Early and Later-life Stimulation: How Retirement Shapes the Effect of Education on Old-age Cognitive Abilities

Hendrik Schmitz

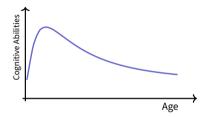
Matthias Westphal

TU Dortmund RWI Essen

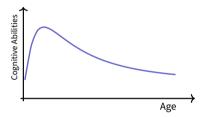
EEA Annual Meeting Barcelona

August 30, 2023

Evidence from neuroscience and economic research let it appear irrevocable that cognitive abilities decline with age.

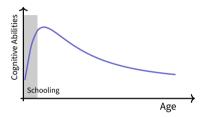


Evidence from neuroscience and economic research let it appear irrevocable that cognitive abilities decline with age.



This decline has considerable implications for human interactions, economic choices, and the quality of life per se.

Evidence from neuroscience and economic research let it appear irrevocable that cognitive abilities decline with age.

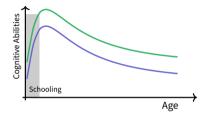


This decline has considerable implications for human interactions, economic choices, and the quality of life per se.

Knowledge about the causal determinants of these associations would be key for sustainable aging societies.

We study the effects education and its causes:

Evidence from neuroscience and economic research let it appear irrevocable that cognitive abilities decline with age.

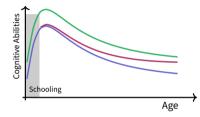


This decline has considerable implications for human interactions, economic choices, and the quality of life per se.

Knowledge about the causal determinants of these associations would be key for sustainable aging societies.

We study the effects education and its causes:

Evidence from neuroscience and economic research let it appear irrevocable that cognitive abilities decline with age.

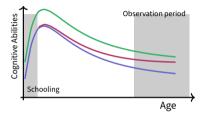


This decline has considerable implications for human interactions, economic choices, and the quality of life per se.

Knowledge about the causal determinants of these associations would be key for sustainable aging societies.

We study the effects education and its causes:

Evidence from neuroscience and economic research let it appear irrevocable that cognitive abilities decline with age.

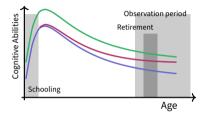


This decline has considerable implications for human interactions, economic choices, and the quality of life per se.

Knowledge about the causal determinants of these associations would be key for sustainable aging societies.

We study the effects education and its causes:

Evidence from neuroscience and economic research let it appear irrevocable that cognitive abilities decline with age.



This decline has considerable implications for human interactions, economic choices, and the quality of life per se.

Knowledge about the causal determinants of these associations would be key for sustainable aging societies.

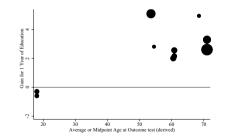
We study the effects education and its causes:

Research question:

Research question:

Education has many downstream implications over the life course: is retirement a mechanism?

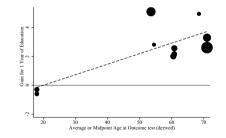
Meta-analysis by Ritchie and Tucker-Drob (2018, Psychological Science):

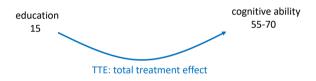


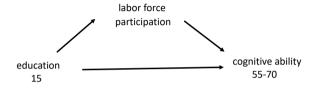
Research question:

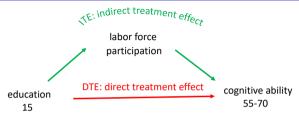
Education has many downstream implications over the life course: is retirement a mechanism?

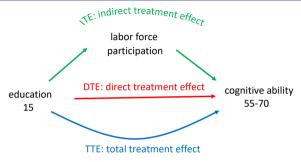
Meta-analysis by Ritchie and Tucker-Drob (2018, Psychological Science):

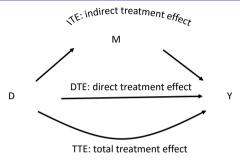






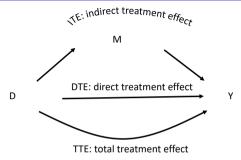






Contribution:

- We develop of novel estimator for causal mediation analysis that is directly based on IV estimation.
 - Except for Frölich and Huber [2017] (based on a control function approach), no estimator exists that incorporates endogeneity of treatment and mediator and heterogeneous treatment effects.
 - Frölich and Huber [2017] do not discuss estimation with binary instruments



Contribution:

- We develop of novel estimator for causal mediation analysis that is directly based on IV estimation.
 - Except for Frölich and Huber [2017] (based on a control function approach), no estimator exists that incorporates endogeneity of treatment and mediator and heterogeneous treatment effects.
 - Frölich and Huber [2017] do not discuss estimation with binary instruments
- Pirst to test whether labor force causes emerging effects of education on old-age cognitive abilities

Baseline Results

Causal Mediation Analysis

Causal Mediation Analysis—Results

Summary & Conclusion

Pool representative survey data from 17 countries on population aged 50+

- Survey of Health Ageing, and Retirement (SHARE), ELSA (UK)
- Biennial data 2004-2018
- Individuals around the age of 50 to 70
- Total of 80,763 observations

Pool representative survey data from 17 countries on population aged 50+

- Survey of Health Ageing, and Retirement (SHARE), ELSA (UK)
- Biennial data 2004-2018
- Individuals around the age of 50 to 70
- ► Total of 80,763 observations

Measure of **cognitive abilities**: *Word recall* test: interviewer reads ten words, respondent is asked to repeat the words

- directly after words are read (*immediate recall*)
- ▶ 5 minutes later (*delayed recall*)
- both together add up to word recall test score (range: 0-20)
- measure of fluid intelligence

Pool representative survey data from 17 countries on population aged 50+

- Survey of Health Ageing, and Retirement (SHARE), ELSA (UK)
- Biennial data 2004-2018
- Individuals around the age of 50 to 70
- ► Total of 80,763 observations

Measure of **cognitive abilities**: *Word recall* test: interviewer reads ten words, respondent is asked to repeat the words

- directly after words are read (*immediate recall*)
- ▶ 5 minutes later (*delayed recall*)
- both together add up to word recall test score (range: 0-20)
- measure of fluid intelligence

Standard measure both in the economic literature as well as in other fields such as neuropsychology.

