Value of Information

Entry Deterrence

No Technological Constraints

Conclusions 0

Experimentation and Entry Threat in Oligopolies

Giacomo Rostagno

HEC Paris

28th August 2023

Value of Information

Entry Deterrence

No Technological Constraints

Conclusions 0

Idea

- A firm just launched a new product
- Uncertainty over *market demand*
 - Is the product appreciated?
- How can the firm learn about demand function?
 - Pay for experts (e.g. market studies): Private information
 - Experimentation: Public information
- Double edge sword:
 - Help to uncover market demand
 - Information is available to potential competitors
- **Research question**: How does the entry threat change the experimentation level of a monopolist?
 - Can experimentation deter entry?

No Technological Constraints

Conclusions O

Framework

- Two-period model
 - Nature chooses demand function parameter: $\gamma = \{\overline{\gamma}, \gamma\}$
 - First Period: Firm 1 is the monopolist
 - Second Period: possible entry of Firm 2 (Entry cost K > 0)
- Firm compete via quantity
- $p_t = g(q_t, \gamma) + \epsilon_t$
 - $\epsilon_t \sim U$; i.i.d.
- Incomplete and symmetric information:
 - Information cannot be manipulated (or only partially revealed)
 - Information is a Public Good

Entry Deterrence

No Technological Constraints 0000

Conclusions 0

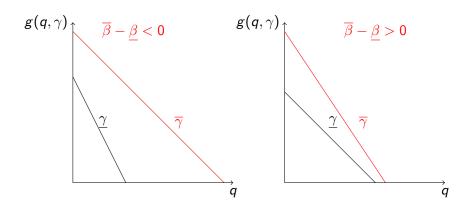
Linear Demand Model

• Simple mathematical framework:

$$g(q,\gamma) = egin{cases} lpha - eta q & ext{if } q \in [0,rac{lpha}{eta}] \ 0 & ext{otherwise} \end{cases}$$

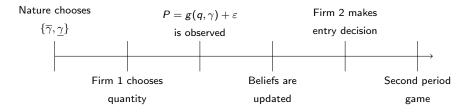
•
$$\overline{\gamma} = \{\overline{\alpha}, \overline{\beta}\}$$
 and $\underline{\gamma} = \{\underline{\alpha}, \underline{\beta}\}$
• $\overline{\alpha} \subset \underline{\alpha}$

•
$$\overline{\overline{\beta}} > \overline{\underline{\beta}}$$

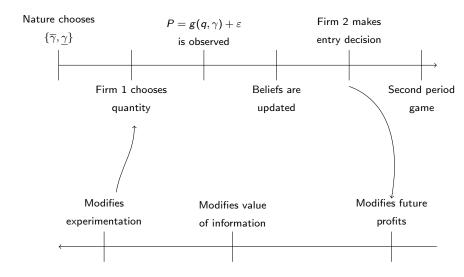

Value of Information

Entry Deterrence

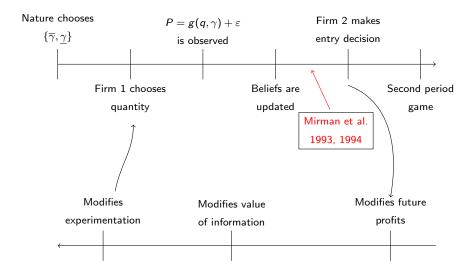
No Technological Constraints


Conclusions 0

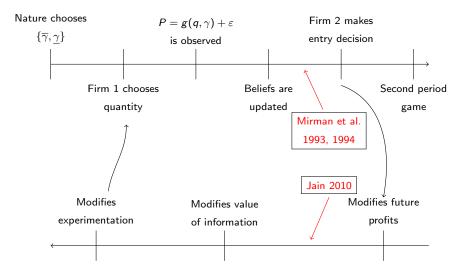
Information Revelation


No Technological Constraints

Conclusions 0


No Technological Constraints

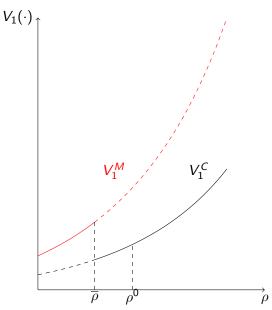
Conclusions 0


No Technological Constraints

Conclusions 0

No Technological Constraints

Conclusions 0


Value of Information

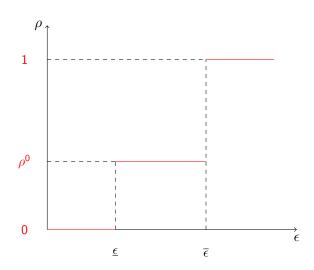
Entry Deterrence

No Technological Constraints

Conclusions 0

Second Period Profits

7 / 17


Value of Information

Entry Deterrence

No Technological Constraints

Conclusions 0

Posterior

Value of Information

Entry Deterrence

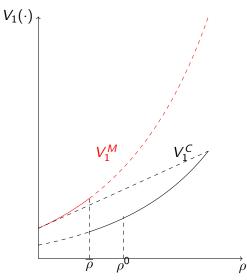
No Technological Constraints 0000 Conclusions 0

