Experimentation and Entry Threat in Oligopolies

Giacomo Rostagno

HEC Paris

28th August 2023
Idea

• A firm just launched a new product

• Uncertainty over *market demand*
 • Is the product appreciated?

• How can the firm learn about demand function?
 • Pay for experts (e.g. market studies): *Private information*
 • **Experimentation:** *Public information*

• Double edge sword:
 • Help to uncover market demand
 • Information is available to potential competitors

• **Research question:** How does the entry threat change the experimentation level of a monopolist?
 • Can experimentation deter entry?
Framework

- **Two-period model**
 - Nature chooses demand function parameter: $\gamma = \{\gamma, \overline{\gamma}\}$
 - *First Period*: Firm 1 is the monopolist
 - *Second Period*: possible entry of Firm 2 (Entry cost $K > 0$)

- Firm compete via quantity

- $p_t = g(q_t, \gamma) + \epsilon_t$
 - $\epsilon_t \sim U; \text{ i.i.d.}$

- Incomplete and symmetric information:
 - Information cannot be manipulated (or only partially revealed)
 - Information is a *Public Good*
Linear Demand Model

• Simple mathematical framework:

\[g(q, \gamma) = \begin{cases} \alpha - \beta q & \text{if } q \in [0, \frac{\alpha}{\beta}] \\ 0 & \text{otherwise} \end{cases} \]

• \(\overline{\gamma} = \{\overline{\alpha}, \overline{\beta}\} \) and \(\underline{\gamma} = \{\underline{\alpha}, \underline{\beta}\} \)

• \(\frac{\overline{\alpha}}{\overline{\beta}} > \frac{\underline{\alpha}}{\underline{\beta}} \)
Information Revelation

\[g(q, \gamma) \]

\[\bar{\beta} - \beta < 0 \]

\[g(q, \gamma) \]

\[\bar{\beta} - \beta > 0 \]
How Does the Game Work?

Nature chooses \(\{\gamma, \gamma\} \)

\[P = g(q, \gamma) + \epsilon \]

is observed

Firm 1 chooses quantity

Firm 2 makes entry decision

Beliefs are updated

Second period game

Mirman et al. 1993, 1994

Jain 2010
How Does the Game Work?

Nature chooses
\[\{\gamma, \bar{\gamma}\} \]

Firm 1 chooses quantity

\[P = g(q, \gamma) + \varepsilon \]
is observed

Firm 2 makes entry decision

Beliefs are updated

Second period game

Modifies future profits

Modifies value of information

Modifies experimentation

Mirman et al. 1993, 1994
Jain 2010
How Does the Game Work?

Nature chooses \(\{\gamma, \bar{\gamma}\}\)

\[P = g(q, \gamma) + \varepsilon \]

is observed

Firm 1 chooses quantity

Firm 2 makes entry decision

Beliefs are updated

Second period game

Modifies experimentation

Modifies value of information

Modifies future profits

Mirman et al. 1993, 1994
How Does the Game Work?

Nature chooses \(\{ \bar{\gamma}, \gamma \} \)

Firm 1 chooses quantity

\[P = g(q, \gamma) + \varepsilon \]

is observed

Beliefs are updated

Firm 2 makes entry decision

Second period game

Modifies future profits

Modifies value of information

Modifies experimentation

Mirman et al. 1993, 1994

Jain 2010
Second Period Profits

\[V_1(\cdot) = V_1^M + V_1^C \]

\[V_1^M \]

\[V_1^C \]
First Period Problem

\[\max_{Q_1} \Pi(\rho^0, Q_1) = \pi_1(Q_1) + \delta \left[V_1(\rho^0) + \left(\frac{g(Q_1, \gamma) - g(Q_1, \gamma)}{2t} \right) \right] \]

- Net Value of Information
 - If \(V(\cdot) \) were always convex; information would always be valuable
 - Monopolist
 - Value of information is hard to determine \textit{ex-ante} in case of entry threat

Back
High Entry Threat

\[V_1(\cdot) \]

\[V_1^M \]

\[V_1^C \]

\[\rho \]

\[\rho^0 \]

\[\rho \]
Low Entry Threat

\[V_1(\cdot) \]

\[V_1^M \]

\[V_1^C \]

\[\rho^0 \]

\[\tilde{\rho} \]

\[\rho \]
Experimentation and Entry Threat

• **Question**: Does entry threat increase or decrease experimentation?
 - If the value of information is *negative*: decreases experimentation (Remember)
 - If the value of information is *positive*: hard to say ex-ante (Remember)

• Entry threat increase experimentation only if $V_2(0) < K < V_2(\rho^0)$ and $\rho^0 < \hat{\rho}$ (Graphical Intuition)
 - Only bad news can avoid entry
 - Bad news is likely enough

• **Driving Forces**:
 - *Entry Deterrence Effect*
 - *Public Good Effect*
Bayesian Persuasion

- We concentrated on a specific technology: quantity experimentation; uniform distribution

- What happens if we relax the assumption on information technology?

- Opposite case: Firm can design any information disclosure policy

- Pharmaceutical company needs to design pre-test for its new drug:
 - Can choose sample size, technology used etc.

- 'Bayesian Persuasion': Company commits to a distribution over posterior:
 - Probability τ the posterior is ρ_s
 - $1 - \tau$ posterior is ρ_s'
 - Bayesian Plausibility: $\rho_0 = \tau \rho_s + (1 - \tau)\rho_s'$
Monopolist

\[V_1(\cdot) \]

\[V_1^M \]

\[0 \leq \rho \leq 1 \]
Entry Deterrence

\[V_1(\cdot) \]

\[V_1^M \]

\[V_1^C \]

\[\rho \]

\[\rho_0 \]

\[\bar{\rho} \]
Entry Deterrence

\[V_1(\cdot) \]

\[V_1^M \]

\[V_1^C \]

\[\rho^0 \]

\[\bar{\rho} \]

\[\rho \]
Is Full Disclosure Possible?

\[V_{1}(\cdot) \]

\[V_{1}^{M} \]

\[V_{1}^{C} \]

\[\rho \]
Why is this mechanism important?

- Literature on entry deterrence: does not consider experimentation level
- Literature on experimentation: does not consider entry deterrence effect (exception: Jain (2010))
- Two different settings analysed:
 - Quantity experimentation and *Uniform Technology*
 - No Technological Constraints: *Bayesian Persuasion*
- **Robust Finding**: Entry deterrence and public good effect are robust
- **Non-Robust Finding**: the results depend on the information structure
- **Policy Implication**: Should we incorporate these results in the debate over markets’ liberalization and patents’ protection?