Pool representative survey data from 17 countries on population aged 50+

- Survey of Health Ageing, and Retirement (SHARE), ELSA (UK)
- Biennial data 2004-2018
- Individuals around the age of 50 to 70
- ▶ Total of 80,763 observations

Measure of **cognitive abilities**: *Word recall* test: interviewer reads ten words, respondent is asked to repeat the words

- directly after words are read (*immediate recall*)
- ▶ 5 minutes later (*delayed recall*)
- both together add up to word recall test score (range: 0-20)
- measure of fluid intelligence

Standard measure both in the economic literature as well as in other fields such as neuropsychology.

Celidoni et al. (2017): Strong reduction (minus 20 per cent) predict dementia in the HRS in 70%

Austria Czech Republic

Schooling is endogenous

England France Germany HH SH HB NI SL BW, HE, NRW, RP BY Greece Italy Netherlands Spain

Matthias Westphal

Compulsory schooling (Z_D)

		change in years	pivotal cohor
	Austria	8-9	1951
	Czech Republic	8-9	1934
		9-8	1939
Schooling is endogenous		8-9	1947
We define	England	10-11	1957
	France	7-8	1923
$D = 1$ (years of schooling \geq		8-10	1953
new level of compulsory	Germany		
	НН	8-9	1934
schooling)	SH	8-9	1941
	НВ	8-9	1943
	NI	8-9	1947
	SL	8-9	1949
	BW, HE, NRW, RP	8-9	1953
	BY	8-9	1955
	Greece	6	1963
	Italy	5-8	1949
	Netherlands	7-9	1936
	Spain	6-8	1957

Compulsory schooling (Z_D)

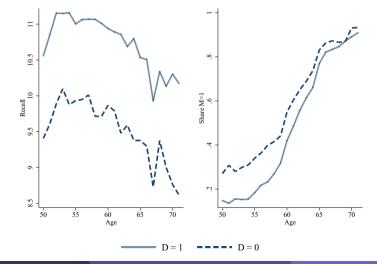
		change in years	pivotal cohort
	Austria	8-9	1951
	Czech Republic	8-9	1934
	·	9-8	1939
Schooling is endogenousWe define		8-9	1947
	England	10-11	1957
	France	7-8	1923
$D = 1$ (years of schooling \geq		8-10	1953
new level of compulsory	Germany		
	НН	8-9	1934
schooling)	SH	8-9	1941
	HB	8-9	1943
Mediator M (retirement) is	NI	8-9	1947
endogenous	SL	8-9	1949
	BW, HE, NRW, RP	8-9	1953
	BY	8-9	1955
	Greece	6	1963
	Italy	5-8	1949
	Netherlands	7-9	1936
	Spain	6-8	1957

<u> </u>		ERA (Z_M)		Compulsory schooling (Z _D)	
		men	women	change in years	pivotal cohort
	Austria	60-65	55-60	8-9	1951
	Czech Republic	57-60	54-60	8-9	1934
				9-8	1939
Schooling is endogenous				8-9	1947
N/a dafina	England	65-66	60-66	10-11	1957
We define	France	60	60	7-8	1923
$D = 1$ (years of schooling \geq				8-10	1953
new level of compulsory	Germany	63	62-63		
	НН			8-9	1934
schooling)	SH			8-9	1941
	HB			8-9	1943
Mediator M (retirement) is	NI			8-9	1947
endogenous	SL			8-9	1949
0	BW, HE, NRW, RP			8-9	1953
	BY			8-9	1955
	Greece	58-60	55-60	6	1963
	Italy	57-58	57-58	5-8	1949
	Netherlands	62	62	7-9	1936
	Spain	61	61	6-8	1957

Recall by age and treatment status

73% have *D* = 1.

55% have *M* = 1 (not in the labor force)



Matthias Westphal

Regression results: total treatment effect

	Tre	Treatment: More education		
	OLS (1)	First stage (2)	2SLS (3)	
More education (<i>D</i>)	1.485*** (0.0483)		0.811*** (0.306)	
Post CS-reform (Z ₁)		0.244 ^{***} (0.0220)		
Control variables	yes	yes	yes	

$$y_{it} = \beta D_{it} + \gamma_c + \lambda_t + \delta_b + \tau_c (t - b) + \varepsilon_{it}$$

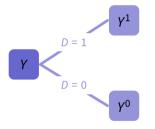
Number of observations in each regression: 80,164. Additional control variables are birth year fixed effects, interview wave fixed effects, country fixed effects, country-specific linear age trends, test repetition fixed effects and male. Standard errors in parentheses clustered on birth year-country level. * p < 0.1, ** p < 0.05, *** p < 0.01.

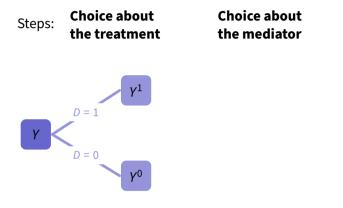
	OLS (1)	2SLS (2)
More education (D)	-0.082*** (0.008)	-0.177*** (0.05)
Control variables	yes	yes

Number of observations in each regression: 80,164. Additional control variables are birth year fixed effects, interview wave fixed effects, country fixed effects, country-specific linear age trends, test repetition fixed effects and male. Standard errors in parentheses clustered on birth year-country level. * p < 0.1, ** p < 0.05, *** p < 0.01.