First Period Problem

$$\max_{Q_1} \Pi(\rho^0, Q_1) = \pi_1(Q_1) + \delta \left[V_1(\rho^0) + \left(\underbrace{\frac{g(Q_1, \overline{\gamma}) - g(Q_1, \underline{\gamma})}{2t}}_{\left(\underbrace{\rho^0 V_1(1) + (1 - \rho^0) V_1(0) - V_1(\rho^0)}_{\text{Net Value of Information}} \right) \right]$$

- If V(·) were always convex; information would always be valuable
 - Monopolist
- Value of information is hard to determine *ex-ante* in case of entry threat

Back


Value of Information 00000

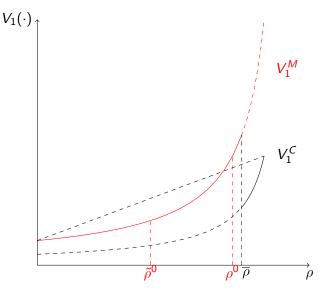
Entry Deterrence

No Technological Constraints

Conclusions 0

High Entry Threat

Back


Value of Information

Entry Deterrence

No Technological Constraints

Conclusions 0

Low Entry Threat

Experimentation and Entry Threat

- **Question**: Does entry threat increase or decrease experimentation?
 - If the value of information is *negative: decreases* experimentation (Remember)
 - If the value of information is *positive*: hard to say *ex-ante* (Remember)
- Entry threat increase experimentation only if $V_2(0) < K < V_2(\rho^0)$ and $\rho^0 < \hat{\rho}$ (Graphical Intuition)
 - Only bad news can avoid entry
 - Bad news is likely enough

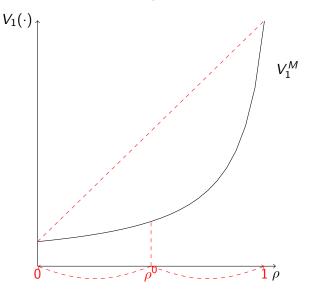
Driving Forces:

- Entry Deterrence Effect
- Public Good Effect

No Technological Constraints •000 Conclusions 0

Bayesian Persuasion

- We concentrated on a specific technology: quantity experimentation; uniform distribution
- What happens if we relax the assumption on information tehcnology?
- *Opposite case*: Firm can design any information disclosure policy
- Pharmaceutical company needs to design pre-test for its new drug:
 - Can choose sample size, technology used etc.
- 'Bayesian Persuasion': Company commits to a distribution over posterior:
 - Probability au the posterior is ho_s
 - 1τ posterior is $\rho_{s'}$
 - Bayesian Plausibility: $ho_0 = au
 ho_s + (1- au)
 ho_{s'}$

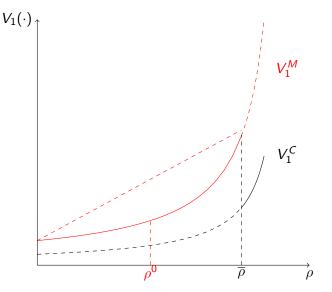

Value of Information

Entry Deterrence

No Technological Constraints

Conclusions 0

Monopolist

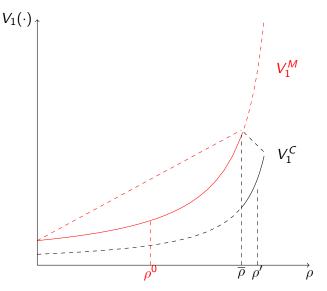

Value of Information

Entry Deterrence

No Technological Constraints

Conclusions 0

Entry Deterrence

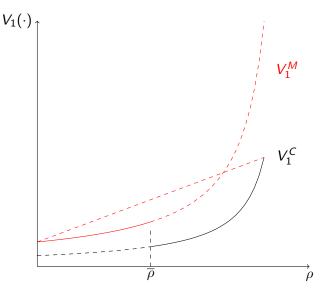

Value of Information

Entry Deterrence

No Technological Constraints

Conclusions 0

Entry Deterrence


Value of Information

Entry Deterrence

No Technological Constraints

Conclusions 0

Is Full Dislosure Possible?

Why is this mechanism important?

- Literature on entry deterrence: does not consider experimentation level
- Literature on experimentation: does not consider entry deterrence effect (exception: Jain (2010))
- Two different settings analysed:
 - Quantity experimentation and Uniform Technology
 - No Technological Constraints: Bayesian Persuasion
- **Robust Finding**: Entry deterrence and public good effect are robust
- Non-Robust Finding: the results depend on the information structure
- Policy Implication:
 - Should we incorporate these results in the debate over markets' liberalization and patents' protection?