}} \left[k\left(s, a, d\right) - a\left(s, a, d\right) \right] d\Gamma$$

(Back)

Calibration Back

Borrowing constraint

• We have 3 parameters in the borrowing constraint $(\varphi_k, \varphi_p, \varphi_g)$

$$l_t \leq \varphi_k k_t + \varphi_p p_{pt} y_{pt} + \varphi_g p_{gt} y_{gt} = \varphi_k k_t + \varphi_p p_t y_t + (\varphi_g - \varphi_p) p_{gt} y_{gt}$$

Calibration Back

Borrowing constraint

• We have 3 parameters in the borrowing constraint (φ_k , φ_p , φ_g)

$$l_t \leq \varphi_k k_t + \varphi_p p_{pt} y_{pt} + \frac{\varphi_g}{\varphi_g} p_{gt} y_{gt} = \varphi_k k_t + \frac{\varphi_p}{\varphi_p} p_t y_t + (\frac{\varphi_g}{\varphi_g} - \frac{\varphi_p}{\varphi_p}) p_{gt} y_{gt}$$

- Earnings-based parameters (φ_p, φ_g) :
 - Rewrite borrowing constraint (at equality) as:

$$\Delta_t \left(\frac{l_t}{k_t} \right) = \underbrace{\varphi_p}_{\beta_1} \Delta_t \left(\frac{p_t y_t}{k_t} \right) + \underbrace{(\varphi_g - \varphi_p)}_{\beta_2} \Delta_t \left(\frac{p_{gt} y_{gt}}{k_t} \right)$$

Calibration Back

Borrowing constraint

• We have 3 parameters in the borrowing constraint $(\varphi_k, \varphi_p, \varphi_g)$

$$l_t \leq \varphi_k k_t + \varphi_p p_{pt} y_{pt} + \frac{\varphi_g p_{gt} y_{gt}}{\varphi_g p_{gt} y_{gt}} = \varphi_k k_t + \varphi_p p_t y_t + (\frac{\varphi_g}{\varphi_g} - \frac{\varphi_p}{\varphi_p}) p_{gt} y_{gt}$$

- Earnings-based parameters (φ_p, φ_g) :
 - Rewrite borrowing constraint (at equality) as:

$$\Delta_t \left(\frac{l_t}{k_t} \right) \; = \; \underbrace{\varphi_p}_{\beta_1} \; \Delta_t \left(\frac{p_t y_t}{k_t} \right) \; + \; \underbrace{(\varphi_g - \varphi_p)}_{\beta_2} \; \Delta_t \left(\frac{p_{gt} y_{gt}}{k_t} \right)$$

• Run this regression for firms likely to be constrained (leverage > median)

Calibration Back

Borrowing constraint

• We have 3 parameters in the borrowing constraint $(\varphi_k, \varphi_p, \varphi_g)$

$$l_t \leq \varphi_k k_t + \varphi_p p_{pt} y_{pt} + \frac{\varphi_g}{\varphi_g} p_{gt} y_{gt} = \varphi_k k_t + \varphi_p p_t y_t + (\frac{\varphi_g}{\varphi_g} - \varphi_p) p_{gt} y_{gt}$$

- Earnings-based parameters (φ_p, φ_g) :
 - Rewrite borrowing constraint (at equality) as:

$$\Delta_t \left(\frac{l_t}{k_t} \right) = \underbrace{\varphi_p}_{\beta_1} \Delta_t \left(\frac{p_t y_t}{k_t} \right) + \underbrace{(\varphi_g - \varphi_p)}_{\beta_2} \Delta_t \left(\frac{p_{gt} y_{gt}}{k_t} \right)$$

• Run this regression for firms likely to be constrained (leverage > median) : Regressions

$$\beta_1 = 0.30^{***}, \ \beta_2 = 0.22^{**} \implies \varphi_p = 0.10 \ \text{ and } \ \varphi_g - \varphi_p = 0.15$$