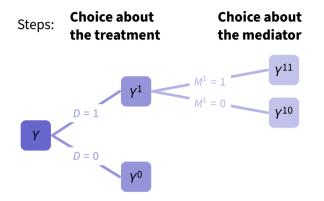
Steps: Choice about the treatment

Choice about the mediator

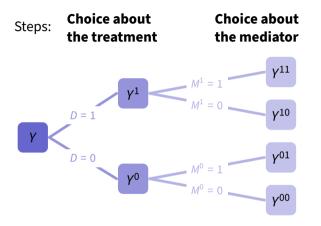




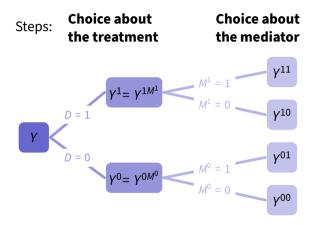
Conventional treatment effects focus only on Υ¹ – Υ⁰



- Conventional treatment effects focus only on $Y^1 Y^0$
- Mediation analysis: Contribution of $E(M^1 M^0)$ to $E(Y^1 Y^0)$



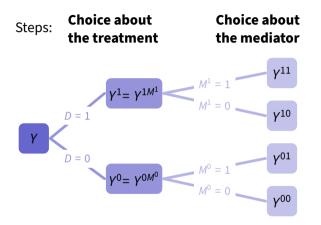
- Conventional treatment effects focus only on Y¹ Y⁰
- Mediation analysis: Contribution of $E(M^1 M^0)$ to $E(Y^1 Y^0)$



Mediated Outcomes:

 $Y^{1M^{1}} := Y^{11}M^{1} + Y^{10}(1 - M^{1})$ $Y^{1M^{0}} := Y^{11}M^{0} + Y^{10}(1 - M^{0})$

- Conventional treatment effects focus only on Y¹ Y⁰
- Mediation analysis: Contribution of $E(M^1 M^0)$ to $E(Y^1 Y^0)$



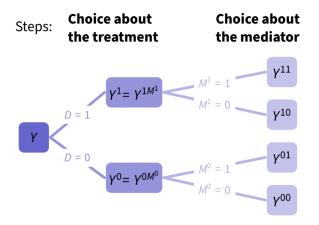
Mediated Outcomes:

 $Y^{1M^{1}} := Y^{11}M^{1} + Y^{10}(1 - M^{1})$ $Y^{1M^{0}} := Y^{11}M^{0} + Y^{10}(1 - M^{0})$

Definition of Mediation Effects:

$$TTE := Y^{1M^1} - Y^{0M^0}$$

- Conventional treatment effects focus only on Υ¹ Υ⁰
- Mediation analysis: Contribution of $E(M^1 M^0)$ to $E(Y^1 Y^0)$



Mediated Outcomes:

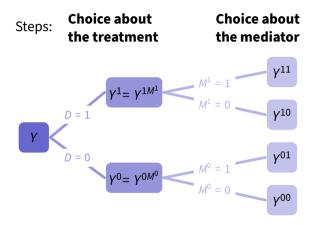
 $Y^{1M^{1}} := Y^{11}M^{1} + Y^{10}(1 - M^{1})$ $Y^{1M^{0}} := Y^{11}M^{0} + Y^{10}(1 - M^{0})$

Definition of Mediation Effects:

$$TTE := Y^{1M^{1}} - Y^{0M^{0}}$$
$$= Y^{1M^{1}} - Y^{1M^{0}} + Y^{1M^{0}} - Y^{0M^{0}}$$

$$= ITE(1) + DTE(0)$$

- Conventional treatment effects focus only on Υ¹ Υ⁰
- Mediation analysis: Contribution of $E(M^1 M^0)$ to $E(Y^1 Y^0)$



Mediated Outcomes:

 $Y^{1M^{1}} := Y^{11}M^{1} + Y^{10}(1 - M^{1})$ $Y^{1M^{0}} := Y^{11}M^{0} + Y^{10}(1 - M^{0})$

Definition of Mediation Effects:

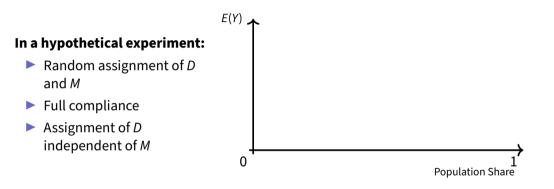
$$TTE := Y^{1M^1} - Y^{0M^0}$$

$$= Y^{1M^1} - Y^{1M^0} + Y^{1M^0} - Y^{0M^0}$$

$$= ITE(1) + DTE(0)$$

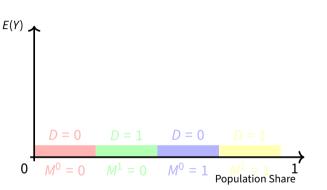
$$= DTE(1) + ITE(0)$$

- Conventional treatment effects focus only on Y¹ Y⁰
- Mediation analysis: Contribution of $E(M^1 M^0)$ to $E(Y^1 Y^0)$



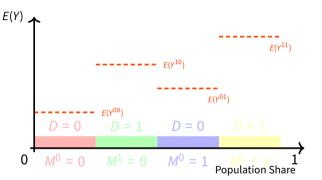
In a hypothetical experiment:

- Random assignment of D and M
- Full compliance
- Assignment of D independent of M



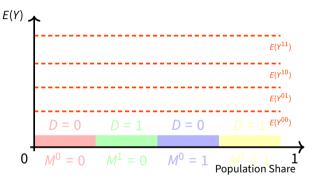
In a hypothetical experiment:

- Random assignment of D and M
- Full compliance
- Assignment of D independent of M

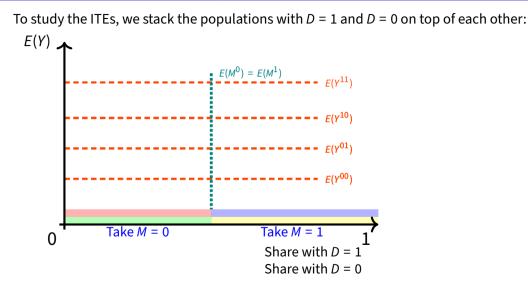


In a hypothetical experiment:

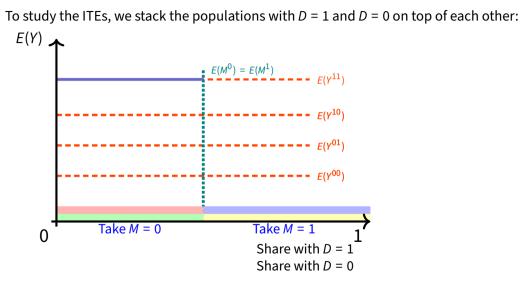
- Random assignment of *D* and *M*
- Full compliance
- Assignment of D independent of M



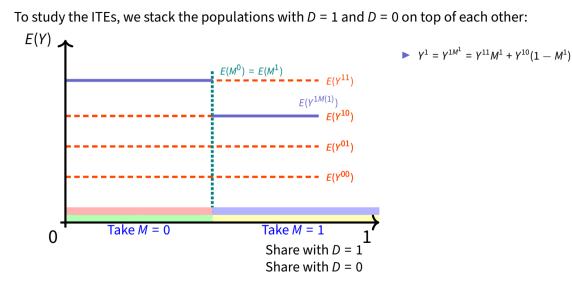
Because of the random assignment, we can extrapolate the means to the other groups

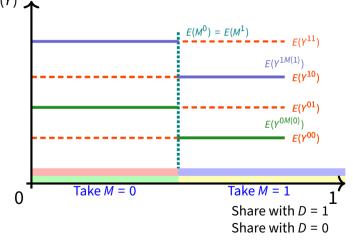


Matthias	Westp	hal

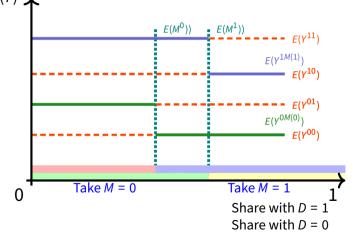


latthias	





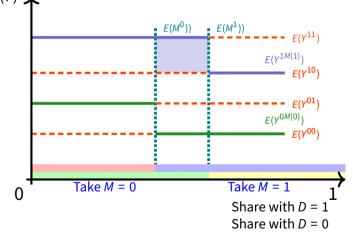
- $Y^1 = Y^{1M^1} = Y^{11}M^1 + Y^{10}(1 M^1)$
- $Y^0 = Y^{0M^0} = Y^{01}M^0 + Y^{00}(1 M^0)$
- If the mediator is unaffected by D, the mediator cannot contribute to the treatment effect



$$Y^1 = Y^{1M^1} = Y^{11}M^1 + Y^{10}(1 - M^1)$$

$$Y^{0} = Y^{0M^{0}} = Y^{01}M^{0} + Y^{00}(1 - M^{0})$$

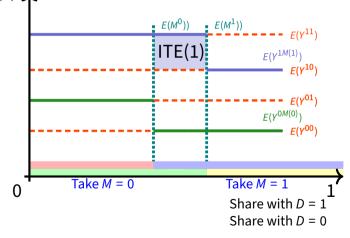
- If the mediator is unaffected by D, the mediator cannot contribute to the treatment effect
- If there is an effect of D on M, the ITEs amount to the product of D on M and D on Y¹



$$Y^1 = Y^{1M^1} = Y^{11}M^1 + Y^{10}(1 - M^1)$$

$$Y^{0} = Y^{0M^{0}} = Y^{01}M^{0} + Y^{00}(1 - M^{0})$$

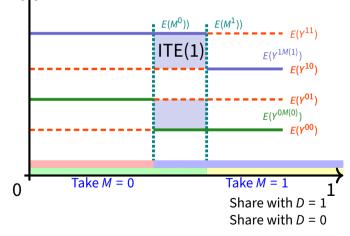
- If the mediator is unaffected by D, the mediator cannot contribute to the treatment effect
- If there is an effect of D on M, the ITEs amount to the product of D on M and D on Y¹



$$Y^1 = Y^{1M^1} = Y^{11}M^1 + Y^{10}(1 - M^1)$$

$$Y^{0} = Y^{0M^{0}} = Y^{01}M^{0} + Y^{00}(1 - M^{0})$$

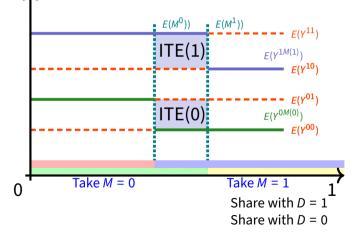
- If the mediator is unaffected by D, the mediator cannot contribute to the treatment effect
- If there is an effect of D on M, the ITEs amount to the product of D on M and D on Y¹



$$Y^1 = Y^{1M^1} = Y^{11}M^1 + Y^{10}(1 - M^1)$$

$$Y^{0} = Y^{0M^{0}} = Y^{01}M^{0} + Y^{00}(1 - M^{0})$$

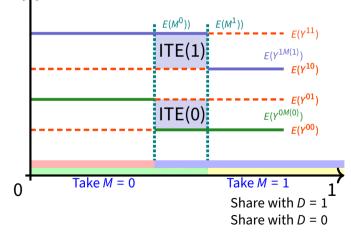
- If the mediator is unaffected by D, the mediator cannot contribute to the treatment effect
- If there is an effect of D on M, the ITEs amount to the product of D on M and D on Y¹



$$Y^1 = Y^{1M^1} = Y^{11}M^1 + Y^{10}(1 - M^1)$$

$$Y^0 = Y^{0M^0} = Y^{01}M^0 + Y^{00}(1 - M^0)$$

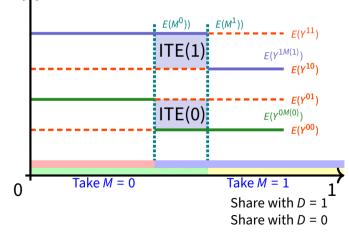
- If the mediator is unaffected by D, the mediator cannot contribute to the treatment effect
- If there is an effect of D on M, the ITEs amount to the product of D on M and D on Y¹



$$Y^1 = Y^{1M^1} = Y^{11}M^1 + Y^{10}(1 - M^1)$$

$$Y^{0} = Y^{0M^{0}} = Y^{01}M^{0} + Y^{00}(1 - M^{0})$$

- If the mediator is unaffected by D, the mediator cannot contribute to the treatment effect
- If there is an effect of D on M, the ITEs amount to the product of D on M and D on Y¹
- This can be estimated by OLS or IV



$$Y^1 = Y^{1M^1} = Y^{11}M^1 + Y^{10}(1 - M^1)$$

$$Y^{0} = Y^{0M^{0}} = Y^{01}M^{0} + Y^{00}(1 - M^{0})$$

- If the mediator is unaffected by D, the mediator cannot contribute to the treatment effect
- If there is an effect of D on M, the ITEs amount to the product of D on M and D on Y¹
- This can be estimated by OLS or IV
- But if there are heterogeneous treatment effects (essential heterogeneity), these estimators are biased

Our proposed methods connects to the idea of a randomized experiment by using instruments.

Our proposed methods connects to the idea of a randomized experiment by using instruments.

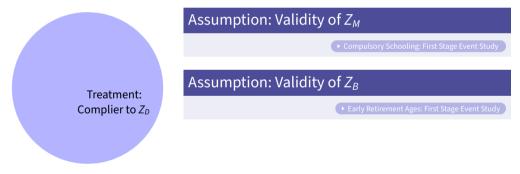
We focus on individuals for which the treatment and mediator choice is completely random: The complier. They have $D = Z_D$, $M = Z_M$

Assumption: Validity of Z_M

Compulsory Schooling: First Stage Event Study

Our proposed methods connects to the idea of a randomized experiment by using instruments.

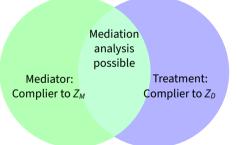
Our proposed methods connects to the idea of a randomized experiment by using instruments.

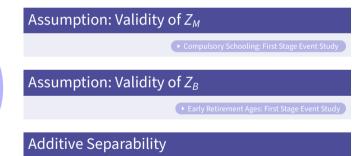


Our proposed methods connects to the idea of a randomized experiment by using instruments.

Our proposed methods connects to the idea of a randomized experiment by using instruments.

We focus on individuals for which the treatment and mediator choice is completely random: The complier. They have $D = Z_D$, $M = Z_M$

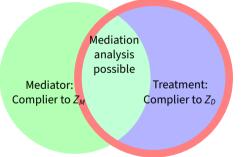


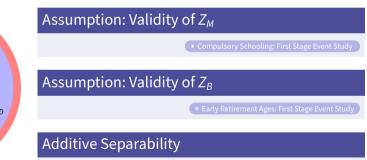


Implicitly made in every IV model.

Our proposed methods connects to the idea of a randomized experiment by using instruments.

We focus on individuals for which the treatment and mediator choice is completely random: The complier. They have $D = Z_D$, $M = Z_M$





Implicitly made in every IV model.

Selection equation:

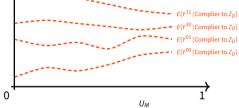
$$M^{j} = \mathbb{1}\left[Y^{j1} - Y^{j0} \geq C^{j}(Z_{M}, X)\right]$$

Proposed Method

Selection equation:

$$\begin{split} \mathcal{M}^{j} &= \mathbb{1} \Big[Y^{j1} - Y^{j0} \geq C^{j}(Z_{M}, X) \Big] \\ &= \mathbb{1} \Big[\operatorname{Pr}(\mathcal{M} = 1 | Z_{M}, X) \geq U^{j}_{M} \Big] \quad \forall j \in \{0, 1\}. \end{split}$$

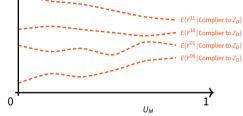
Potential outcome curves



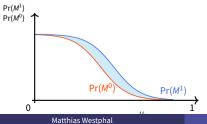
Proposed Method

$$\begin{aligned} M^{j} &= \mathbb{1} \Big[Y^{j1} - Y^{j0} \geq C^{j}(Z_{M}, X) \Big] \\ &= \mathbb{1} \Big[\mathsf{Pr}(M = 1 | Z_{M}, X) \geq U^{j}_{M} \Big] \quad \forall j \in \{0, 1\}. \end{aligned}$$

Potential outcome curves



Propensity to take *M*:

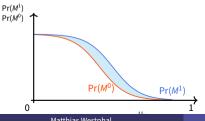


Proposed Method

$$\begin{aligned} M^{j} &= \mathbb{1} \Big[Y^{j1} - Y^{j0} \geq C^{j}(Z_{M}, X) \Big] \\ &= \mathbb{1} \Big[\Pr(M = \mathbf{1} | Z_{M}, X) \geq U_{M}^{j} \Big] \quad \forall j \in \{0, 1\}. \end{aligned}$$