Calibration Back

Borrowing constraint

• We have 3 parameters in the borrowing constraint $(\varphi_k, \varphi_p, \varphi_g)$

$$l_t \leq \varphi_k k_t + \varphi_p p_{pt} y_{pt} + \varphi_g p_{gt} y_{gt} = \varphi_k k_t + \varphi_p p_t y_t + (\varphi_g - \varphi_p) p_{gt} y_{gt}$$

- Earnings-based parameters (φ_p, φ_g) :
 - Rewrite borrowing constraint (at equality) as:

$$\Delta_t \left(\frac{l_t}{k_t} \right) \; = \; \underbrace{\varphi_p}_{\beta_1} \; \Delta_t \left(\frac{p_t y_t}{k_t} \right) \; + \; \underbrace{(\varphi_g - \varphi_p)}_{\beta_2} \; \Delta_t \left(\frac{p_g t y_{gt}}{k_t} \right)$$

• Run this regression for firms likely to be constrained (leverage > median) : Regressions

$$\beta_1 = 0.30^{***}, \ \beta_2 = 0.22^{**} \implies \varphi_p = 0.10$$
 and $\varphi_g - \varphi_p = 0.15$

- Asset-based parameter (φ_k)
 - Match aggregate credit to capital ratio: $\varphi_k=0.64$

Calibration strategy

Key parameters (2)

- Size of public procurement
- $\rightarrow Y_g$: match $P_g Y_g / GDP = 12\%$

Calibration strategy

Key parameters (2)

- Size of public procurement
- \rightarrow Y_g : match $P_g Y_g/GDP = 12\%$
 - Procurement allocation system

$$\mathbb{P}(d_{it+1} = 1 \mid b_{it}) = 1 - e^{-\eta_0 b_{it}^{\eta_1}}$$

- $\rightarrow \eta_0:$ match the fraction of firms with contracts, $m_g=12\%$ (recently released data from 2018)
- $\rightarrow~\eta_1:$ match "ex-ante procurement premium" in $p_iy_i=72\%$
- Difference in size between proc. and no proc. firms the year before winning a contract Calibration Table

Structural leverage regressions

	<u>All f</u>	irms	> Median leverage		
$\Delta p_{it} y_{it}/k_{it}$ $\Delta p_{igt} y_{igt}/k_{it}$	$egin{array}{c} 0.208^a \ (0.001) \ 0.182^a \ (0.055) \end{array}$	$\begin{array}{c} 0.211^a \\ (0.001) \\ 0.161^a \\ (0.052) \end{array}$	$egin{array}{c} 0.303^a \ (0.001) \ 0.229^b \ (0.100) \end{array}$	$egin{array}{c} 0.292^a \ (0.001) \ 0.191^b \ (0.089) \end{array}$	
Observations R-squared Sector×year FE Firm FE	61,445 0.238 Yes Yes	62,442 0.084 Yes No	29,528 0.296 Yes Yes	30,037 0.118 Yes No	

(Back)

Calibration parameter values

Panel A: parameters			Panel B: Moments			
		(1)				
		Baseline				
Block 1						
μ	CRRA coefficient	2.00				
σ_p	CES private sector	3.00				
σ_p	CES government	3.00	PREDETERMINED			
β	Discount factor	0.94				
δ	Depreciation rate	0.10				
ρ_s	AR(1) correlation	0.80				
σ_s	AR(1) variance	0.30				
Block 2				Data	Model	
ϕ_a	borrowing const. (a)	2.81	Credit/K	0.55	0.55	
ϕ_p	borrowing const. $(p_p y_p)$	0.27	reg. coefficient (φ_p)	0.30	0.30	
ϕ_g	borrowing const. $(p_g y_g)$	0.41	reg. coefficient (φ_g)	0.22	0.22	
Block 3			_			
η_0	probability function (level)	0.78	Consistency of $g(b)$ with m_g	-		
η_1	probability function (slope)	0.62	Procurement premium	0.72	0.71	
Y_g	demand shifter	0.83	Share of procurement in GDP	0.12	0.12	
m_g	measure of procurement goods	0.12	Percentage of procurement firms	12%	12%	
Block 4						
D	Government lending	0.86	Interest rate	5%	5%	
\bar{s}	Productivity shifter	-6.51	K/Y (aggregate)	3.88	3.84	
θ	Survival probability	0.95	Exit rate	5%	5%	