Potential outcome curves E(Y) $E(Y^{11} | \text{Complier to } Z_D)$ $(Y^{10} | Complier to Z_D)$ 01 (Complier to $Z_{\rm D}$) $F(Y^{00} | Complier to Z_{0})$

Propensity to take *M*:



Mediation effects:

0

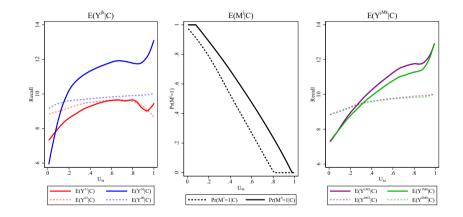
$$ITE(1) = E(Y^{11} - Y^{10}) (Pr(M^{1} = 1) - Pr(M^{0} = 1))$$

$$DTE(0) = E(Y^{10} - Y^{00})$$

$$+ (Pr(M^{0} = 1))E(Y^{11} - Y^{01} - (Y^{10} - Y^{00}))$$

Uм

Matthias Westphal



	Total treatment	Effect decomposition				
	effect	Indire	ct TEs	Direc	t TEs	-
	TTE = LATE	<i>ITE</i> (1)	<i>ITE</i> (0)	DTE(1)	DTE(0)	N
Baseline results	0.864* (0.505)	0.293* (0.153)	0.043 (0.052)	0.822* (0.494)	0.571 (0.488)	80,763

Number of observations: 80,763. Control varixables are birth year fixed effects, interview wave fixed effects, country fixed effects, country-specific linear age trends, test repetition fixed effects and male. Bootstrap standard errors (200 replications) in parentheses clustered on birth year-country level. * p < 0.1, ** p < 0.05, *** p < 0.01.

	Total treatment		Effect decomposition			
	effect	Indirect TEs		Direct TEs		
	TTE = LATE	<i>ITE</i> (1)	<i>ITE</i> (0)	DTE(1)	DTE(0)	N
Baseline results	0.864* (0.505)	0.293* (0.153)	0.043 (0.052)	0.822* (0.494)	0.571 (0.488)	80,763
Without unemployed, disabled, homemakers	1.132** (0.489)	0.398* (0.205)	0.153 ^{***} (0.048)	0.980** (0.475)	0.734* (0.417)	68,779

Number of observations: 80,763. Control variables are birth year fixed effects, interview wave fixed effects, country fixed effects, country-specific linear age trends, test repetition fixed effects and male. Bootstrap standard errors (200 replications) in parentheses clustered on birth year-country level. * p < 0.1, ** p < 0.05, *** p < 0.01.

	Total treatment	Effect decomposition				
	effect	Indirec	Indirect TEs		Direct TEs	
	TTE = LATE	<i>ITE</i> (1)	ITE(0)	DTE(1)	<i>DTE</i> (0)	N
Baseline results	0.864* (0.505)	0.293* (0.153)	0.043 (0.052)	0.822* (0.494)	0.571 (0.488)	80,763
Without unemployed, disabled, homemakers	1.132** (0.489)	0.398* (0.205)	0.153*** (0.048)	0.980** (0.475)	0.734* (0.417)	68,779
Male	0.582 (0.659)	0.552** (0.261)	0.099 (0.0754)	0.483 (0.631)	0.0294 (0.612)	43,397
Female	1.148 (0.827)	0.365 (0.309)	0.0274 (0.0677)	1.121 (0.811)	0.783 (0.665)	37,366

Number of observations: 80,763. Control variables are birth year fixed effects, interview wave fixed effects, country fixed effects, country-specific linear age trends, test repetition fixed effects and male. Bootstrap standard errors (200 replications) in parentheses clustered on birth year-country level. * p < 0.1, ** p < 0.05, *** p < 0.01.

We study the interaction of education in adolescence and retirement around retirement age and its effect on cognitive abilities of individuals in Europe aged 50-70.

We study the interaction of education in adolescence and retirement around retirement age and its effect on cognitive abilities of individuals in Europe aged 50-70.

We decompose LATE = ITE(1) + DTE(0).

We study the interaction of education in adolescence and retirement around retirement age and its effect on cognitive abilities of individuals in Europe aged 50-70.

We decompose LATE = ITE(1) + DTE(0).

$$8\% = 1/3 + 2/3$$

We study the interaction of education in adolescence and retirement around retirement age and its effect on cognitive abilities of individuals in Europe aged 50-70.

We decompose LATE = ITE(1) + DTE(0).

 $8\% = \frac{1}{3} + \frac{2}{3}$ = ITE(0) + DTE(1) $8\% = \frac{1}{20} + \frac{19}{20}$

We study the interaction of education in adolescence and retirement around retirement age and its effect on cognitive abilities of individuals in Europe aged 50-70.

We decompose LATE = ITE(1) + DTE(0).

$$8\% = 1/3 + 2/3$$

= ITE(0) + DTE(1)8% = 1/20 + 19/20 ITE(1) > ITE(0)

⇒ Labor Force Participation is more stimulating for the more educated

We study the interaction of education in adolescence and retirement around retirement age and its effect on cognitive abilities of individuals in Europe aged 50-70.

We decompose LATE = ITE(1) + DTE(0).

$$8\% = 1/3 + 2/3$$

= ITE(0) + DTE(1)8% = 1/20 + 19/20 ITE(1) > ITE(0)

- ⇒ Labor Force Participation is more stimulating for the more educated
- ⇒ Complementarities between education and labor force participation.

We study the interaction of education in adolescence and retirement around retirement age and its effect on cognitive abilities of individuals in Europe aged 50-70.

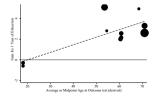
We decompose LATE = ITE(1) + DTE(0).

$$8\% = 1/3 + 2/3$$

= ITE(0) + DTE(1)8% = 1/20 + 19/20 ITE(1) > ITE(0)

- ⇒ Labor Force Participation is more stimulating for the more educated
- ⇒ Complementarities between education and labor force participation.

By this, we put the results found in the literature so far in a more consistent perspective:



References I

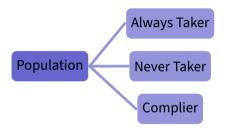
- Brinch, C. N., Mogstad, M., and Wiswall, M. (2017). Beyond LATE with a discrete instrument. <u>Journal of Political</u> <u>Economy</u>, 125(4):985–1039.
- Carneiro, P. and Lee, S. (2009). Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality. Journal of Econometrics, 149(2):191–208.
- Frölich, M. and Huber, M. (2017). Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables. <u>Journal of the Royal Statistical Society: Series B (Statistical Methodology)</u>, 79(5):1645–1666.
- Imbens, G. W. and Angrist, J. D. (1994). Identification and Estimation of Local Average Treatment Effects. Econometrica, 62(2):467–475.
- Imbens, G. W. and Rubin, D. B. (1997). Estimating outcome distributions for compliers in instrumental variables models. <u>The Review of Economic Studies</u>, 64(4):555–574.

Steps: **1. Stratification by** Z_D **type 2. Separate Evaluation 3. Assess effects of** M

Population

Methods:

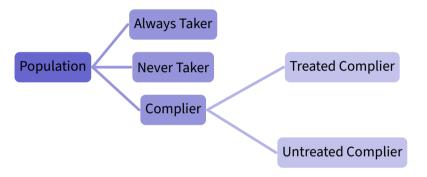
Steps: **1. Stratification by** Z_D **type 2. Separate Evaluation 3. Assess effects of** M



Methods: Imbens and Angrist [1994]

Matthias Westphal

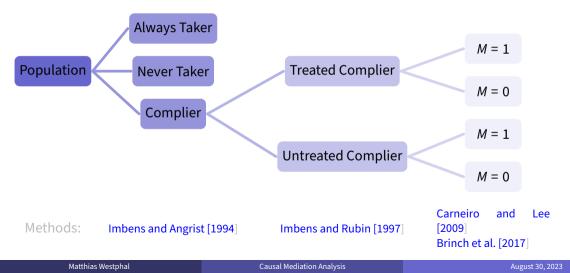
Steps: **1. Stratification by** Z_D **type 2. Separate Evaluation 3. Assess effects of** M



Methods: Imbens and Angrist [1994] Imbens and Rubin [1997]

Matt	hias	Westp	ha

Steps: **1. Stratification by** Z_D **type 2. Separate Evaluation 3. Assess effects of** M



Estimation protocol:

1 Estimate Propensity Score: $PS_M := Pr(M = 1|X) = \pi_{DZ_DM} + X'\lambda$

Estimation protocol:

- **1** Estimate Propensity Score: $PS_M := Pr(M = 1|X) = \pi_{DZ_DM} + X'\lambda$
- **2** Purging out control variables from *Y*. Estimate

$$\begin{array}{lll} Y &=& \alpha_{DZ_DM} + \beta_{DZ_DM} p + \boldsymbol{X'} \boldsymbol{\gamma} + \boldsymbol{X'} p \boldsymbol{\delta} + \varepsilon \\ \\ \widetilde{Y} &=& Y - (\boldsymbol{X} - \overline{\boldsymbol{X}})' \widehat{\boldsymbol{\gamma}} - (\boldsymbol{X} - \overline{\boldsymbol{X}})' p \widehat{\boldsymbol{\delta}} \end{array}$$

Estimation protocol:

- **1** Estimate Propensity Score: $PS_M := Pr(M = 1|X) = \pi_{DZ_DM} + X'\lambda$
- **2** Purging out control variables from Y. Estimate

$$\begin{array}{lll} Y &=& \alpha_{DZ_DM} + \beta_{DZ_DM} p + \boldsymbol{X'} \boldsymbol{\gamma} + \boldsymbol{X'} p \boldsymbol{\delta} + \varepsilon \\ \\ \widetilde{Y} &=& Y - (\boldsymbol{X} - \overline{\boldsymbol{X}})' \widehat{\boldsymbol{\gamma}} - (\boldsymbol{X} - \overline{\boldsymbol{X}})' p \widehat{\boldsymbol{\delta}} \end{array}$$

3 Non-parametric estimation: Evaluate \tilde{Y} in every cell of $Z_D \times D \times M$ $\tilde{Y} = \alpha + \beta PS_M$

Determine $E(Y^{jk}|U_M)$ using the Carneiro and Lee [2009] formula.

Estimation protocol:

- **1** Estimate Propensity Score: $PS_M := Pr(M = 1|X) = \pi_{DZ_DM} + X'\lambda$
- **2** Purging out control variables from Y. Estimate

$$\begin{array}{lll} Y &=& \alpha_{DZ_DM} + \beta_{DZ_DM} p + \boldsymbol{X'} \boldsymbol{\gamma} + \boldsymbol{X'} p \boldsymbol{\delta} + \varepsilon \\ \\ \widetilde{Y} &=& Y - (\boldsymbol{X} - \overline{\boldsymbol{X}})' \widehat{\boldsymbol{\gamma}} - (\boldsymbol{X} - \overline{\boldsymbol{X}})' p \widehat{\boldsymbol{\delta}} \end{array}$$

3 Non-parametric estimation: Evaluate \tilde{Y} in every cell of $Z_D \times D \times M$ $\tilde{Y} = \alpha + \beta PS_M$