Benchmark economy: Treatment Back

Credit and private sales

Notes: This figure shows the cumulative impact of the estimate of β_2^h from regression (1) for different time horizons h = 0, 1, 2, 3, 4. Panel (a) shows the results for the case of x being firms' total credit in the model. Panel (b) for the case of sales to the private sector. "model (rest. sample)" shows results when restricting simulated sample to observations with credit growth below top 10% and above bottom 10%.

Benchmark economy: Selection Back

• <u>Data</u>: "ex-ante procurement premium" in $p_i y_i = 72\%$

Benchmark economy: Selection Back

- Data: "ex-ante procurement premium" in $p_i y_i = 72\%$
- <u>Model</u>: value of procurement V(s, a, 1) V(s, a, 0) > 0

Benchmark economy: Selection Back

- Data: "ex-ante procurement premium" in $p_i y_i = 72\%$
- <u>Model</u>: value of procurement V(s, a, 1) V(s, a, 0) > 0
 - Increasing in s for all firms

(optimality to deliver larger projects)

Benchmark economy: Selection Back

- Data: "ex-ante procurement premium" in $p_i y_i = 72\%$
- <u>Model</u>: value of procurement V(s, a, 1) V(s, a, 0) > 0
 - Increasing in *s* for all firms (optimality to deliver larger projects)
 - Increasing in *a* for constrained firms (ability to deliver larger projects)

Benchmark economy: Selection (Back)

- Data: "ex-ante procurement premium" in $p_iy_i=72\%$
- <u>Model</u>: value of procurement V(s, a, 1) V(s, a, 0) > 0
 - Increasing in *s* for all firms (optimality to deliver larger projects)
 - Increasing in *a* for constrained firms (ability to deliver larger projects)
- We match "ex-ante procurement premium" in $p_i y_i$ with
 - "ex-ante procurement premium" in a=44%
 - "ex-ante procurement premium" in s=35%

Benchmark economy: Aggregates Back

- More efficient overall provision of public than private goods
 - $P_g/P_p = 0.90 < 1$
 - Selection on s: higher productivity of procurement firms
 - Selection on a and $\phi_g > \phi_p$: allows to reduce misallocation of k across procurement firms

Benchmark economy: Aggregates Back

- More efficient overall provision of public than private goods
 - $P_g/P_p = 0.90 < 1$
 - Selection on s: higher productivity of procurement firms
 - Selection on a and $\phi_g > \phi_p$: allows to reduce misallocation of k across procurement firms
- Modest levels of misallocation
 - TFP_p gains of reallocating capital across firms: 5.6%
 - TFP $_g$ gains of reallocating capital across firms: 6.6%

Benchmark economy: Aggregates (Back)

- More efficient overall provision of public than private goods
 - $P_g/P_p = 0.90 < 1$
 - Selection on s: higher productivity of procurement firms
 - Selection on a and $\phi_g > \phi_p$: allows to reduce misallocation of k across procurement firms
- Modest levels of misallocation
 - TFP_p gains of reallocating capital across firms: 5.6%
 - TFP $_g$ gains of reallocating capital across firms: 6.6%
- But sizeable output costs of financial frictions
 - GDP increase of setting $\phi_a
 ightarrow \infty$: 14.1%

Reforming the procurement allocation system

Life cycle of firms: high productivity firms