Determine $E(Y^{jk}|U_M)$ using the Carneiro and Lee [2009] formula. **Estimating weights** $Pr(M^j|U_M)$

Estimation protocol:

- **1** Estimate Propensity Score: $PS_M := Pr(M = 1|X) = \pi_{DZ_DM} + X'\lambda$
- **2** Purging out control variables from Y. Estimate

$$\begin{array}{lll} Y &=& \alpha_{DZ_DM} + \beta_{DZ_DM} p + \boldsymbol{X'} \boldsymbol{\gamma} + \boldsymbol{X'} p \boldsymbol{\delta} + \varepsilon \\ \\ \widetilde{Y} &=& Y - (\boldsymbol{X} - \overline{\boldsymbol{X}})' \widehat{\boldsymbol{\gamma}} - (\boldsymbol{X} - \overline{\boldsymbol{X}})' p \widehat{\boldsymbol{\delta}} \end{array}$$

3 Non-parametric estimation: Evaluate \tilde{Y} in every cell of $Z_D \times D \times M$

$$\tilde{Y} = \alpha + \beta PS_M$$

Determine $E(Y^{jk}|U_M)$ using the Carneiro and Lee [2009] formula.

- 4 Estimating weights Pr(Mⁱ|U_M)
- S Adjust to compliers: Compute E(Y^{jM^k} |Complier to Z_D) using the Imbens and Rubin [1997] formula.

Estimation protocol:

- **1** Estimate Propensity Score: $PS_M := Pr(M = 1|X) = \pi_{DZ_DM} + X'\lambda$
- **2** Purging out control variables from Y. Estimate

$$\begin{array}{lll} Y &=& \alpha_{DZ_DM} + \beta_{DZ_DM} p + \boldsymbol{X'} \boldsymbol{\gamma} + \boldsymbol{X'} p \boldsymbol{\delta} + \varepsilon \\ \\ \widetilde{Y} &=& Y - (\boldsymbol{X} - \overline{\boldsymbol{X}})' \widehat{\boldsymbol{\gamma}} - (\boldsymbol{X} - \overline{\boldsymbol{X}})' p \widehat{\boldsymbol{\delta}} \end{array}$$

3 Non-parametric estimation: Evaluate \tilde{Y} in every cell of $Z_D \times D \times M$

$$\tilde{\textbf{Y}} = \alpha + \beta \textbf{PS}_{M}$$

Determine $E(Y^{jk}|U_M)$ using the Carneiro and Lee [2009] formula.

- 4 Estimating weights $Pr(M^{j}|U_{M})$
- S Adjust to compliers: Compute E(Y^{jM^k} |Complier to Z_D) using the Imbens and Rubin [1997] formula.
- 6 Computing Mediation parameters

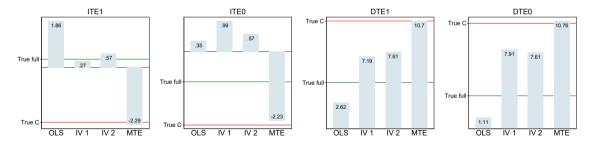
Properties of the data generating process:

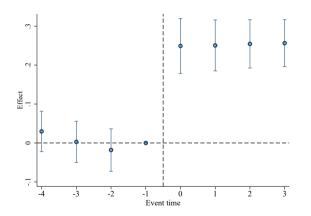
- Binary instruments for *D* and *M*.
- X affecting Y, M, D, and instruments
- Compliers to *Z*_D are different to Always Takers and Never Takers

Properties of the data generating process:

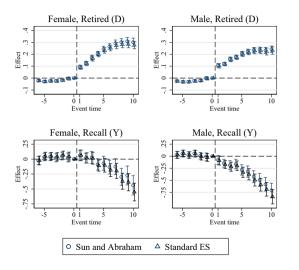
- Binary instruments for *D* and *M*.
- X affecting Y, M, D, and instruments
- Compliers to *Z*_D are different to Always Takers and Never Takers

Results:





▲ Back



Total, direct, and indirect treatment effects:

	Total treatment	Effect decomposition			
	effect	Indirect TEs		Direct TEs	
	TTE = LATE	<i>ITE</i> (1)	<i>ITE</i> (0)	DTE(1)	<i>DTE</i> (0)
MTE	0.864* (0.505)	0.293* (0.153)	0.043 (0.052)	0.822* (0.494)	0.571 (0.488)

Number of observations: 80,763. Control variables are birth year fixed effects, interview wave fixed effects, country fixed effects, country-specific linear age trends, test repetition fixed effects and male. Bandwidth = 0.25. Bootstrap standard errors (200 replications) in parentheses clustered on birth year-country level. * p < 0.1, ** p < 0.05, *** p < 0.01.

Total, direct, and indirect treatment effects:

	Total treatment	Effect decomposition			
	effect	Indirect TEs		Direct TEs	
	TTE = LATE	<i>ITE</i> (1)	ITE(0)	DTE(1)	DTE(0)
MTE	0.864*	0.293*	0.043	0.822*	0.571
	(0.505)	(0.153)	(0.052)	(0.494)	(0.488)
2SLS	0.804**	0.184	—0.209	1.013**	0.620*
	(0.379)	(0.140)	(0.164)	(0.485)	(0.354)
OLS	1.418 ^{***}	0.039 ^{***}	0.050***	1.368***	1.380***
	(0.052)	(0.005)	(0.009)	(0.054)	(0.054)

Number of observations: 80,763. Control variables are birth year fixed effects, interview wave fixed effects, country fixed effects, country-specific linear age trends, test repetition fixed effects and male. Bandwidth = 0.25. Bootstrap standard errors (200 replications) in parentheses clustered on birth year-country level. * p < 0.1, ** p < 0.05, *** p < 0.01.